File: hp437b.py

package info (click to toggle)
python-pymeasure 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 8,788 kB
  • sloc: python: 47,201; makefile: 155
file content (945 lines) | stat: -rw-r--r-- 30,970 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
from pymeasure.instruments import Instrument
from pymeasure.instruments.validators import strict_discrete_set, strict_range
from enum import IntEnum, IntFlag

import logging

log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())


class MeasurementUnit(IntEnum):
    """Enumeration to represent the measurement unit the power meter will measure in"""

    WATTS = 0

    DBM = 1

    PERCENT = 2

    DB = 3


class SensorType(IntEnum):
    """Enumeration to represent the selected sensor type for the power meter"""

    #: Default (100% for all frequencies)
    DEFAULT = 0

    HP_8481A = 1

    #: HP 8482A, 8482B, 8482H
    HP_8482X = 2

    HP_8483A = 3

    HP_8481D = 4

    HP_8485A = 5

    HP_R8486A = 6

    HP_Q8486A = 7

    HP_R8486D = 8

    HP_8487A = 9


class OperatingMode(IntEnum):
    """Enumeration to represent the operating mode the power meter is currently in"""

    NORMAL = 0

    ZEROING = 6

    CALIBRATION = 8


class TriggerMode(IntEnum):
    """Enumeration to represent the trigger mode the power meter is currently in"""

    HOLD = 0

    FREE_RUNNING = 3


class GroupTriggerMode(IntEnum):
    """Enumeration to represent the group execute trigger mode the power meter is currently in"""

    IGNORE = 0

    TRIGGER_IMMEDIATE = 1

    TRIGGER_DELAY = 2


class EventStatusRegister(IntFlag):
    """Enumeration to represent the Event Status Register."""

    #: The bit is set when the power meter's LINE switch is set from STDBY to ON
    POWER_ON = 128

    #: This bit is set when an incorrect HP-IB code is sent to the power meter. For example,
    # the command “QX” is a command error.
    COMMAND_ERROR = 32

    #: This bit is set when incorrect data is sent to the power meter. For example, the command
    # “FR-3GZ” is an execution error.
    EXECUTION_ERROR = 16

    #: This bit is set true whenever a measurement error (error 1-49) occurs.
    DEVICE_DEPENDENT_ERROR = 8


Errors = {
    1: "Power meter cannot zero the sensor",
    5: "Power meter cannot calibrate sensor",
    11: "Input overload on sensor",
    15: "Sensor’s zero reference has drifted negative",
    17: "Input power on sensor is too high for current range",
    21: "Power reading over high limit",
    23: "Power reading under low limit",
    31: "No sensor connected to the input",
    33: "Both front and rear sensor inputs, have sensors connected (Option 002 or Option 003 only)",
    50: "Entered cal factor is out of range",
    51: "Entered offset is out of range",
    52: "Entered range number is out of range",
    54: "Entered recall register number is out of range",
    55: "Entered storage register number is out of range",
    56: "Entered reference cal factor is out of range",
    57: "RAM ID check failure",
    61: "Stack RAM failure",
    62: "ROM checksum failure",
    64: "RAM failure",
    65: "Analog I/O PIA Failure",
    66: "Keyboard and Display PIA Failure",
    67: "Analog-to-Digital converter Failure",
    68: "HP-IB failure",
    69: "Timer failure",
    70: "Keyboard/Display controller failure",
    71: "Keyboard data failure",
    72: "Data line to A3U26 is open.",
    73: "Keyboard/Display controller self-test failure",
    74: "Display not responding",
    75: "Digital failure",
}


class StatusMessage:
    MeasurementErrorCode = (0, 1)
    EntryErrorCode = (2, 2)
    OperatingMode = (4, 2)
    AutomaticRangeStatus = (6, 1)
    Range = (7, 1)
    # 8, 9 unused
    AutoFilterStatus = (10, 1)
    Filter = (11, 1)
    # 12, 13 unused
    LinearLogStatus = (14, 1)
    # A
    PowerRefStatus = (16, 1)
    RelativeModeStatus = (17, 1)
    TriggerMode = (18, 1)
    GroupTriggerMode = (19, 1)
    LimitsCheckingStatus = (20, 1)
    LimitsStatus = (21, 1)
    # 22 unused
    OffsetStatus = (23, 1)
    DutyCycleStatus = (24, 1)
    MeasurementUnits = (25, 1)


def _getstatus(status_type, modifier=lambda v: v):
    start_index, stop_offset = status_type
    return lambda v: modifier(int(v[start_index:start_index + stop_offset]))


class HP437B(Instrument):
    """Represents the HP437B Power Meters.

    .. note::
        Most command descriptions are taken from the document:
        'Operating Manual 437B Power Meter'
    """

    def __init__(self, adapter, name="Hewlett-Packard HP437B", **kwargs):
        super().__init__(
            adapter,
            name,
            includeSCPI=False,
            send_end=True,
            **kwargs,
        )

    def check_errors(self):
        errors = []
        while True:
            err = self.values("ERR?")
            # exclude upper limit and lower limit hit from real errors
            if int(err[0]) != 0 and int(err[0]) != 21 and int(err[0]) != 23:
                log.error(f"{self.name}: {err[0]}, {Errors[err[0]]}")
                errors.append(err)
            else:
                break
        return errors

    event_status = Instrument.measurement(
        "*ESR?",
        """
        Get the status byte and Master Summary Status bit.

        .. code-block:: python

            print(instr.request_service_conditions)
            StatusRegister.PowerOn|CommandError
        """,
        cast=int,
        get_process=lambda v: EventStatusRegister(v)
    )

    def activate_auto_range(self):
        """
        The power meter divides each sensor’s power range into 5 ranges of
        10 dB each. Range 1 is the most sensitive (lowest power levels), and
        Range 5 is the least sensitive (highest power levels). Range 5 can be
        less than 10 dB if the sensor’s power range is less than 50 dB. The
        range can be set either automatically or manually.
        'activate_auto_range' automatically selects the correct range for the current
        measurement.
        """
        self.write("RA")

    def calibrate(self, calibration_factor):
        """
        Calibrate a sensor to the power meter with a 'calibration_factor' in percent.
        """
        self.write("CL%.1fPCT" % calibration_factor)

    @property
    def calibration_factor(self):
        """
        Control the calibration factor of a specific power sensor at a specific input frequency.
        (A chart or table of CAL FACTOR % versus Frequency is printed on each sensor and an
        accompanying data sheet.) Calibration factor is entered in percent.
        Valid entries for 'calibration_factor' range from 1.0 to 150.0%.
        """
        self.write("KB")
        # returns CALFAC 097.9%
        display_content = self.display_output
        assert display_content[0:6] == "CALFAC"
        self.write("EX")
        return float(display_content[7:12])

    @calibration_factor.setter
    def calibration_factor(self, calibration_factor):
        values = [1.0, 150.0]
        strict_range(float(calibration_factor), values)

        self.write("KB%3.1fPCT" % float(calibration_factor))
        self.check_errors()

    display_enabled = Instrument.setting(
        "%s",
        """
        Set the display of the power meter active or inactive.
        """,
        map_values=True,
        values={True: "DE", False: "DD"}
    )

    display_all_segments_enabled = Instrument.setting(
        "%s",
        """
        Set all segments of the display of the power meter active or resume normal state.
        """,
        map_values=True,
        values={True: "DA", False: "DE"}
    )

    display_user_message = Instrument.setting(
        "DU %s",
        """
        Set a custom user message up to 12 alpha-numerical chars. If the string is empty or None
        the user message gets disabled.
        """,
        validator=lambda x, y: x if str(x).isalnum() and len(str(x)) <= 12 else str(x)[0:12],
        set_process=lambda v: str(v).upper().ljust(12)
    )

    display_output = Instrument.measurement(
        "OD",
        """
        Get the current displayed string of values of the power meter.

        .. code-block:: python

            print(instr.display_output)
            -0.23  dB REL

        """,
        cast=str
    )

    duty_cycle_enabled = Instrument.control(
        "SM", "DC%d",
        """
        Control whether the duty cycle is active or inactive. See :attr:`duty_cycle`
        """,
        map_values=True,
        values={True: 1, False: 0},
        cast=int,
        get_process=_getstatus(StatusMessage.DutyCycleStatus),
        check_set_errors=True
    )

    @property
    def duty_cycle(self):
        """
        Control the duty cycle for calculation of a pulsed input signal. This function will cause
        the power meter to report the pulse power of a rectangular pulsed input signal. The
        allowable range of values for 'duty_cycle' is 0.00001 to 0.99999.

        Pulse power, as reported by the power meter, is a mathematical
        representation of the pulse power rather than an actual measurement.
        The power meter measures the average power of the pulsed input
        signal and then divides the measurement by the duty cycle value to
        obtain a pulse power reading.
        """
        self.write("DY")
        # returns DTYCY 01.000%
        display_content = self.display_output
        assert display_content[0:5] == "DTYCY"
        self.write("EX")
        return float(display_content[6:12]) / 100.0

    @duty_cycle.setter
    def duty_cycle(self, duty_cycle):
        values = [0.00001, 0.99999]
        strict_range(float(duty_cycle), values)

        self.write("DY%02.3fPCT" % (float(duty_cycle) * 100.0))
        self.check_errors()

    filter_automatic_enabled = Instrument.control(
        "SM", "%s",
        """
        Control the filter mode. By switching over from automatic to manual (true to false)
        the instrument implicitly keeps (holds) the filter value from the automatic selection.
        """,
        cast=bool,
        get_process=_getstatus(StatusMessage.AutoFilterStatus),
        set_process=lambda v: "FA" if v else "FH",
        check_set_errors=True
    )

    filter = Instrument.control(
        "SM", "FM%dEN",
        """
        Control the filter number for averaging. Setting a value implicitly enables the manual
        filter mode. Setting a value of 1 basically disables the averaging.
        """,
        values=[1, 2, 4, 8, 16, 32, 64, 128, 256, 512],
        validator=strict_discrete_set,
        get_process=_getstatus(StatusMessage.Filter, (lambda x: 2 ** x)),
        check_set_errors=True
    )

    @property
    def frequency(self):
        """
        Control the frequency of the input signal. Entering a frequency causes the power meter to
        select a sensor-specific calibration factor. The allowed range of 'frequency'
        values is from 0.0001 to 999.9999 GHz with a 100 kHz resolution. The unit is Hz.
        """
        self.write("FR")
        # returns FR 000.0500GZ
        display_content = self.display_output
        assert display_content[0:2] == "FR"
        self.write("EX")

        return_value = float(display_content[3:11])
        if display_content[11:13] == "GZ":
            return_value *= 1e9
        else:
            return_value *= 1e6

        return return_value

    @frequency.setter
    def frequency(self, frequency):
        self.write("FR%08.4fGZ" % (float(frequency) / 1e9))
        self.check_errors()

    limits_enabled = Instrument.control(
        "SM", "LM%d",
        """
        Control the limits checking function to allow the power meter to monitor the
        power level at the sensor and to indicate when that power is outside
        preset limits.
        """,
        map_values=True,
        values={True: 1, False: 0},
        cast=int,
        get_process=_getstatus(StatusMessage.LimitsCheckingStatus),
        check_set_errors=True
    )

    @property
    def limit_high(self):
        """
        Control the upper limit for the builtin limit checking.
        """
        self.write("LH")
        # returns HI +299.999dB
        display_content = self.display_output
        assert display_content[0:2] == "HI"
        self.write("EX")
        return float(display_content[3:11])

    @limit_high.setter
    def limit_high(self, limit):
        """
        Control the upper limit for the builtin limit checking.
        """
        values = [-299.999, 299.999]
        strict_range(limit, values)

        self.write("LH%7.3fEN" % limit)
        self.check_errors()

    @property
    def limit_low(self):
        """
        Control the lower limit for the builtin limit checking.
        """
        self.write("LL")
        # returns HI +299.999dB
        display_content = self.display_output
        assert display_content[0:2] == "LO"
        self.write("EX")
        return float(display_content[3:11])

    @limit_low.setter
    def limit_low(self, limit):
        """
        Control the lower limit for the builtin limit checking.
        """
        values = [-299.999, 299.999]
        strict_range(limit, values)

        self.write("LL%7.3fEN" % limit)
        self.check_errors()

    limit_high_hit = Instrument.measurement(
        "SM",
        """
        Get if the upper limit check got triggered.
        """,
        map_values=True,
        values={True: 1, False: 0},
        cast=int,
        get_process=_getstatus(StatusMessage.LimitsStatus),
    )

    limit_low_hit = Instrument.measurement(
        "SM",
        """
        Get if the lower limit check got triggered.
        """,
        map_values=True,
        values={True: 2, False: 0},
        cast=int,
        get_process=_getstatus(StatusMessage.LimitsStatus),
    )

    # just addressing the instrument to talk (without a query string) and read until EOI results
    # in only reading the RF power level
    power = Instrument.measurement(
        "",
        """
        Measure the power at the power sensor attached to the power meter in the corresponding unit.
        In case a measurement would be invalid the power meter responds with the value float('nan').
        """,
        get_process=lambda v: float("nan") if v == 9.0200e+40 else v

    )

    power_reference_enabled = Instrument.control(
        "SM", "OC%d",
        """
        Control the builtin reference power source 1mW @ 50 MHz.
        """,
        map_values=True,
        values={True: 1, False: 0},
        cast=int,
        get_process=_getstatus(StatusMessage.PowerRefStatus),
        check_set_errors=True
    )

    offset_enabled = Instrument.control(
        "SM", "OF%d",
        """
        Control the offset being applied.
        """,
        map_values=True,
        values={True: 1, False: 0},
        cast=int,
        get_process=_getstatus(StatusMessage.OffsetStatus),
        check_set_errors=True
    )

    @property
    def offset(self):
        """
        Control the offset applied to the measured value to compensate for
        signal gain or loss (for example, to compensate for the loss of a 10 dB
        directional coupler). Offsets are entered in dB.
        In case the :attr:`offset_enabled` is false this returns automatically 0.0
        """
        if self.offset_enabled:
            self.write("OS")
            # returns OFS +00.00 dB
            display_content = self.display_output
            assert display_content[0:3] == "OFS"
            self.write("EX")
            return float(display_content[4:10])
        else:
            return 0.0

    @offset.setter
    def offset(self, offset):
        values = [-99.99, 99.99]
        strict_range(offset, values)
        self.write("OS%5.2fEN" % offset)

    def reset(self):
        self.write("*RST")

    def clear_status_registers(self):
        self.write("*CLS")

    def preset(self):
        """
        Sets the power meter to a known state. Preset
        conditions are shown in the following table.

        .. list-table:: Preset values
            :widths: 25 25
            :header-rows: 1

            * - Parameter
              - Value/Condition
            * - Frequency
              - 50 MHz
            * - Resolution
              - 0.01 dB
            * - Duty Cylce
              - 1.000%, Off
            * - Relative
              - 0 dB, Off
            * - Power Reference
              - Off
            * - Range
              - Auto
            * - Unit
              - dBm
            * - Low Limit
              - -90.000 dBm
            * - High Limit
              - +90.000 dBm
            * - Limit Checking
              - Off
            * - Trigger Mode
              - Free Run
            * - Group Trigger Mode
              - Trigger with Delay
            * - Display Function
              - Display Enable
        """
        self.write("PR")

    relative_mode_enabled = Instrument.control(
        "SM", "RL%d",
        """
        Control the relative mode. In the relative mode the current measured power value will be
        used as reference and any further reported value from :attr:`power` will refer to this.
        """,
        map_values=True,
        values={True: 1, False: 0},
        cast=int,
        get_process=_getstatus(StatusMessage.RelativeModeStatus),
        check_set_errors=True
    )

    measurement_unit = Instrument.measurement(
        "SM",
        """
        Get the measurement unit the power meter is currently reporting the power values in.

        Depends on: :attr:`relative_mode_enabled` and attr:`linear_display_enabled`

        .. code-block:: python

            instr.relative_mode_enabled = False
            instr.linear_display_enabled = True

            print(instr.measurement_unit)
            MeasurementUnit.Watts

        """,
        values=[e for e in MeasurementUnit],
        cast=int,
        get_process=_getstatus(StatusMessage.MeasurementUnits, lambda v: MeasurementUnit(v)),
    )

    linear_display_enabled = Instrument.control(
        "SM", "%s",
        """
        Control if the power meter displays or reports the power values in logarithmic or linear
        units. Set `linear_display_enabled` to 'True' to activate linear value readout.

        .. code-block:: python

            from pymeasure.instruments.hp.hp437b import LogLin

            instr.relative_mode_enabled = False
            instr.linear_display_enabled = True
        """,
        validator=strict_discrete_set,
        values={True: "LN", False: "LG"},
        cast=bool,
        map_values=True,
        get_process=_getstatus(StatusMessage.LinearLogStatus, lambda v: {0: "LN", 1: "LG"}[v])
    )

    @property
    def resolution(self):
        """
        Control the resolution of the power meter's measured value. Three levels of resolution
        can be
        set: 0.1 dB, 0.01 dB and 0.001 dB or if the selected unit is Watts 1%, 0.1% and 0.001%.
        """
        linear_display_enabled = self.linear_display_enabled
        mapping = {}
        if not linear_display_enabled:
            mapping = {1: 0.1, 2: 0.01, 3: 0.001}
        else:
            mapping = {1: 1, 2: 0.1, 3: 0.01}

        self.write("RE")
        self.check_errors()
        display_content = self.display_output
        self.check_errors()
        self.write("EX")
        assert display_content[0:3] == "RES"

        return mapping[int(display_content[3])]

    @resolution.setter
    def resolution(self, resolution):
        """
        Control the resolution of the power meter's measured value. Three levels of resolution can
        be set: 0.1 dB, 0.01 dB and 0.001 dB or if the selected unit is Watts 1%, 0.1% and 0.001%.
        """

        linear_display_enabled = self.linear_display_enabled
        allowed_values = {}
        if not linear_display_enabled:
            allowed_values = {0.1: 1, 0.01: 2, 0.001: 3}
        else:
            allowed_values = {1: 1, 0.1: 2, 0.01: 3}

        strict_discrete_set(resolution, allowed_values.keys())

        self.write(f"RE{allowed_values[resolution]}EN")
        self.check_errors()

    sensor_type = Instrument.setting(
        "SE%dEN",
        """
        Set the sensor type connected to the power meter to select the corresponding calibration
        factor.

        .. code-block:: python

            from pymeasure.instruments.hp.hp437b import SensorType

            instr.sensor_type = SensorType.HP_8481A

        """,
        validator=strict_discrete_set,
        values=[e for e in SensorType],
        check_set_errors=True
    )

    def sensor_data_clear(self, sensor_id):
        """
        Clear the Sensor Data table of 'sensor_id' previous to entering new values.
        """
        values = [0, 9]
        strict_range(sensor_id, values)

        self.write(f"CT{sensor_id}")

    def sensor_data_ref_cal_factor(self, sensor_id, ref_cal_factor):
        """
        Set the power sensor's reference calibration factor to the Sensor Data table.
        """
        values = [0, 9]
        strict_range(sensor_id, values)

        self.write(f"RF{sensor_id}{ref_cal_factor:4.1f}")
        self.check_errors()

    def sensor_data_write_cal_factor_table(self, sensor_id, frequency_table, cal_fac_table):
        """
        Write the 'calibration_table' for 'sensor_id' to the Sensor Data
        table. And write the reference calibration factor for the 'sensor_id'.
        Frequency is given in Hz. Calibration factor as percentage.

        The power meter’s memory contains space for 10 tables, numbered
        0—9. Tables 0-7 each contain space for 40 frequency /calibration
        factor pairs. Tables 8 and 9 each contain space for 80
        frequency/calibration factor pairs.

        This function clears the sensor table before writing.

        Example table:

        .. code-block:: python

            calibration_table = {
                10e6: 100.0,
                1e9: 96.5,
                2e9: 97.0
            }

            instr.sensor_data_cal_factor_table(0, calibration_table.keys(),
            calibration_table.values())
        """
        values = [0, 9]
        strict_range(sensor_id, values)

        if sensor_id in range(0, 7) and (len(cal_fac_table) > 40 or len(frequency_table)) > 40:
            raise ValueError(f"For sensor id {sensor_id} there aren't more than 40 frequency "
                             f"pairs allowed")
        if sensor_id in range(8, 9) and (len(cal_fac_table) > 80 or len(frequency_table)) > 80:
            raise ValueError(f"For sensor id {sensor_id} there aren't more than 80 frequency "
                             f"pairs allowed")
        if len(cal_fac_table) != len(frequency_table):
            raise ValueError(f"Frequency table and calibration factor table must have the same "
                             f"length {len(cal_fac_table)}!={len(frequency_table)}")

        self.sensor_data_clear(sensor_id)
        for frequency, cal_factor in zip(frequency_table, cal_fac_table):
            if frequency > 99.9e6:
                freq_suffix = "GZ"
                frequency /= 1e9
            elif frequency > 99.9e3:
                freq_suffix = "MZ"
                frequency /= 1e6
            else:
                freq_suffix = "KZ"
                frequency /= 1e3

            self.write(f"ET{sensor_id} {frequency:5.2f}{freq_suffix} {cal_factor}% EN")
            self.check_errors()
        self.write("EX")
        self.check_errors()

    def sensor_data_read_cal_factor_table(self, sensor_id):
        """
        Read the Sensor Data calibration table. See :meth:`sensor_data_write_cal_factor_table`
        Returns a tuple of frequencies as list and calibration factors as list.
        """
        allowed_values = [0, 9]
        strict_range(sensor_id, allowed_values)

        pairs = 80
        if sensor_id < 8:
            pairs = 40

        frequency_data = []
        cal_fac_data = []
        self.write(f"ET{sensor_id}")
        self.check_errors()
        for i in range(0, pairs):
            # outputs something like 38.00GZ 100.2%
            display_content = self.display_output

            frequency = float(display_content[0:5])
            if frequency == 0:
                break
            if display_content[5:7] == "GZ":
                frequency *= 1e9
            else:
                frequency *= 1e6

            calibration_factor = float(display_content[8:13])
            cal_fac_data.append(calibration_factor)
            frequency_data.append(frequency)

            self.write("EN")
            self.check_errors()

        self.write("EX")
        return frequency_data, cal_fac_data

    def sensor_data_write_id_label(self, sensor_id, label):
        """
        Set a particular power sensor’s ID label table to be modified. The sensor ID label must not
        exceed 7 characters. For example, to identify Sensor Data table #2
        with an ID number of 1234567:

        .. code-block:: python

            instr.sensor_data_id_label(2, "1234567")

        """

        values = [0, 9]
        strict_range(sensor_id, values)

        if len(label) > 7:
            raise ValueError("Sensor id label must not exceed length of 7")

        if not str(label).upper().isalnum():
            raise ValueError("Sensor id label only allows 0-9, A-Z")

        self.write(f"SN{sensor_id}{label}")

    automatic_range_enabled = Instrument.control(
        "SM", "%s",
        """
        Control the automatic range.
        The power meter divides each sensor’s power range into 5 ranges of 10 dB each. Range 1
        is the most sensitive (lowest power levels), and Range 5 is the least sensitive (highest
        power levels). The range can be set either automatically or manually.
        """,
        get_process=_getstatus(StatusMessage.AutomaticRangeStatus, lambda v: bool(v)),
        set_process=lambda v: "RM0EN" if v is True else "RH"
    )

    range = Instrument.control(
        "SM", "RM%dEN",
        """
        Control the range to be selected manually. Valid range numbers are 1 through 5.
        See :attr:`automatic_range_enabled` for further information.
        """,
        values=[1, 5],
        validator=strict_range,
        get_process=_getstatus(StatusMessage.Range)
    )

    def store(self, register):
        """
        The power meter can store instrument configurations for recall at a
        later time. The following information can be stored in the power
        meter’s internal registers:

        - reference calibration factor value
        - Measurement units (dBm or watts)
        - relative value and status (on or off)
        - power reference status (on or off)
        - calibration factor value
        - SENSOR ID (sensor data table selection)
        - offset value and status (on or off)
        - range (Auto or Set)
        - frequency value
        - resolution
        - duty cycle value and status (on or off)
        - Filter (number of readings averaged, auto or manual)
        - Limits value and status (on or off)

        Registers 1 through 10 are available for storing instrument
        configurations.
        """
        values = [1, 10]
        strict_range(register, values)
        self.write(f"ST{register}EN")

    operating_mode = Instrument.measurement(
        "SM",
        """
        Get the operating mode the power meter is currently in.
        """,
        get_process=_getstatus(StatusMessage.OperatingMode, lambda v: OperatingMode(v))
    )

    def zero(self):
        """
        Adjust the power meter’s internal circuitry for a zero power indication when no power is
        applied to the sensor.

        .. note::

            Ensure that no power is applied to the sensor while the power meter
            is zeroing. Any applied RF input power will cause an erroneous
            reading.

        """
        self.write("ZE")

    trigger_mode = Instrument.control(
        "SM", "TR%d",
        """
        Control the trigger mode.

        The power meter has two modes of triggered operation; standby mode and free run mode.
        Standby mode means the power meter is making measurements, but the display and HP-IB are
        not updated until a trigger command is received. Free run means that Meter takes
        measurements and updates the display and HP-IB continuously.
        """,
        values=[e for e in TriggerMode],
        validator=strict_discrete_set,
        get_process=_getstatus(StatusMessage.TriggerMode, lambda v: TriggerMode(v)),
        set_process=lambda v: int(v)
    )

    def trigger_immediate(self):
        """
        Trigger immediate.

        When the power meter receives the trigger immediate program code, it inputs one more data
        point into the digital filter, measures the reading from the filter, and then updates
        the display and HP-IB. (When the trigger immediate command is executed, the internal
        digital filter is not cleared.) The power meter then waits for the measurement results to
        be read by the controller. While waiting, the power meter can process most bus commands
        without losing the measurement results. If the power meter receives a trigger immediate
        command and then receives the GET (Group Execute Trigger) command, the trigger immediate
        command will be aborted and a new measurement cycle will be executed. Once the
        measurement results are read onto the bus, the power meter always reverts to standby/hold
        mode. Measurement results obtained via trigger immediate are normally valid only when the
        power meter is in a steady, settled state.
        """
        self.write("TR1")

    def trigger_delay(self):
        """
        Trigger with delay.

        Triggering with delay is identical to :meth:`trigger_immediate` except the power meter
        inserts a settling-time delay before taking the requested measurement.
        This settling time allows the internal digital filter to be updated with new values to
        produce valid, accurate measurement results. The trigger with delay command allows time
        for settling of the internal amplifiers and filters. It does not allow time for power
        sensor delay. In cases of large power changes, the delay may not be sufficient for
        complete settling. Accurate readings can be assured by taking two successive measurements
        for comparison. Once the measurement results are displayed and read onto the bus,
        the power meter reverts to standby mode.
        """
        self.write("TR2")

    group_trigger_mode = Instrument.control(
        "SM", "GT%d",
        """
        Control the group execute trigger mode.
        When in remote and addressed to listen, the power meter responds to a Trigger message (
        the Group Execute Trigger bus command [GET]) according to the programmed mode.
        """,
        values=[e for e in GroupTriggerMode],
        validator=strict_discrete_set,
        get_process=_getstatus(StatusMessage.GroupTriggerMode, lambda v: GroupTriggerMode(v)),
        set_process=lambda v: int(v)
    )