1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
#
# This file is part of the PyMeasure package.
#
# Copyright (c) 2013-2024 PyMeasure Developers
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
from pymeasure.instruments import Instrument
from pymeasure.errors import RangeException
from time import sleep
import numpy as np
import re
class Danfysik8500(Instrument):
""" Represents the Danfysik 8500 Electromanget Current Supply
and provides a high-level interface for interacting with the
instrument
To allow user access to the Prolific Technology PL2303 Serial port adapter
in Linux, create the file:
:code:`/etc/udev/rules.d/50-danfysik.rules`, with contents:
.. code-block:: none
SUBSYSTEMS=="usb",ATTRS{idVendor}=="067b",ATTRS{idProduct}=="2303",MODE="0666",SYMLINK+="danfysik"
Then reload the udev rules with:
.. code-block:: bash
sudo udevadm control --reload-rules
sudo udevadm trigger
The device will be accessible through the port :code:`/dev/danfysik`.
"""
id = Instrument.measurement(
"PRINT", """Get the idenfitication information. """
)
def __init__(self, adapter, name="Danfysik 8500 Current Supply", **kwargs):
super().__init__(
adapter,
name,
includeSCPI=False,
write_termination="\r",
read_termination="\r",
timeout=500,
**kwargs
)
# TODO verify serial connection.
self.write("ERRT") # Use text error messages
self.write("UNLOCK") # Unlock from remote or local mode
def read(self):
""" Read the device and raise exceptions if errors are reported by the instrument.
:returns: String ASCII response of the instrument
:raises: An :code:`Exception` if the Danfysik raises an error
"""
result = super().read()
search = re.search(r"^\?\x07\s(?P<name>.*)$", result, re.MULTILINE)
if search:
raise Exception("Danfysik raised the error: %s" % (
search.groups()[0]))
else:
return result
def local(self):
""" Sets the instrument in local mode, where the front
panel can be used.
"""
self.write("LOC")
def remote(self):
""" Sets the instrument in remote mode, where the the
front panel is disabled.
"""
self.write("REM")
@property
def polarity(self):
"""Control the polarity of the current supply, being either
-1 or 1. This property can be set by supplying one of
these values.
"""
return 1 if self.ask("PO").strip() == '+' else -1
@polarity.setter
def polarity(self, value):
polarity = "+" if value > 0 else "-"
self.write("PO %s" % polarity)
def reset_interlocks(self):
""" Resets the instrument interlocks.
"""
self.write("RS")
def enable(self):
""" Enables the flow of current.
"""
self.write("N")
def disable(self):
""" Disables the flow of current.
"""
self.write("F")
def is_enabled(self):
""" Returns True if the current supply is enabled.
"""
return self.status_hex & 0x800000 == 0
@property
def status_hex(self):
"""Get the status in hexadecimal. This value is parsed in
:attr:`~.Danfysik8500.status` into a human-readable list.
"""
status = self.ask("S1H")
match = re.search(r'(?P<hex>[A-Z0-9]{6})', status)
if match is not None:
return int(match.groupdict()['hex'], 16)
else:
raise Exception("Danfysik status not properly returned. Instead "
"got '%s'" % status)
@property
def current(self):
"""Control the actual current in Amps. This property can be set through
:attr:`~.current_ppm`.
"""
return int(self.ask("AD 8")) * 1e-2 * self.polarity
@current.setter
def current(self, amps):
if amps > 160 or amps < -160:
raise RangeException("Danfysik 8500 is only capable of sourcing "
"+/- 160 Amps")
self.current_ppm = int((1e6 / 160) * amps)
@property
def current_ppm(self):
"""Control the current in parts per million..
"""
return int(self.ask("DA 0")[2:])
@current_ppm.setter
def current_ppm(self, ppm):
if abs(ppm) < 0 or abs(ppm) > 1e6:
raise RangeException("Danfysik 8500 requires parts per million "
"to be an appropriate integer")
self.write("DA 0,%d" % ppm)
@property
def current_setpoint(self):
"""Get the setpoint for the current, which can deviate from the actual current
(:attr:`~.Danfysik8500.current`) while the supply is in the process of setting the value.
"""
return self.current_ppm * (160 / 1e6)
@property
def slew_rate(self):
"""Get the slew rate of the current sweep.
"""
return float(self.ask("R3"))
def wait_for_current(self, has_aborted=lambda: False, delay=0.01):
""" Blocks the process until the current has stabilized. A
provided function :code:`has_aborted` can be supplied, which
is checked after each delay time (in seconds) in addition to the
stability check. This allows an abort feature to be integrated.
:param has_aborted: A function that returns True if the process should stop waiting
:param delay: The delay time in seconds between each check for stability
"""
self.wait_for_ready(has_aborted, delay)
while not has_aborted() and not self.is_current_stable():
sleep(delay)
def is_current_stable(self):
""" Returns True if the current is within 0.02 A of the
setpoint value.
"""
return abs(self.current - self.current_setpoint) <= 0.02
def is_ready(self):
""" Returns True if the instrument is in the ready state.
"""
return self.status_hex & 0b10 == 0
def wait_for_ready(self, has_aborted=lambda: False, delay=0.01):
""" Blocks the process until the instrument is ready. A
provided function :code:`has_aborted` can be supplied, which
is checked after each delay time (in seconds) in addition to the
readiness check. This allows an abort feature to be integrated.
:param has_aborted: A function that returns True if the process should stop waiting
:param delay: The delay time in seconds between each check for readiness
"""
while not has_aborted() and not self.is_ready():
sleep(delay)
@property
def status(self):
"""Get a list of human-readable strings that contain
the instrument status information, based on :attr:`~.status_hex`.
"""
status = []
indicator = self.ask("S1")
if indicator[0] == "!":
status.append("Main Power OFF")
else:
status.append("Main Power ON")
# Skipping 5, 6 and 7 (from Appendix Manual on command S1)
messages = {
1: "Polarity Normal",
2: "Polarity Reversed",
3: "Regulation Transformer is not equal to zero",
7: "Spare Interlock",
8: "One Transistor Fault",
9: "Sum - Interlock",
10: "DC Overcurrent (OCP)",
11: "DC Overload",
12: "Regulation Module Failure",
13: "Preregulator Failure",
14: "Phase Failure",
15: "MPS Waterflow Failure",
16: "Earth Leakage Failure",
17: "Thermal Breaker/Fuses",
18: "MPS Overtemperature",
19: "Panic Button/Door Switch",
20: "Magnet Waterflow Failure",
21: "Magnet Overtemperature",
22: "MPS Not Ready"
}
for index, message in messages.items():
if indicator[index] == "!":
status.append(message)
return status
def clear_ramp_set(self):
""" Clears the ramp set.
"""
self.write("RAMPSET C")
def set_ramp_delay(self, time):
""" Sets the ramp delay time in seconds.
:param time: The time delay time in seconds
"""
self.write("RAMPSET %f" % time)
def start_ramp(self):
""" Starts the current ramp.
"""
self.write("RAMP R")
def add_ramp_step(self, current):
""" Adds a current step to the ramp set.
:param current: A current in Amps
"""
self.write("R %.6f" % (current / 160.))
def stop_ramp(self):
""" Stops the current ramp.
"""
self.ask("RAMP S")
def set_ramp_to_current(self, current, points, delay_time=1):
""" Sets up a linear ramp from the initial current to a different
current, with a number of points, and delay time.
:param current: The final current in Amps
:param points: The number of linear points to traverse
:param delay_time: A delay time in seconds
"""
initial_current = self.current
self.clear_ramp_set()
self.set_ramp_delay(delay_time)
steps = np.linspace(initial_current, current, num=points)
cmds = ["R %.6f" % (step / 160.) for step in steps]
self.write("\r".join(cmds))
def ramp_to_current(self, current, points, delay_time=1):
""" Executes :meth:`~.set_ramp_to_current` and starts the ramp.
"""
self.set_ramp_to_current(current, points, delay_time)
self.start_ramp()
# self.setSequence(0, [0, 10], [0.01])
def set_sequence(self, stack, currents, times, multiplier=999999):
""" Sets up an arbitrary ramp profile with a list of currents (Amps)
and a list of interval times (seconds) on the specified stack number
(0-15)
"""
self.clear_sequence(stack)
if min(times) >= 1 and max(times) <= 65535:
self.write("SLOW %i" % stack)
elif min(times) >= 0.1 and max(times) <= 6553.5:
self.write("FAST %i" % stack)
times = [0.1 * x for x in times]
else:
raise RangeException("Timing for Danfysik 8500 ramp sequence is"
" out of range")
for i in range(len(times)):
self.write("WSA %i,%i,%i,%i" % (
stack,
int(6250 * abs(currents[i])),
int(6250 * abs(currents[i + 1])), times[i])
)
self.write("MULT %i,%i" % (stack, multiplier))
def clear_sequence(self, stack):
""" Clears the sequence by the stack number.
:param stack: A stack number between 0-15
"""
self.write("CSS %i" % stack)
def sync_sequence(self, stack, delay=0):
""" Arms the ramp sequence to be triggered by a hardware
input to pin P33 1&2 (10 to 24 V) or a TS command. If a
delay is provided, the sequence will start after the delay.
:param stack: A stack number between 0-15
:param delay: A delay time in seconds
"""
self.write("SYNC %i, %i" % (stack, delay))
def start_sequence(self, stack):
""" Starts a sequence by the stack number.
:param stack: A stack number between 0-15
"""
self.write("TS %i" % stack)
def stop_sequence(self):
""" Stops the currently running sequence.
"""
self.write("STOP")
def is_sequence_running(self, stack):
""" Returns True if a sequence is running with a given stack number
:param stack: A stack number between 0-15
"""
return re.search("R%i," % stack, self.ask("S2")) is not None
|