1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
|
#
# This file is part of the PyMeasure package.
#
# Copyright (c) 2013-2024 PyMeasure Developers
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
import logging
from math import log10
from enum import Enum, IntFlag
from datetime import datetime
import numpy as np
from pymeasure.instruments import Instrument
from pymeasure.instruments.validators import strict_discrete_set, truncated_discrete_set, \
joined_validators, strict_range
log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())
try:
from enum import StrEnum
except ImportError:
class StrEnum(str, Enum):
"""Until StrEnum is broadly available / pymeasure relies on python <=
3.10.x."""
def __str__(self):
return self.value
class WindowType(StrEnum):
"""Enumeration to represent the different window mode for FFT functions"""
#: Flattop provides optimum amplitude accuracy
Flattop = "FLATTOP"
#: Hanning provides an amplitude accuracy/frequency resolution compromise
Hanning = "HANNING"
#: Uniform provides equal weighting of the time record for measuring transients.
Uniform = "UNIFORM"
class StatusRegister(IntFlag):
"""Enumeration to represent the Status Register."""
#: Request Service
RQS = 64
#: Set when error present
ERROR_PRESENT = 32
#: Any command is completed
COMMAND_COMPLETE = 16
#: Unused but sometimes set
NA = 8
#: Set when any sweep is completed
END_OF_SWEEP = 4
#: Set when display message appears
MESSAGE = 2
#: Trigger is activated
TRIGGER = 1
#: No Interrupts can interrupt the program sequence
NONE = 0
class Trace(StrEnum):
"""Enumeration to represent either Trace A or Trace B."""
#: Trace A
A = "TRA"
#: Trace B
B = "TRB"
class SweepCoupleMode(StrEnum):
"""Enumeration."""
#: Stimulus Response
SpectrumAnalyzer = "SA"
#: Spectrum Analyeze
StimulusResponse = "SR"
class SweepOut(StrEnum):
"""Enumeration."""
#: 0 - 10V Ramp
Ramp = "RAMP"
#: DC Ramp 0.5V / GHz
Fav = "FAV"
class MixerMode(StrEnum):
"""Enumeration to represent the Mixer Mode of the HP8561B."""
#: Mixer Mode Internal
Internal = "INT"
#: Mixer Mode External
External = "EXT"
class SourceLevelingControlMode(StrEnum):
"""Enumeration to represent the Source Leveling Control Mode of the
HP8560A."""
#: Source Leveling Control Mode Internal
Internal = "INT"
#: Source Leveling Control Mode External
External = "EXT"
class PeakSearchMode(StrEnum):
"""Enumeration to represent the Marker Peak Search Mode."""
#: Place marker to the highest value on the trace
High = "HI"
#: Place marker to the next highest value on the trace
NextHigh = "NH"
#: Place marker to the next peak to the right
NextRight = "NR"
#: Place marker to the next peak to the left
NextLeft = "NL"
class CouplingMode(StrEnum):
"""Enumeration to represent the Coupling Mode."""
#: AC
AC = "AC"
#: DC
DC = "DC"
class DemodulationMode(StrEnum):
"""Enumeration to represent the Demodulation Mode."""
#: Amplitude Modulation
Amplitude = "AM"
#: Frequency Modulation
Frequency = "FM"
#: Demodulation Off
Off = "OFF"
class TriggerMode(StrEnum):
"""Enumeration to represent the different trigger modes"""
#: External Mode
External = "EXT"
#: Free Running
Free = "FREE"
#: Line Mode
Line = "LINE"
#: Video Mode
Video = "VID"
class TraceDataFormat(StrEnum):
"""Enumeration to represent the different trace data formats."""
#: A-Block format
A_BLOCK = "A"
#: Binary format
BINARY = "B"
#: I-Block format
I_BLOCK = "I"
#: ASCII format
ASCII = "M"
#: Real numbers format like are in Hz, volts, watts, dBm, dBmV, dBuV, dBV, or seconds.
REAL = "P"
class FrequencyReference(StrEnum):
"""Enumeration to represent the frequency reference source."""
#: Internal Frequency Reference
Internal = "INT"
#: External Frequency Standard
External = "EXT"
class DetectionModes(StrEnum):
"""Enumeration to represent the Detection Modes."""
#: Negative Peak Detection
NegativePeak = "NEG"
#: Normal Peak Detection
Normal = "NRM"
#: Positive Peak Detection
PositivePeak = "POS"
#: Sampl Mode Detection
Sample = "SMP"
class AmplitudeUnits(StrEnum):
"""Enumeration to represent the amplitude units."""
#: DB over millit Watt
DBM = "DBM"
#: DB over milli Volt
DBMV = "DBMV"
#: DB over micro Volt
DBUV = "DBUV"
#: Volts
V = "V"
#: Watt
W = "W"
#: Automatic Unit (Usually derives to 'DBM')
AUTO = "AUTO"
#: Manual Mode
MANUAL = "MAN"
class ErrorCode:
"""
Class to decode error codes from the spectrum analyzer.
"""
__error_code_list = {
0: ("NO ERR", "No Error at all"),
100: ("PWRON", "Power-on state is invalid; default state is loaded"),
101: ("NO STATE", "State to be RECALLed not valid or not SAVEd"),
106: ("ABORTED!", "Current operation is aborted; HP-IB parser reset"),
107: ("HELLO ??", "No HP-IB listener is present"),
108: ("TIME OUT", "Analyzer timed out when acting as controller"),
109: ("CtrlFail", "Analyzer unable to take control of the bus"),
110: ("NOT CTRL", "Analyzer is not system controller"),
111: ("# ARGMTS", "Command does not have enough arguments"),
112: ("??CMD??", "Unrecognized command"),
113: ("FREQ NQ!", "Command cannot have frequency units"),
114: ("TIME NOG!", "Command cannot have time units"),
115: ("AMPL NO!", "Command cannot have amplitude units"),
116: ("PUNITS??", "Unrecognizable units"),
117: ("NOP NUM", "Command cannot have numeric units"),
118: ("NOP EP", "Enable parameter cannot be used"),
119: ("NOP UPDN", "UP/DN are not valid arguments for command"),
120: ("NOP ONOF", "ON/OFF are not valid arguments for command"),
121: ("NOP ARG", "AUTO/MAN are not valid arguments for command"),
122: ("NOP TRC", "Trace registers are not valid for command"),
123: ("NOP ABLK", "A-block format not valid here"),
124: ("NOP IBLK", "I-block format not valid here"),
125: ("NOP STRNG", "Strings are not valid for this command"),
126: ("NO ?", "This command cannot be queried"),
127: ("BAD DTMD", "Not a valid peak detector mode"),
128: ("PK WHAT?", "Not a valid peak search parameter"),
129: ("PRE TERM", "Premature A-block termination"),
130: ("BAD TDF", "Arguments are only for TDF command"),
131: ("?? AM/FM", "AM/FM are not valid arguments for this command"),
132: ("!FAV/RMP", "FAV/RAMP are not valid arguments for this command"),
133: ("!INT/EXT", "INT/EXT are not valid arguments for this command"),
134: ("??? ZERO", "ZERO is not a valid argument for this command"),
135: ("??? CURR", "CURR is not a valid argument for this command"),
136: ("??? FULL", "FULL is not a valid argument for this command"),
137: ("??? LAST", "LAST is not a valid argument for this command"),
138: ("!GRT/DSP", "GRT/DSP are not valid arguments for this command"),
139: ("PLOTONLY", "Argument can only be used with PLOT command"),
140: ("?? PWRON", "PWRON is not a valid argument for this command"),
141: ("BAD ARG", "Argument can only be used with FDIAG command"),
142: ("BAD ARG", "Query expected for FDIAG command"),
143: ("NO PRESL", "No preselector hardware to use command with (HP 8562B)"),
200: ("SYSTEM", "Hardware/firmware interaction; check other errors"),
201: ("SYSTEM", "Hardware/firmware interaction; check other errors"),
250: ("OUTOF RG", "ADC input is outside of ADC range"),
251: ("NO IRQ", "Microprocessor not receiving interrupt from ADC"),
300: ("YTO UNLK", "YTO (1ST LO) phase-locked loop (PLL) is unlocked"),
301: ("YTO UNLK", "YTO PLL is unlocked"),
302: ("OFF UNLK", "Offset Roller Oscillator PLL is unlocked"),
303: ("XFR UNLK", "Transfer Roller Oscillator PLL is unlocked"),
304: ("ROL UNLK", "Main Roller Oscillator PLL is unlocked"),
305: ("FREQ ACC", "Frequency accuracy error"),
306: ("FREQ ACC", "Frequency accuracy error"),
307: ("FREQ ACC", "Frequency accuracy error"),
308: ("FREQ ACC", "Frequency accuracy error"),
309: ("FREQ ACC", "Frequency accuracy error"),
310: ("FREQ ACC", "Frequency accuracy error"),
311: ("FREQ ACC", "Frequency accuracy error"),
312: ("FREQ ACC", "Frequency accuracy error"),
313: ("FREQ ACC", "Frequency accuracy error"),
314: ("FREQ ACC", "Frequency accuracy error"),
315: ("FREQ ACC", "Frequency accuracy error"),
316: ("FREQ ACC", "Frequency accuracy error"),
317: ("FREQ ACC", "Frequency accuracy error"),
318: ("FREQ ACC", "Frequency accuracy error"),
319: ("FREQ ACC", "Frequency accuracy error"),
320: ("FREQ ACC", "Frequency accuracy error"),
321: ("FREQ ACC", "Frequency accuracy error"),
322: ("FREQ ACC", "Frequency accuracy error"),
323: ("FREQ ACC", "Frequency accuracy error"),
324: ("FREQ ACC", "Frequency accuracy error"),
325: ("FREQ ACC", "Frequency accuracy error"),
326: ("FREQ ACC", "Frequency accuracy error"),
327: ("OFF UNLK", "Offset Roller Oscillator PLL is unlocked"),
328: ("FREQ ACC", "Frequency accuracy error"),
329: ("FREQ ACC", "Frequency accuracy error"),
331: ("FREQ ACC", "Frequency accuracy error"),
333: ("600 UNLK", "600 MHz Reference Oscillator PLL is unlocked"),
334: ("LO AMPL", "YTO (ist LO) unleveled"),
400: ("AMPL 100", "Unable to adjust amplitude of 100 Hz resolution bandwidth"),
401: ("AMPL 300", "Unable to adjust amplitude of 300 Hz resolution bandwidth"),
402: ("AMPL 1K", "Unable to adjust amplitude of 1 kHz resolution bandwidth"),
403: ("AMPL 3K", "Unable to adjust amplitude of 3 kHz resolution bandwidth"),
404: ("AMPL 10K", "Unable to adjust amplitude of 10 kHz resolution bandwidth"),
405: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
406: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
407: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
408: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
409: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
410: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
411: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
412: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
413: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
414: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
415: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
416: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
417: ("RBW 3K", "Unable to adjust 3 kHz resolution bandwidth"),
418: ("RBW 3K", "Unable to adjust 3 kHz resolution bandwidth"),
419: ("RBW 3K", "Unable to adjust 3 kHz resolution bandwidth"),
420: ("RBW 3K", "Unable to adjust 3 kHz resolution bandwidth"),
421: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
422: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
423: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
424: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
425: ("RBW 3K", "Unable to adjust 3 kHz resolution bandwidth"),
426: ("RBW 3K", "Unable to adjust 3 kHz resolution bandwidth"),
427: ("RBW 3K", "Unable to adjust 3 kHz resolution bandwidth"),
428: ("RBW 3K", "Unable to adjust 3 kHz resolution bandwidth"),
429: ("RBW 100", "Unable to adjust 100 Hz resolution bandwidth"),
430: ("RBW 300", "Unable to adjust 300 Hz resolution bandwidth"),
431: ("RBW 1K", "Unable to adjust 1 kHz resolution bandwidth"),
432: ("RBW 3K", "Unable to adjust 3 kHz resolution bandwidth"),
433: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
434: ("RBW 300", "Unable to adjust 300 Hz resolution bandwidth"),
435: ("RBW 301", "Unable to adjust 300 Hz resolution bandwidth"),
436: ("RBW 302", "Unable to adjust 300 Hz resolution bandwidth"),
437: ("RBW 303", "Unable to adjust 300 Hz resolution bandwidth"),
438: ("RBW 1K", "Unable to adjust 1 kHz resolution bandwidth"),
439: ("RBW 1K", "Unable to adjust 1 kHz resolution bandwidth"),
440: ("RBW 1K", "Unable to adjust 1 kHz resolution bandwidth"),
441: ("RBW 1K", "Unable to adjust 1 kHz resolution bandwidth"),
442: ("RBW 3K", "Unable to adjust 3 kHz resolution bandwidth"),
443: ("RBW 3K", "Unable to adjust 3 kHz resolution bandwidth"),
444: ("RBW 3K", "Unable to adjust 3 kHz resolution bandwidth"),
445: ("RBW 3K", "Unable to adjust 3 kHz resolution bandwidth"),
446: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
447: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
448: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
449: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
450: ("IF SYSTM", "IF hardware failure Check other error messages"),
451: ("IF SYSTM", "IF hardware failure Check other error messages"),
452: ("IF SYSTM", "IF hardware failure Check other error messages"),
454: ("FREQ ACC", "Unable to adjust step gain amplifiers"),
455: ("FREQ ACC", "Unable to adjust step gain amplifiers"),
456: ("FREQ ACC", "Unable to adjust step gain amplifiers"),
457: ("FREQ ACC", "Unable to adjust step gain amplifiers"),
458: ("FREQ ACC", "Unable to adjust step gain amplifiers"),
459: ("FREQ ACC", "Unable to adjust step gain amplifiers"),
460: ("FREQ ACC", "Unable to adjust step gain amplifiers"),
461: ("FREQ ACC", "Unable to adjust step gain amplifiers"),
462: ("FREQ ACC", "Unable to adjust step gain amplifiers"),
463: ("FREQ ACC", "Unable to adjust step gain amplifiers"),
464: ("FREQ ACC", "Unable to adjust step gain amplifiers"),
465: ("FREQ ACC", "Unable to adjust step gain amplifiers"),
466: ("LIN AMPL", "Unable to adjust linear amplitude scale"),
467: ("LOG AMPL", "Unable to adjust log amplitude scale"),
468: ("LOG AMPL", "Unable to adjust log amplitude scale"),
469: ("LOG AMPL", "Unable to adjust log amplitude scale"),
470: ("LOG AMPL", "Unable to adjust log amplitude scale"),
471: ("RBW 30K", "Unable to adjust 30 kHz resolution bandwidth"),
472: ("RBW 100K", "Unable to adjust 100 kHz resolution bandwidth"),
473: ("RBW 300K", "Unable to adjust 300 kHz resolution bandwidth"),
474: ("RBW 1M", "Unable to adjust 1 MHz resolution bandwidth"),
475: ("RBW 30K", "Unable to adjust 30 kHz resolution bandwidth"),
476: ("RBW 100K", "Unable to adjust 30 kHz resolution bandwidth"),
477: ("RBW 300K", "Unable to adjust 300 kHz resolution bandwidth"),
478: ("RBW 1M", "Unable to adjust 1 MHz resolution bandwidth"),
483: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
484: ("RBW 3K", "Unable to adjust 3 kHz resolution bandwidth"),
485: ("RBW 1K", "Unable to adjust 1 kHz resolution bandwidth"),
486: ("RBW 300", "Unable to adjust 300 Hz resolution bandwidth"),
487: ("RBW 100", "Unable to adjust 100 Hz resolution bandwidth"),
488: ("RBW 100", "Unable to adjust 100 Hz resolution bandwidth"),
489: ("RBW 101", "Unable to adjust 100 Hz resolution bandwidth"),
490: ("RBW 102", "Unable to adjust 100 Hz resolution bandwidth"),
491: ("RBW 103", "Unable to adjust 100 Hz resolution bandwidth"),
492: ("RBW 300", "Unable to adjust 300 Hz resolution bandwidth"),
493: ("RBW 1K", "Unable to adjust 1 kHz resolution bandwidth"),
494: ("RBW 3K", "Unable to adjust 3 kHz resolution bandwidth"),
495: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
496: ("RBW 100", "Unable to adjust 100 Hz resolution bandwidth"),
497: ("RBW 100", "Unable to adjust 100 Hz resolution bandwidth"),
498: ("RBW 100", "Unable to adjust 100 Hz resolution bandwidth"),
499: ("CAL UNLK", "A16 IF Adjustment Cal Oscillator is unlocked"),
500: ("AMPL 30K", "Unable to adjust amplitude of 30 kHz resolution bandwidth"),
501: ("AMPL 1M", "Unable to adjust amplitude of 100 kHz resolution bandwidth"),
502: ("AMPL 3M", "Unable to adjust amplitude of 300 kHz resolution bandwidth"),
503: ("AMPL 1M", "Unable to adjust amplitude of 1 MHz resolution bandwidth"),
504: ("AMPL 30K", "Unable to adjust amplitude of 30 kHz resolution bandwidth"),
505: ("AMPL 1M", "Unabie to adjust amplitude of 100 kHz resolution bandwidth"),
506: ("AMPL 3M", "Unable to adjust amplitude of 300 kHz resolution bandwidth"),
507: ("AMPL 1M", "Unable to adjust amplitude of 1 MHz resolution bandwidth"),
508: ("AMPL 30K", "Unable to adjust amplitude of 30 kHz resolution bandwidth"),
509: ("AMPL 1M", "Unable to adjust amplitude of 100 kHz resolution bandwidth"),
510: ("AMPL 3M", "Unable to adjust amplitude of 300 kHz resolution bandwidth"),
511: ("AMPL 1M", "Unable to adjust amplitude of 1 MHz resolution bandwidth"),
512: ("RBW 100", "Unable to adjust 100 Hz resolution bandwidth"),
513: ("RBW 300", "Unable to adjust 300 Hz resolution bandwidth"),
514: ("RBW 1K", "Unable to adjust 1 kHz resolution bandwidth"),
515: ("RBW 3K", "Unable to adjust 3 kHz resolution bandwidth"),
516: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
517: ("RBW 100", "Unable to adjust 100 Hz resolution bandwidth"),
518: ("RBW 300", "Unable to adjust 300 Hz resolution bandwidth"),
519: ("RBW 1K", "Unable to adjust 1 kHz resolution bandwidth"),
520: ("RBW 3K", "Unable to adjust 3 kHz resolution bandwidth"),
521: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth"),
522: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth SYM POLE 1"),
523: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth SYM POLE 2"),
524: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth SYM POLE 3"),
525: ("RBW 10K", "Unable to adjust 10 kHz resolution bandwidth SYM POLE 4"),
526: ("RBW <300", "Unable to adjust <300 Hz resolution bandwidths"),
527: ("RBW <301", "Step gain correction failed for <300 Hz resolution bandwidth"),
528: ("RBW <302", "Unable to adjust <300 Hz resolution bandwidths"),
529: ("RBW <303", "Unable to adjust <300 Hz resolution bandwidths"),
530: ("RBW <304", "Unable to adjust <300 Hz resolution bandwidths"),
531: (
"RBW <305", "Unable to adjust gain versus frequency for resoultion bandwidths <300 Hz"),
532: ("RBW <306", "Absolute gain data for resolution bandwidths <300 Hz not acceptable"),
533: ("RBW <307", "Unable to adjust <300 Hz resolution bandwidths"),
534: ("RBW <308", "Unable to adjust frequency accuracy for resolution bandwidths <100 Hz"),
535: ("RBW <309", "Unable to adjust <300 Hz resolution bandwidths"),
536: ("RBW <310", "Unable to adjust <300 Hz resolution bandwidths"),
537: ("RBW <311", "Unable to adjust <300 Hz resolution bandwidths"),
538: ("RBW <312", "Unable to adjust <300 Hz resolution bandwidths"),
539: ("RBW <313", "Unable to adjust <300 Hz resolution bandwidths"),
540: ("RBW <314", "Unable to adjust <300 Hz resolution bandwidths"),
551: ("AMPL", "Unable to adjust step gain amplifiers"),
552: ("LOG AMPL", "Unable to adjust amplitude of log scale"),
553: ("LOG AMPL", "Unable to adjust amplitude of log scale"),
554: ("LOG AMPL", "Unable to adjust amplitude of log scale"),
555: ("LOG AMPL", "Unable to adjust amplitude of log scale"),
556: ("LOG AMPL", "Unable to adjust amplitude of log scale"),
557: ("LOG AMPL", "Unable to adjust amplitude of log scale"),
558: ("LOG AMPL", "Unable to adjust amplitude of log scale"),
559: ("LOG AMPL", "Unable to adjust amplitude of log scale"),
560: ("LOG AMPL", "Unable to adjust amplitude of log scale"),
561: ("LOG AMPL", "Unable to adjust amplitude of log scale"),
562: ("LOG AMPL", "Unable to adjust amplitude of log scale"),
563: ("LOG AMPL", "Unable to adjust amplitude of log scale"),
564: ("LOG AMPL", "Unable to adjust amplitude of log scale"),
565: ("LOG AMPL", "Unable to adjust amplitude of log scale"),
566: ("LOG AMPL", "Unable to adjust amplitude of log scale"),
567: ("LOG AMPL", "Unable to adjust amplitude of log scale"),
568: ("LOG AMPL", "Unable to adjust amplitude of log scale"),
569: ("LOG AMPL", "Unable to adjust amplitude of log scale"),
570: ("LOG AMPL", "Unable to adjust amplitude of log scale"),
571: ("AMPL", "Unable to adjust step gain amplifiers"),
572: ("AMPL 1M", "Unable to adjust amplitude of 1 MHz resolution bandwidth"),
573: ("LOG AMPL", "Unable to adjust amplitude in log scale"),
574: ("LOG AMPL", "Unable to adjust amplitude in log scale"),
575: ("LOG AMPL", "Unable to adjust amplitude in log scale"),
576: ("LOG AMPL", "Unable to adjust amplitude in log scale"),
577: ("LOG AMPL", "Unable to adjust amplitude in log scale"),
581: ("AMPL", "Unable to adjust 100 kHz and <10 kHz resolution bandwidths"),
582: ("AMPL", "Unable to adjust 100 kHz and <10 kHz resolution bandwidths"),
583: ("RBW 30K", "Unable to adjust 30 kHz resolution bandwidth"),
584: ("RBW 100K", "Unable to adjust 100 kHz resolution bandwidth"),
585: ("RBW 300K", "Unable to adjust 300 kHz resolution bandwidth"),
586: ("RBW 1M", "Unable to adjust 1 MHz resolution bandwidth"),
587: ("RBW 30K", "Unable to adjust 30 kHz resolution bandwidth"),
588: ("RBW 300K", "Unable to adjust 100 kHz resolution bandwidth"),
589: ("RBW 300K", "Unable to adjust 300 kHz resolution bandwidth"),
590: ("RBW 1M", "Unable to adjust 1 MHz resolution bandwidth"),
591: ("LOG AMPL", "Unable to adjust amplitude in log scale"),
592: ("LOG AMPL", "Unable to adjust amplitude in log scale"),
600: ("SYSTEM", "Hardware/firmware interaction; check other errors"),
601: ("SYSTEM", "Hardware/firmware interaction; check other errors"),
650: ("OUTOF RG", "ADC input is outside of the ADC range"),
651: ("NO IRQ", "Microprocessor is not receiving interrupt from ADC"),
700: ("EEROM", "Checksum error of EEROM A2U501"),
701: ("AMPL CAL", "Checksum error of frequency response correction data"),
702: ("ELAP TIM", "Checksum error of elapsed time data"),
703: ("AMPL CAL", "Checksum error of frequency response correction data"),
704: ("PRESELCT", "Checksum error of customer preselector peak data"),
705: ("ROM U306", "Checksum error of program ROM A2U306"),
706: ("ROM U307", "Checksum error of program ROM A2U307"),
707: ("ROM U308", "Checksum error of program ROM A2U308"),
708: ("ROM U309", "Checksum error of program ROM A2U309"),
709: ("ROM U310", "Checksum error of program ROM A2U310"),
710: ("ROM U311", "Checksum error of program ROM A2U311"),
711: ("RAM U303", "Checksum error of system RAM A2U303"),
712: ("RAM U302", "Checksum error of system RAM A2U302"),
713: ("RAM U301", "Checksum error of system RAM A2U301"),
714: ("RAM U300", "Checksum error of system RAM A2U300"),
715: ("RAM U305", "Checksum error of system RAM A2U305"),
716: ("RAM U304", "Checksum error of system RAM A2U304"),
717: ("BAD uP!!", "Microprocessor not fully operational"),
718: ("BATTERY?", "Nonvolatile RAM not working; check battery"),
750: ("SYSTEM", "Hardware/ firmware interaction; check other errors"),
751: ("SYSTEM", "Hardware/firmware interaction; check other errors"),
752: ("SYSTEM", "Hardware/firmware interaction; check other errors"),
753: ("SYSTEM", "Hardware/firmware interaction; check other errors"),
754: ("SYSTEM", "Hardware/firmware interaction; check other errors"),
755: ("SYSTEM", "Hardware/firmware interaction; check other errors"),
900: ("TG UNLVL", "Tracking generator output is unleveled"),
901: ("TGFrqLmt",
"Tracking generator output unleveled because START FREQ is set "
"below tracking generator frequency limit (300 kHz)"),
902: ("BAD NORM",
"The state of the stored trace does not match the current state of the analyzer"),
903: ("&> DLMT", "Unnormalized trace A is off-screen with trace math or normalization on"),
904: (
"&> DLMT",
"Calibration trace (trace B) is off-screen with trace math or normalization on")
}
# integer representation of error code
code = 0
def __init__(self, code):
"""Initialize an ErrorCode.
:param code: Representing an error as id or short description
:type code: str, int
"""
if not (isinstance(code, int) or isinstance(code, str)):
print(type(code))
raise TypeError("Initialziation type for code must be integer or string")
try:
self.code = int(code)
if self.code not in self.__error_code_list.keys():
raise ValueError()
except (ValueError, TypeError):
raise ValueError("This error code doesn't exist")
(self.short, self.long) = self.__error_code_list[self.code]
def __repr__(self):
return "ErrorCode(\"" + self.short + " - " + self.long + "\")"
def __eq__(self, other):
return self.code == other.code
class HP856Xx(Instrument):
"""Represents the HP856XX series spectrum analyzers.
Don't use this class directly - use their derivative classes
.. note::
Most command descriptions are taken from the document:
'HP 8560A, 8561B Operating & Programming'
"""
def __init__(self, adapter, name="Hewlett-Packard HP856Xx", **kwargs):
super().__init__(
adapter,
name,
includeSCPI=False,
send_end=True,
**kwargs,
)
def adjust_all(self):
"""Activate the local oscillator (LO) and intermediate frequency (IF)
alignment routines. These are the same routines that occur when is switched on.
Commands following 'adjust_all' are not executed until after the analyzer has finished the
alignment routines.
"""
self.write("ADJALL")
def set_crt_adjustment_pattern(self):
"""Activate a CRT adjustment pattern, shown in Figure 5-3. Use the
X POSN, Y POSN, and TRACE ALIGN adjustments (available from the rear panel) to
align the display. Use X POSN and Y POSN to move the display horizontally and vertically,
respectively. Use TRACE ALIGN to straighten a tilted display. To remove the pattern from
the screen, execute the :meth:`preset` command."""
self.write("ADJCRT")
adjust_if = Instrument.control(
"ADJIF?", "ADJIF %s",
"""
Control the automatic IF adjustment. This function is normally
on. Because the IF is continuously adjusting, executing the IF alignment routine is seldom
necessary. When the IF adjustment is not active, an "A" appears on the left side of the
display.
- `"FULL"` IF adjustment is done for all IF settings.
- `"CURR"` IF adjustment is done only for the IF settings currently displayed.
- `False` turns the continuous IF adjustment off.
- `True` reactivates the continuous IF adjustment.
Type: :code:`bool, str`
""",
validator=strict_discrete_set,
map_values=True,
values={True: "1", False: "0", "FULL": "FULL", "CURR": "CURR"},
cast=str
)
trace_a_minus_b_enabled = Instrument.control(
"AMB?", "AMB %s",
"""
Control subtraction of the contents of trace B from trace A.
It places the result, in dBm (when in log mode), in trace A. When in linear mode,
the result is in volts. If trace A is in clear-write or max-hold mode, this function is
continuous. When AMB is active, an "M" appears on the left side of the display.
:attr:`trace_a_minus_b_plus_dl` overrides AMB.
Type: :code:`bool`
.. warning::
The displayed amplitude of each trace element falls in one of 600 data points.
There are 10 points of overrange, which corresponds to one-sixth of a division
Kg of overrange. When adding or subtracting trace data, any results exceeding
this limit are clipped at the limit.
""",
validator=strict_discrete_set,
map_values=True,
values={True: "1", False: "0"},
cast=str
)
trace_a_minus_b_plus_dl_enabled = Instrument.control(
"AMBPL?", "AMBPL %s",
"""
Control subtraction of trace B from trace A and addition to the display line,
and stores the result in dBm (when in log mode) in trace A. When in linear
mode, the result is in volts. If trace A is in clear-write or max-hold mode, this function
is continuous. When this function is active, an "M" appears on the left side of the display.
Type: :code:`bool`
.. warning::
The displayed amplitude of each trace element falls in one of 600 data points.
There are 10 points of overrange, which corresponds to one-sixth of a division
Kg of overrange. When adding or subtracting trace data, any results exceeding
this limit are clipped at the limit.
""",
validator=strict_discrete_set,
map_values=True,
values={True: "1", False: "0"},
cast=str
)
annotation_enabled = Instrument.control(
"ANNOT?", "ANNOT %s",
"""
Set the display annotation off or on.
Type: :code:`bool`
""",
validator=strict_discrete_set,
map_values=True,
values={True: "1", False: "0"},
cast=str
)
attenuation = Instrument.control(
"AT?", "AT %s",
"""
Control the input attenuation in decade steps from 10 to 70 db (type 'int') or set to
'AUTO' and 'MAN'(ual)
Type: :code:`str`, :code:`int`
.. code-block:: python
instr.attenuation = 'AUTO'
instr.attenuation = 60
""",
validator=joined_validators(strict_discrete_set, truncated_discrete_set),
values=[["AUTO", "MAN"], np.arange(10, 80, 10)],
cast=int,
)
amplitude_unit = Instrument.control(
"AUNITS?", "AUNITS %s",
"""
Control the amplitude unit with a selection of the following parameters: string
'DBM', 'DBMV', 'DBUV', 'V', 'W', 'AUTO', 'MAN' or use the enum :class:`AmplitudeUnits`
Type: :code:`str`
.. code-block:: python
instr.amplitude_unit = 'dBmV'
instr.amplitude_unit = AmplitudeUnits.dBmV
""",
validator=strict_discrete_set,
values=[str(e).upper() for e in AmplitudeUnits],
set_process=lambda v: str(v).upper()
)
def write(self, command, **kwargs):
if "{amplitude_unit}" in command:
command = command.format(amplitude_unit=self.amplitude_unit)
super().write(command, **kwargs)
def set_auto_couple(self):
"""Set the video bandwidth, resolution bandwidth, input attenuation,
sweep time, and center frequency step-size to coupled mode.
These functions can be recoupled individually or all at once.
The spectrum analyzer chooses appropriate values for these
functions. The video bandwidth and resolution bandwidth are set
according to the coupled ratios stored under :attr:`resolution_bandwidth_to_span_ratio`
and :attr:`video_bandwidth_to_resolution_bandwidth`. If
no ratios are chosen, default ratios (1.0 and 0.011,
respectively) are used instead.
"""
self.write("AUTOCPL")
def exchange_traces(self):
"""Exchange the contents of trace A with those of trace B.
If the traces are in clear-write or max-hold mode, the mode is
changed to view. Otherwise, the traces remain in their initial
mode.
"""
self.write("AXB")
def blank_trace(self, trace):
"""Blank the chosen trace from the display. The current contents of the
trace remain in the trace but are not updated.
.. code-block:: python
instr.blank_trace('TRA')
instr.blank_trace(Trace.A)
:param trace: A representation of the trace, either from :class:`Trace` or
use 'TRA' for Trace A or 'TRB' for Trace B
:type trace: str
:raises TypeError: Type isn't 'string'
:raises ValueError: Value is 'TRA' nor 'TRB'
"""
if not isinstance(trace, str):
raise TypeError("Should be of type string but is '%s'" % type(trace))
if trace not in [e for e in Trace]:
raise ValueError("Only accepts values of [%s] but was '%s'" % ([e for e in Trace],
trace))
self.write("BLANK " + trace)
def subtract_display_line_from_trace_b(self):
"""Subtract the display line from trace B and places the result in dBm
(when in log mode) in trace B, which is then set to view mode.
In linear mode, the results are in volts.
"""
self.write("BML")
center_frequency = Instrument.control(
"CF?", "CF %.11E Hz",
"""
Control the center frequency in hertz and sets the spectrum analyzer to center
frequency / span mode.
The span remains constant; the start and stop frequencies change as
the center frequency changes.
Type: :code:`float`
.. code-block:: python
instr.center_frequency = 300.5e6
if instr.center_frequency == 200e3:
print("Correct frequency")
""",
validator=strict_range,
values=[0, 1],
dynamic=True
)
def clear_write_trace(self, trace):
"""Set the chosen trace to clear-write mode. This mode sets each
element of the chosen trace to the bottom-screen value; then new data
from the detector is put in the trace with each sweep.
.. code-block:: python
instr.clear_write_trace('TRA')
instr.clear_write_trace(Trace.A)
:param trace: A representation of the trace, either from :class:`Trace` or
use 'TRA' for Trace A or 'TRB' for Trace B
:type trace: str
:raises TypeError: Type isn't 'string'
:raises ValueError: Value is 'TRA' nor 'TRB'
"""
if not isinstance(trace, str):
raise TypeError("Should be of type string but is '%s'" % type(trace))
if trace not in [e for e in Trace]:
raise ValueError("Only accepts values of [%s] but was '%s'" % ([e for e in Trace],
trace))
self.write("CLRW " + trace)
def set_continuous_sweep(self):
"""Set the instrument to continuous-sweep mode.
This mode enables another sweep at the completion of the current
sweep once the trigger conditions are met.
"""
self.write("CONTS")
coupling = Instrument.control(
"COUPLE?", "COUPLE %s",
"""
Control the input coupling of the spectrum analyzer.
AC coupling protects the input of the analyzer from damaging dc signals, while limiting
the lower frequency-range to 100 kHz (although the analyzer will tune down to 0 Hz with
signal attenuation).
Type: :code:`str`
Takes a representation of the coupling mode, either from :class:`CouplingMode` or
use 'AC' / 'DC'
.. code-block:: python
instr.coupling = 'AC'
instr.coupling = CouplingMode.DC
if instr.coupling == CouplingMode.DC:
pass
""",
validator=strict_discrete_set,
values=[e for e in CouplingMode]
)
demodulation_mode = Instrument.control(
"DEMOD?", "DEMOD %s",
"""
Control the demodulation mode of the spectrum analyzer. Either AM or FM demodulation,
or turns the demodulation — off.
Place a marker on a desired signal and then set :attr:`demodulation_mode`;
demodulation takes place on this signal. If no marker is on, :attr:`demodulation_mode`
automatically places a marker at the center of the trace and demodulates the frequency at
that marker position. Use the volume and squelch controls to adjust the speaker and listen.
Type: :code:`str`
Takes a representation of the demodulation mode, either from :class:`DemodulationMode` or
use 'OFF', 'AM', 'FM'
.. code-block:: python
instr.demodulation_mode = 'AC'
instr.demodulation_mode = DemodulationMode.AM
if instr.demodulation_mode == DemodulationMode.FM:
instr.demodulation_mode = Demodulation.OFF
""",
validator=strict_discrete_set,
values=[e for e in DemodulationMode]
)
demodulation_agc_enabled = Instrument.control(
"DEMODAGC?", "DEMODAGC %s",
"""
Control the demodulation automatic gain control (AGC).
The AGC keeps the volume of the speaker relatively constant during AM demodulation. AGC
is available only during AM demodulation and when the frequency span is greater than 0 Hz.
Type: :code:`bool`
.. code-block:: python
instr.demodulation_agc = True
if instr.demodulation_agc:
instr.demodulation_agc = False
""",
validator=strict_discrete_set,
map_values=True,
values={True: "1", False: "0"},
cast=str
)
demodulation_time = Instrument.control(
"DEMODT?", "DEMODT %.11E",
"""
Control the amount of time that the sweep pauses at the marker to
demodulate a signal. The default value is 1 second. When the frequency span equals 0 Hz,
demodulation is continuous, except when between sweeps. For truly continuous demodulation,
set the frequency span to 0 Hz and the trigger mode to single sweep (see TM).
Minimum 100 ms to maximum 60 s
Type: :code:`float`
.. code-block:: python
# set the demodulation time to 1.2 seconds
instr.demodulation_time = 1.2
if instr.demodulation_time == 10:
pass
""",
validator=strict_range,
values=[100e-3, 60],
)
detector_mode = Instrument.control(
"DET?", "DET %s",
"""
Control the IF detector used for acquiring measurement data.
This is normally a coupled function, in which the spectrum analyzer selects the
appropriate detector mode. Four modes are available: normal, positive, negative, and sample.
Type: :code:`str`
Takes a representation of the detector mode, either from :class:`DetectionModes` or
use 'NEG', 'NRM', 'POS', 'SMP'
.. code-block:: python
instr.detector_mode = DetectionModes.SMP
instr.detector_mode = 'NEG'
if instr.detector_mode == DetectionModes.SMP:
pass
""",
validator=strict_discrete_set,
values=[e for e in DetectionModes]
)
# now implemented as a property but due to the ability of the underlying gpib command to
# specify the unit, there would be an alternative implementation as a method to allow the user
# to modify the setting unit without manipulating it via the 'amplitude_unit' property
display_line = Instrument.control(
"DL?", "DL %g.11E {amplitude_unit}",
"""
Control the horizontal display line for use as a visual aid or for
computational purposes. The default value is 0 dBm.
Type: :code:`float`
Takes a value with the unit of :attr:`amplitude_unit`
.. code-block:: python
instr.display_line = -10
if instr.display_line == 0:
pass
"""
)
display_line_enabled = Instrument.setting(
"DL %s",
"""
Set the horizontal display line for use as a visual aid either on or off.
.. code-block:: python
instr.display_line_enabled = False
""",
map_values=True,
validator=strict_discrete_set,
values={True: "ON", False: "OFF"}
)
done = Instrument.measurement(
"DONE?",
"""
Get back (e.g. return) when all commands in a command string
entered before 'done' has been completed. Sending a :meth:`trigger_sweep` command
before 'done' ensures that the spectrum analyzer will complete a full sweep before
continuing on in a program.
Depending on the timeout a timeout error from the adapter will raise before the spectrum
analyzer can finish due to an extreme long sweep time
.. code-block:: python
instr.trigger_sweep()
# wait for a full sweep and than 'do_something'
if instr.done:
do_something()
"""
)
def check_done(self):
"""
Return when all commands in a command string
entered before :meth:'check_done' has been completed. Sending a :meth:`trigger_sweep`
command before 'check_done' ensures that the spectrum analyzer will complete a full sweep
before continuing on in a program. Depending on the timeout a timeout error from the
adapter will raise before the spectrum analyzer can finish due to an extreme long sweep
time.
.. code-block:: python
instr.trigger_sweep()
# wait for a full sweep and than 'do_something'
instr.check_done()
do_something()
"""
# no error checking because there is no possibility to return anything else than '1'
self.ask("DONE?")
errors = Instrument.measurement(
"ERR?",
"""
Get a list of errors present (of type :class:`ErrorCode`). An empty list means there
are no errors. Reading 'errors' clears all HP-IB errors. For best results, enter error
data immediately after querying for errors.
Type: :class:`ErrorCode`
.. code-block:: python
errors = instr.errors
if len(errors) > 0:
print(errors[0].code)
for error in errors:
print(error)
if ErrorCode(112) in errors:
print("yeah")
Example result of this python snippet:
.. code-block:: python
112
ErrorCode("??CMD?? - Unrecognized command")
ErrorCode("NOP NUM - Command cannot have numeric units")
yeah
""",
cast=ErrorCode,
get_process=lambda v: v if isinstance(v, list) else []
)
elapsed_time = Instrument.measurement(
"EL?",
"""
Get the elapsed time (in hours) of analyzer operation.
This value can be reset only by Hewlett-Packard.
Type: :code:`int`
.. code-block:: python
print(elapsed_time)
1998
""",
cast=int
)
start_frequency = Instrument.control(
"FA?", "FA %.11E Hz",
"""
Control the start frequency and set the spectrum analyzer to start-frequency/
stop-frequency mode. If the start frequency exceeds the stop frequency, the stop frequency
increases to equal the start frequency plus 100 Hz. The center frequency and span change
with changes in the start frequency.
Type: :code:`float`
.. code-block:: python
instr.start_frequency = 300.5e6
if instr.start_frequency == 200e3:
print("Correct frequency")
""",
validator=strict_range,
values=[0, 1],
dynamic=True
)
stop_frequency = Instrument.control(
"FB?", "FB %.11E Hz",
"""
Control the stop frequency and set the spectrum analyzer to start-frequency/
stop-frequency mode. If the stop frequency is less than the start frequency, the start
frequency decreases to equal the stop frequency minus 100 Hz. The center frequency and
span change with changes in the stop frequency.
Type: :code:`float`
.. code-block:: python
instr.stop_frequency = 300.5e6
if instr.stop_frequency == 200e3:
print("Correct frequency")
""",
validator=strict_range,
values=[0, 1],
dynamic=True
)
sampling_frequency = Instrument.measurement(
"FDIAG SMP,?",
"""
Get the sampling oscillator frequency corresponding to the current start
frequency.
Diagnostic Attribute
Type: :code:`float`
"""
)
lo_frequency = Instrument.measurement(
"FDIAG LO,?",
"""
Get the first local oscillator frequency corresponding to the current start
frequency.
Diagnostic Attribute
Type: :code:`float`
"""
)
mroll_frequency = Instrument.measurement(
"FDIAG MROLL,?",
"""
Get the main roller oscillator frequency corresponding to the current start
frequency, except then the resolution bandwidth is less than or equal to 100 Hz.
Diagnostic Attribute
Type: :code:`float`
"""
)
oroll_frequency = Instrument.measurement(
"FDIAG OROLL,?",
"""
Get the offset roller oscillator frequency corresponding to the current start
frequency, except when the resolution bandwidth is less than or equal to 100 Hz.
Diagnostic Attribute
Type: :code:`float`
"""
)
xroll_frequency = Instrument.measurement(
"FDIAG XROLL,?",
"""
Get the transfer roller oscillator frequency corresponding to the current start
frequency, except when the resolution bandwidth is less than or equal to 100 Hz.
Diagnostic Attribute
Type: :code:`float`
"""
)
sampler_harmonic_number = Instrument.measurement(
"FDIAG HARM,?",
"""
Get the sampler harmonic number corresponding to the current start
frequency.
Diagnostic Attribute
Type: :code:`int`
""",
get_process=lambda v: int(float(v))
)
# practically you could also write "OFF" to actively disable it or reset via "IP"
frequency_display_enabled = Instrument.measurement(
"FDSP?",
"""
Get the state of all annotations that describes the spectrum analyzer frequency.
returns 'False' if no annotations are shown and vice versa 'True'. This includes the start
and stop frequencies, the center frequency, the frequency span, marker readouts, the center
frequency step-size, and signal identification to center frequency. To retrieve the
frequency data, query the spectrum analyzer.
Type: :code:`bool`
.. code-block:: python
if instr.frequency_display:
print("Frequencies get displayed")
""",
map_values=True,
values={True: "1", False: "0"},
cast=str
)
def do_fft(self, source, destination, window):
"""Calculate and show a discrete Fourier transform.
The FFT command performs a discrete Fourier transform on the source
trace array and stores the logarithms of the magnitudes of the results
in the destination array. The maximum length of any of the traces is
601 points. FFT is designed to be used in transforming zero-span
amplitude-modulation information into the frequency domain. Performing
an FFT on a frequency sweep will not provide time-domain results. The
FFT results are displayed on the spectrum analyzer in a logarithmic
amplitude scale. For the horizontal dimension, the frequency at the
left side of the graph is 0 Hz, and at the right side is Finax- Fmax is
equal to 300 divided by sweep time. As an example, if the sweep time of
the analyzer is 60 ms, Fmax equals 5 kHz. The FFT algorithm assumes
that the sampled signal is periodic with an integral number of periods
within the time-record length (that is, the sweep time of the
analyzer). Given this assumption, the transform computed is that of a
time waveform of infinite duration, formed of concatenated time
records. In actual measurements, the number of periods of the sampled
signal within the time record may not be integral. In this case, there
is a step discontinuity at the intersections of the concatenated time
records in the assumed time waveform of infinite duration. This step
discontinuity causes measurement errors, both amplitude uncertainty
(where the signal level appears to vary with small changes in
frequency) and frequency resolution (due to filter shape factor and
sidelobes). Windows are weighting functions that are applied to the
input data to force the ends of that data smoothly to zero, thus
reducing the step discontinuity and reducing measuremen errors.
:param source: A representation of the trace, either from :class:`Trace` or
use 'TRA' for Trace A or 'TRB' for Trace B
:param destination: A representation of the trace, either from :class:`Trace` or
use 'TRA' for Trace A or 'TRB' for Trace B
:param window: A representation of the trace, either from :class:`Trace` or
use 'TRA' for Trace A or 'TRB' for Trace B
:type source: str
:type destination: str
:type window: str
"""
if not isinstance(source, str):
raise TypeError("Should be of type string but is '%s'" % type(source))
if not isinstance(destination, str):
raise TypeError("Should be of type string but is '%s'" % type(destination))
if not isinstance(window, str):
raise TypeError("Should be of type string but is '%s'" % type(window))
if source not in [e for e in Trace]:
raise ValueError("Only accepts values of [%s] but was '%s'" % ([e for e in Trace],
source))
if destination not in [e for e in Trace]:
raise ValueError("Only accepts values of [%s] but was '%s'" % ([e for e in Trace],
destination))
if window not in [e for e in Trace]:
raise ValueError("Only accepts values of [%s] but was '%s'" % ([e for e in Trace],
window))
self.write("FFT %s,%s,%s" % (source, destination, window))
frequency_offset = Instrument.control(
"FOFFSET?", "FOFFSET %.11E Hz",
"""
Control an offset added to the displayed absolute-frequency values,
including marker-frequency values.
It does not affect the frequency range of the sweep, nor
does it affect relative frequency readouts. When this function is active, an "F" appears on
the left side of the display.
Changes all the following frequency measurements.
Type: :code:`float`
.. code-block:: python
instr.frequency_offset = 2e6
if instr.frequency_offset == 2e6:
print("Correct frequency")
""",
validator=strict_range,
values=[0, 1],
dynamic=True
)
frequency_reference_source = Instrument.control(
"FREF?", "FREF %s",
"""
Control the frequency reference source.
Select either the internal frequency reference (INT) or supply your own external
reference (EXT). An external reference must be 10 MHz (+100 Hz) at a minimum amplitude of
0 dBm. Connect the external reference to J9 (10 MHz REF IN/OUT) on the rear panel. When
the external mode is selected, an "X" appears on the left edge of the display.
Type: :code:`str`
Takes element of :class:`FrequencyReference` or use 'INT', 'EXT'
.. code-block:: python
instr.frequency_reference_source = 'INT'
instr.frequency_reference_source = FrequencyReference.EXT
if instr.frequency_reference_source == FrequencyReference.INT:
instr.frequency_reference_source = FrequencyReference.EXT
""",
validator=strict_discrete_set,
values=[e for e in FrequencyReference]
)
def set_full_span(self):
"""Set the spectrum analyzer to the full frequency span as defined by
the instrument.
The full span is 2.9 GHz for the HP 8560A. For the HP 8561B, the
full span is 6.5 GHz.
"""
self.write("FS")
graticule_enabled = Instrument.control(
"GRAT?", "GRAT %s",
"""
Control the display graticule. Switch it either on or off.
Type: :class:`bool`
.. code-block:: python
instr.graticule = True
if instr.graticule:
pass
""",
map_values=True,
values={True: "1", False: "0"},
validator=strict_discrete_set,
cast=str
)
def hold(self):
"""Freeze the active function at its current value.
If no function is active, no operation takes place.
"""
self.write("HD")
id = Instrument.measurement(
"ID?",
"""
Get the identification of the device with software and hardware revision (e.g. HP8560A,002,
H03)
Type: :class:`str`
.. code-block:: python
print(instr.id)
HP8560A,002,H02
""",
maxsplit=0,
cast=str
)
def preset(self):
"""Set the spectrum analyzer to a known, predefined state.
'preset' does not affect the contents of any data or trace
registers or stored preselector data. 'preset' does not clear
the input or output data buffers;
"""
self.write("IP")
logarithmic_scale = Instrument.control(
"LG?", "LG %d DB",
"""
Control the logarithmic amplitude scale. When in linear
mode, querying 'logarithmic_scale' returns a “0”.
Allowed values are 0, 1, 2, 5, 10
Type: :class:`int`
.. code-block:: python
if instr.logarithmic_scale:
pass
# set the scale to 10 db per division
instr.logarithmic_scale = 10
""",
cast=int,
validator=strict_discrete_set,
values=[0, 1, 2, 5, 10]
)
def set_linear_scale(self):
"""Set the spectrum analyzers display to linear amplitude scale.
Measurements made on a linear scale can be read out in any
units.
"""
self.write("LN")
def set_minimum_hold(self, trace):
"""Update the chosen trace with the minimum signal level detected at
each trace-data point from subsequent sweeps. This function employs the
negative peak detector (refer to the :attr:`detector_mode` command).
.. code-block:: python
instr.minimum_hold('TRA')
instr.minimum_hold(Trace.A)
:param trace: A representation of the trace, either from :class:`Trace` or
use 'TRA' for Trace A or 'TRB' for Trace B
:type trace: str
:raises TypeError: Type isn't 'string'
:raises ValueError: Value is 'TRA' nor 'TRB'
"""
if not isinstance(trace, str):
raise TypeError("Should be of type string but is '%s'" % type(trace))
if trace not in [e for e in Trace]:
raise ValueError("Only accepts values of [%s] but was '%s'" % ([e for e in Trace],
trace))
self.write("MINH %s" % trace)
marker_amplitude = Instrument.measurement(
"MKA?",
"""
Get the amplitude of the active marker. If no marker is active, MKA
places a marker at the center of the trace and returns that amplitude value.
In the :meth:`amplitude_unit` unit.
Type: :code:`float`
.. code-block:: python
level = instr.marker_amplitude
unit = instr.amplitude_unit
print("Level: %f %s" % (level, unit))
"""
)
def set_marker_to_center_frequency(self):
"""Set the center frequency to the frequency value of an active
marker."""
self.write("MKCF")
marker_delta = Instrument.control(
"MKD?", "MKD %.11E Hz",
"""
Control a second marker on the trace. The parameter value specifies the distance
in frequency or time (when in zero span) between the two markers.
If queried - returns the frequency or time of the second marker.
Type: :code:`float`
.. code-block:: python
# place second marker 1 MHz apart from the first marker
instr.marker_delta = 1e6
# print frequency of second marker in case it got moved automatically
print(instr.marker_delta)
"""
)
# the documentation mentions this command, but it doesn't work on my unit and a
# reference unit so I leave it here for reference but commented out
#
# marker_reciprocal = Instrument.control(
# "MKDR?", "MKDR %.11E",
# """
# Return the reciprocal of the frequency or time (when in zero span)
# difference between two markers.
# """
# )
marker_frequency = Instrument.control(
"MKF?", "MKF %.11E Hz",
"""
Control the frequency of the active marker.
Default units are in Hertz.
Type: :code:`float`
.. code-block:: python
# place marker no. 1 at 100 MHz
instr.marker_frequency = 100e6
# print frequency of the marker in case it got moved automatically
print(instr.marker_frequency)
""",
validator=strict_range,
values=[0, 1],
dynamic=True
)
frequency_counter_mode_enabled = Instrument.setting(
"MKFC %s",
"""
Set the device into a frequency counter mode that counts the frequency of the active
marker or the difference in frequency between two markers. If no marker
is active, 'frequency_counter_mode_enabled' places a marker at the center of
the trace and counts that marker frequency. The frequency counter
provides a more accurate frequency reading; it pauses at the marker,
counts the value, then continues the sweep. To adjust the frequency
counter resolution, use the 'frequency_counter_resolution' command. To
return the counter value, use the 'marker_frequency' command.
.. code-block:: python
instr.frequency_counter_mode_enabled = True
""",
map_values=True,
values={True: "ON", False: "OFF"},
validator=strict_discrete_set
)
frequency_counter_resolution = Instrument.control(
"MKFCR?", "MKFCR %d Hz",
"""
Control the resolution of the frequency counter. Refer to the 'frequency_counter_mode'
command. The default value is 10 kHz.
Type :code:`int`
.. code-block:: python
# activate frequency counter mode
instr.frequency_counter_mode = True
# adjust resolution to 1 Hz
instr.frequency_counter_resolution = 1
if instr.frequency_counter_resolution:
pass
""",
validator=strict_range,
values=[1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6],
maxsplit=0,
preprocess_reply=lambda v: str(int(float(v))),
cast=int
)
def set_marker_minimum(self):
"""Place an active marker on the minimum signal detected on a trace."""
self.write("MKMIN")
# here would be the implementation of the command 'marker_normal' ('MKN') but
# it has no advantage over the 'marker_frequency' command except if no marker is active it
# places it automagically to the center of the trace (I think there's no sense in
# implementing it here)
marker_noise_mode_enabled = Instrument.control(
"MKNOISE?", "MKNOISE %s",
"""
Control the detector mode to sample and compute the average of 32 data points (16 points
on one side of the marker, the marker itself, and 15 points on the other side of the
marker). This average is corrected for effects of the log or linear amplifier, bandwidth
shape factor, IF detector, and resolution bandwidth. If two markers are on (whether in
'marker_delta' mode or 1/marker delta mode), 'marker_noise_mode_enabled' works on the active
marker and not on the anchor marker. This allows you to measure signal-to-noise density
directly. To query the value, use the 'marker_amplitude' command.
Type: :code:`bool`
.. code-block:: python
# activate signal-to-noise density mode
instr.marker_noise_mode_enabled = True
# get noise density by `marker_amplitude`
print("Signal-to-noise density: %d dbm / Hz" % instr.marker_amplitude)
""",
map_values=True,
values={True: "1", False: "0"},
cast=str
)
def deactivate_marker(self, all_markers=False):
"""Turn off the active marker or, if specified, turn off all markers.
:param all_markers: If True the call deactivates all markers, if false only the currently
active marker (optional)
:type all_markers: bool
.. code-block:: python
# place first marker at 300 MHz
instr.marker_frequency = 300e6
# place second marker 2 MHz apart from first
instr.marker_delta = 2e6
# deactivate active marker (delta marker)
instr.deactivate_marker()
# deactivate all markers
instr.deactivate_marker(all_markers=True)
"""
if all_markers:
self.write("MKOFF ALL")
else:
self.write("MKOFF")
def search_peak(self, mode):
"""Place a marker on the highest point on a trace, the next-highest
point, the next-left peak, or the next-right peak. The default is 'HI'
(highest point). The trace peaks must meet the criteria of the marker
threshold and peak excursion functions in order for a peak to be found.
See also the :attr:`peak_threshold` and :attr:`peak_excursion`
commands.
:param mode: Takes 'HI', 'NH', 'NR', 'NL' or the enumeration :class:`PeakSearchMode`
:type mode: str
.. code-block:: python
instr.search_peak('NL')
instr.search_peak(PeakSearchMode.NextHigh)
"""
if not isinstance(mode, str):
raise TypeError("Should be of type string but is '%s'" % type(mode))
if mode not in [e for e in PeakSearchMode]:
raise ValueError("Only accepts values of [%s] but was '%s'" %
([e for e in PeakSearchMode], mode))
self.write("MKPK %s" % mode)
marker_threshold = Instrument.control(
"MKPT?", "MKPT %g {amplitude_unit}",
"""
Control the minimum amplitude level from which a peak on the trace can
be detected. The default value is -130 dBm. See also the :attr:`peak_excursion` command.
Any portion of a peak that falls below the peak threshold is used to satisfy the peak
excursion criteria. For example, a peak that is equal to 3 dB above the threshold when
the peak excursion is equal to 6 dB will be found if the peak extends an additional 3 dB
or more below the threshold level. Maximum 30 db to minimum -200 db.
Type: :code:`signed int`
.. code-block:: python
instr.marker_threshold = -70
if instr.marker_threshold > -80:
pass
""",
validator=strict_range,
values=[-200, 30]
)
peak_excursion = Instrument.control(
"MKPX?", "MKPX %g DB",
"""
Control what constitutes a peak on a trace. The chosen value specifies
the amount that a trace must increase monotonically, then decrease monotonically, in order
to be a peak. For example, if the peak excursion is 10 dB, the amplitude of the sides of a
candidate peak must descend at least 10 dB in order to be considered a peak (see Figure 5-4)
The default value is 6 dB. In linear mode, enter the marker peak excursion as a unit-less
number.
Any portion of a peak that falls below the peak threshold is also used to satisfy the peak
excursion criteria. For example, a peak that is equal to 3 dB above the threshold when the
peak excursion is equal to 6 dB will be found if the peak extends an additional 3 dB or more
below the threshold level.
Type: :code:`float`
.. code-block:: python
instr.peak_excursion = 2
if instr.peak_excursion == 2:
pass
""",
validator=strict_range,
values=[0.1, 99]
)
def set_marker_to_reference_level(self):
"""Set the reference level to the amplitude of an active marker.
If no marker is active, 'marker_to_reference_level' places a
marker at the center of the trace and uses that marker amplitude
to set the reference level.
"""
self.write("MKRL")
def set_marker_delta_to_span(self):
"""Set the frequency span equal to the frequency difference between two
markers on a trace.
The start frequency is set equal to the frequency of the left-
most marker and the stop frequency is set equal to the frequency
of the right-most marker.
"""
self.write("MKSP")
def set_marker_to_center_frequency_step_size(self):
"""Set the center frequency step-size equal to the frequency value of
the active marker."""
self.write("MKSS")
marker_time = Instrument.control(
"MKT?", "MKT %gS",
"""
Control the marker's time value. Default units are seconds.
Type: :code:`float`
.. code-block:: python
# set marker at sweep time corresponding second two
instr.marker_time = 2
if instr.marker_time == 2:
pass
"""
)
marker_signal_tracking_enabled = Instrument.control(
"MKTRACK?", "MKTRACK %s",
"""
Control whether the center frequency follows the active marker.
This is done after every sweep, thus maintaining the marker value at the
center frequency. This allows you to “zoom in” quickly from a wide span to a narrow one,
without losing the signal from the screen. Or, use 'marker_signal_tracking_enabled' to keep
a slowly drifting signal centered on the display. When this function is active,
a "K" appears on the left edge of the display.
Type: :code:`bool`
""",
map_values=True,
validator=strict_discrete_set,
values={True: "1", False: "0"},
cast=str
)
mixer_level = Instrument.control(
"ML?", "ML %d DB",
"""
Control the maximum signal level that is at the input mixer. The
attenuator automatically adjusts to ensure that this level is not exceeded for signals less
than the reference level. From -80 to -10 DB.
Type: :code:`int`
""",
validator=strict_range,
cast=int,
values=[-80, -10]
)
def set_maximum_hold(self, trace):
"""Set the chosen trace with the maximum signal level detected at each
trace-data point from subsequent sweeps. This function employs the
positive peak detector (refer to the :attr:`detector_mode` command).
The detector mode can be changed, if desired, after max hold is
initialized.
.. code-block:: python
instr.maximum_hold('TRA')
instr.maximum_hold(Trace.A)
:param trace: A representation of the trace, either from :class:`Trace` or
use 'TRA' for Trace A or 'TRB' for Trace B
:type trace: str
:raises TypeError: Type isn't 'string'
:raises ValueError: Value is 'TRA' nor 'TRB'
"""
if not isinstance(trace, str):
raise TypeError("Should be of type string but is '%s'" % type(trace))
if trace not in [e for e in Trace]:
raise ValueError("Only accepts values of [%s] but was '%s'" % ([e for e in Trace],
trace))
self.write("MXMH %s" % trace)
normalize_trace_data_enabled = Instrument.control(
"NORMLIZE?", "NORMLIZE %s",
"""
Control the normalization routine for
stimulus-response measurements. This function subtracts trace B from trace A, offsets the
result by the value of the normalized reference position
(:attr:`normalized_reference_level`), and displays the result in trace A.
'normalize_trace_data_enabled' is intended for use with the :meth:`store_open` and
:meth:`store_short` or :meth:`store_thru` commands. These functions are used to store a
reference trace into trace B.
Refer to the respective command descriptions for more information.
Accurate normalization occurs only if the reference trace and the measured trace are
on-screen. If any of these traces are off-screen, an error message will be displayed.
If the error message ERR 903 A > DLMT is displayed, the range level (RL) can be adjusted
to move the measured response within the displayed measurement range of the analyzer. If
ERR 904 B > DLMT is displayed, the calibration is invalid and a thru or open/short
calibration must be performed.
If active (ON), the 'normalize_trace_data' command is automatically turned off with an
instrument preset (IP) or at power on.
Type: :code:`bool`
""",
map_values=True,
validator=strict_discrete_set,
values={True: "1", False: "0"},
cast=str
)
normalized_reference_level = Instrument.control(
"NRL?", "NRL %d {amplitude_unit}",
"""
Control the normalized reference level. It is intended to be used with the
:attr:`normalize_trace_data` command. When using 'normalized_reference_level', the input
attenuator and IF step gains are not affected. This function is a trace-offset function
enabling the user to offset the displayed trace without introducing hardware-switching
errors into the stimulus-response measurement. The unit of measure for
'normalized_reference_level' is dB. In absolute power mode (dBm), reference level (
:attr:`reference_level`) affects the gain and RF attenuation settings of the instrument,
which affects the measurement or dynamic range. In normalized mode
(relative power or dB-measurement mode), NRL offsets the trace data on-screen and does
not affect the instrument gain or attenuation settings. This allows the displayed
normalized trace to be moved without decreasing the measurement accuracy due to changes
in gain or RF attenuation. If the measurement range must be changed to bring trace data
on-screen, then the range level should be adjusted. Adjusting the range-level normalized
mode has the same effect on the instrument settings as does reference level in absolute
power mode (normalize off).
Type: :code:`int`
.. code-block:: python
# reference level in case of normalization to -30 DB
instr.normalized_reference_level = -30
if instr.normalized_reference_level == -30:
pass
""",
validator=strict_range,
values=[-200, 30],
cast=int
)
normalized_reference_position = Instrument.control(
"NRPOS?", "NRPOS %f DB",
"""
Control the normalized reference-position that corresponds to the
position on the graticule where the difference between the measured and calibrated traces
resides. The dB value of the normalized reference-position is equal to the normalized
reference level. The normalized reference-position may be adjusted between 0.0 and 10.0,
corresponding to the bottom and top graticule lines, respectively.
Type: :code:`float`
.. code-block:: python
instr.normalized_reference_position = 5.5
if instr.normalized_reference_position == 5.5:
pass
""",
validator=strict_range,
values=[0.0, 10.0]
)
display_parameters = Instrument.measurement(
"OP?",
"""
Get the location of the lower left (P1) and upper right (P2) vertices as a tuple of
the display window.
Type: :code:`tuple`
.. code-block:: python
repr(instr.display_parameters)
(72, 16, 712, 766)
""",
maxsplit=4,
cast=int,
get_process=tuple
)
def plot(self, p1x, p1y, p2x, p2y):
"""Copies the specified display contents onto any HP-GL plotter. Set
the plotter address to 5, select the Pi and P2 positions, and then
execute the plot command. P1 and P2 correspond to the lower-left and
upper-right plotter positions, respectively. If P1 and P2 are not
specified, default values (either preloaded from power-up or sent in
via a previous plot command) are used. Once PLOT is executed, no
subsequent commands are executed until PLOT is done.
:param p1x: plotter-dependent value that specify the lower-left plotter position x-axis
:type p1x: int
:param p1y: plotter-dependent value that specify the lower-left plotter position y-axis
:type p1y: int
:param p2x: plotter-dependent values that specify the upper-right plotter position x-axis
:type p2x: int
:param p2y: plotter-dependent values that specify the upper-right plotter position y-axis
:type p2y: int
"""
if not (isinstance(p1x, int) or isinstance(p1y, int) or isinstance(p2x, int) or
isinstance(p2y, int)):
raise TypeError("Should be of type int")
self.write("PLOT %d,%d,%d,%d" % (p1x, p1y, p2x, p2y))
protect_state_enabled = Instrument.control(
"PSTATE?", "PSTATE %s",
"""
Control the storing of any new data in the state or trace registers.
If set to 'True', the registers are “locked”; the data in them cannot be erased or
overwritten, although the data can be recalled. To “unlock” the registers, and store new
data, set 'protect_state_enabled' to off by selecting 'False' as the parameter.
Type: :code:`bool`
""",
map_values=True,
validator=strict_discrete_set,
values={True: "1", False: "0"},
cast=str
)
def get_power_bandwidth(self, trace, percent):
"""Measure the combined power of all signal responses contained in a
trace array. The command then computes the bandwidth equal to a
percentage of the total power. For example, if 100% is specified, the
power bandwidth equals the current frequency span. If 50% is specified,
trace elements are eliminated from either end of the array, until the
combined power of the remaining trace elements equals half of the total
power computed. The frequency span of these remaining trace elements is
the power bandwidth output to the controller.
:param trace: A representation of the trace, either from :class:`Trace` or
use 'TRA' for Trace A or 'TRB' for Trace B
:param percent: Percentage of total power 0 ... 100 %
:type trace: str
:type percent: float
.. code-block:: python
# reset spectrum analyzer
instr.preset()
# set to single sweep mode
instr.sweep_single()
instr.center_frequency = 300e6
instr.span = 1e6
instr.maximum_hold()
instr.trigger_sweep()
if instr.done:
pbw = instr.power_bandwidth(Trace.A, 99.0)
print("The power bandwidth at 99 percent is %f kHz" % (pbw / 1e3))
"""
ran = np.arange(0, 100, 0.1)
if not isinstance(trace, str):
raise TypeError("Should be of type string but is '%s'" % type(trace))
if not isinstance(percent, float):
raise TypeError("Should be of type float but is '%s'" % type(percent))
if trace not in [e for e in Trace]:
raise ValueError("Only accepts values of [%s] but was '%s'" %
([e for e in Trace], trace))
if percent not in ran:
raise ValueError("Only accepts values in the range of %s but was '%s'" %
(ran, percent))
return float(self.ask("PWRBW %s,%.1f?" % (trace, percent)))
resolution_bandwidth = Instrument.control(
"RB?", "RB %s",
"""
Control the resolution bandwidth. This is normally a coupled function that
is selected according to the ratio selected by the RBR command. If no ratio is selected, a
default ratio (0.011) is used. The bandwidth, which ranges from 10 Hz to 2 MHz, may also be
selected manually.
Type: :code:`str, dec`
""",
validator=joined_validators(strict_discrete_set, truncated_discrete_set),
values=[["AUTO", "MAN"], np.arange(10, 2e6)],
set_process=lambda v: v if isinstance(v, str) else f"{int(v)} Hz",
get_process=lambda v: v if isinstance(v, str) else int(v)
)
resolution_bandwidth_to_span_ratio = Instrument.control(
"RBR?", "RBR %.3f",
"""
Control the coupling ratio between the resolution bandwidth and the
frequency span. When the frequency span is changed, the resolution bandwidth is changed
to satisfy the selected ratio. The ratio ranges from 0.002 to 0.10. The “UP” and “DN”
parameters adjust the ratio in a 1, 2, 5 sequence. The default ratio is 0.011.
""",
validator=strict_range,
values=np.arange(0.002, 0.10, 0.001)
)
def recall_open_short_average(self):
"""Set the internally stored open/short average reference trace into
trace B. The instrument state is also set to the stored open/short
reference state.
.. code-block:: python
instr.preset()
instr.sweep_single()
instr.start_frequency = 300e3
instr.stop_frequency = 1e9
instr.source_power_enabled = True
instr.sweep_couple = SweepCoupleMode.StimulusResponse
instr.source_peak_tracking()
input("CONNECT OPEN. PRESS CONTINUE WHEN READY TO STORE.")
instr.trigger_sweep()
instr.done()
instr.store_open()
input("CONNECT SHORT. PRESS CONTINUE WHEN READY TO STORE AND AVERAGE.")
instr.trigger_sweep()
instr.done()
instr.store_short()
input("RECONNECT DUT. PRESS CONTINUE WHEN READY.")
instr.trigger_sweep()
instr.done()
instr.normalize = True
instr.trigger_sweep()
instr.done()
instr.normalized_reference_position = 8
instr.trigger_sweep()
instr.preset()
# demonstrate recall of open/short average trace
instr.recall_open_short_average()
instr.trigger_sweep()
"""
self.write("RCLOSCAL")
def recall_state(self, inp):
"""Set to the display a previously saved instrument state. See
:meth:`save_state`.
:param inp: State to be recalled: either storage slot 0 ... 9 or 'LAST' or 'PWRON'
:param inp: str, int
.. code-block:: python
instr.save_state(7)
instr.preset()
instr.recall_state(7)
"""
values = ["LAST", "PWRON"] + [str(f) for f in range(0, 9)]
if not (isinstance(inp, str) or isinstance(inp, int)):
raise TypeError("Should be of type 'str' or 'int' but is '%s'" % type(inp))
if str(inp) not in values:
raise ValueError("Only accepts values of [%s] but was '%s'" %
(values, str(inp)))
self.write("RCLS %s" % str(inp))
def recall_trace(self, trace, number):
"""Recalls previously saved trace data to the display. See
:meth:`save_trace`. Either as Trace A or Trace B.
:param trace: A representation of the trace, either from :class:`Trace` or
use 'TRA' for Trace A or 'TRB' for Trace B
:param number: Storage location from 0 ... 7 where to store the trace
:type trace: str
:type number: int
.. code-block:: python
instr.preset()
instr.center_frequency = 300e6
instr.span = 20e6
instr.save_trace(Trace.A, 7)
instr.preset()
# reload - at 7 stored trace - to Trace B
instr.recall_trace(Trace.B, 7)
"""
ran = range(0, 7)
if not isinstance(trace, str):
raise TypeError("Should be of type str but is '%s'" % type(trace))
if not isinstance(number, int):
raise TypeError("Should be of type int but is '%s'" % type(number))
if trace not in [e for e in Trace]:
raise ValueError("Only accepts values of [%s] but was '%s'" %
([e for e in Trace], trace))
if number not in ran:
raise ValueError("Only accepts values of [%s] but was '%s'" %
(ran, number))
self.write("RCLT %s,%s" % (trace, number))
def recall_thru(self):
"""Recalls the internally stored thru-reference trace into trace B.
The instrument state is also set to the stored thru-reference
state.
"""
self.write("RCLTHRU")
firmware_revision = Instrument.measurement(
"REV?",
"""
Get the revision date code of the spectrum analyzer firmware.
Type: :code:`datetime.date`
""",
get_process=lambda v: datetime.strptime(v, '%y%m%d').date(),
cast=str
)
reference_level = Instrument.control(
"RL?", "RL %g {amplitude_unit}",
"""
Control the reference level, or range level when in normalized mode. (Range level
functions the same as reference level.) The reference level is the top horizontal line on
the graticule. For best measurement accuracy, place the peak of a signal of interest on the
reference-level line. The spectrum analyzer input attenuator is coupled to the reference
level and automatically adjusts to avoid compression of the input signal. Refer also to
:attr:`amplitude_unit`. Minimum reference level is -120.0 dBm or 2.2 uV
Type: :code:`float`
"""
)
reference_level_calibration = Instrument.control(
"RLCAL?", "RLCAL %g",
"""
Control the calibration of the reference level remotely and retuns the
current calibration. To calibrate the reference level, connect the 300 MHz calibration
signal to the RF input. Set the center frequency to 300 MHz, the frequency span to 20
MHz, and the reference level to -10 dBm. Use the RLCAL command to move the input signal
to the reference level. When the signal peak falls directly on the reference-level line,
the reference level is calibrated. Storing this value in the analyzer in EEROM can be
done only from the front panel. The RLCAL command, when queried, returns the current value.
Type: :code:`float`
.. code-block:: python
# connect cal signal to rf input
instr.preset()
instr.amplitude_unit = AmplitudeUnits.DBM
instr.center_frequency = 300e6
instr.span = 100e3
instr.reference_level = 0
instr.trigger_sweep()
instr.peak_search(PeakSearchMode.High)
level = instr.marker_amplitude
rlcal = instr.reference_level_calibration - int((level + 10) / 0.17)
instr.reference_level_calibration = rlcal
""",
cast=int,
validator=strict_range,
values=[-33, 33]
)
reference_offset = Instrument.control(
"ROFFSET?", "ROFFSET %d DB",
"""
Control an offset applied to all amplitude readouts (for example, the
reference level and marker amplitude). The offset is in dB, regardless of the selected scale
and units. The offset can be useful to account for gains of losses in accessories connected
to the input of the analyzer. When this function is active, an "R" appears on the left
edge of the display.
Type: :code:`int`
""",
cast=int,
values=[-100, 100],
validator=strict_range
)
request_service_conditions = Instrument.control(
"RQS?", "RQS %d",
"""
Control a bit mask that specifies which service requests can interrupt
a program sequence.
.. code-block:: python
instr.request_service_conditions = StatusRegister.ERROR_PRESENT | StatusRegister.TRIGGER
print(instr.request_service_conditions)
StatusRegister.ERROR_PRESENT|TRIGGER
""",
get_process=lambda v: StatusRegister(int(v))
)
def save_state(self, inp):
"""Saves the currently displayed instrument state in the specified
state register.
:param inp: State to be recalled: either storage slot 0 ... 9 or 'LAST' or 'PWRON'
:param inp: str, int
.. code-block:: python
instr.preset()
instr.center_frequency = 300e6
instr.span = 20e6
instr.save_state("PWRON")
"""
values = ["PWRON"] + [str(f) for f in range(0, 9)]
if not (isinstance(inp, str) or isinstance(inp, int)):
raise TypeError("Should be of type 'str' or 'int' but is '%s'" % type(inp))
if str(inp) not in values:
raise ValueError("Only accepts values of [%s] but was '%s'" %
(values, str(inp)))
self.write("SAVES %s" % str(inp))
def save_trace(self, trace, number):
"""Saves the selected trace in the specified trace register.
:param trace: A representation of the trace, either from :class:`Trace` or
use 'TRA' for Trace A or 'TRB' for Trace B
:param number: Storage location from 0 ... 7 where to store the trace
:type trace: str
:type number: int
.. code-block:: python
instr.preset()
instr.center_frequency = 300e6
instr.span = 20e6
instr.save_trace(Trace.A, 7)
instr.preset()
# reload - at 7 stored trace - to Trace B
instr.recall_trace(Trace.B, 7)
"""
ran = range(0, 7)
if not isinstance(trace, str):
raise TypeError("Should be of type str but is '%s'" % type(trace))
if not isinstance(number, int):
raise TypeError("Should be of type int but is '%s'" % type(number))
if trace not in [e for e in Trace]:
raise ValueError("Only accepts values of [%s] but was '%s'" %
([e for e in Trace], trace))
if number not in ran:
raise ValueError("Only accepts values of [%s] but was '%s'" %
(ran, number))
self.write("SAVET %s,%s" % (trace, number))
serial_number = Instrument.measurement(
"SER?",
"""
Get the spectrum analyzer serial number.
""",
cast=str
)
def sweep_single(self):
"""Sets the spectrum analyzer into single-sweep mode.
This mode allows only one sweep when trigger conditions are met.
When this function is active, an 'S' appears on the left edge of
the display.
"""
self.write("SNGLS")
span = Instrument.control(
"SP?", "SP %s",
"""
Control the frequency span. The center frequency does not change with
changes in the frequency span; start and stop frequencies do change. Setting the frequency
span to 0 Hz effectively allows an amplitude-versus-time mode in which to view signals. This
is especially useful for viewing modulation. Querying SP will leave the analyzer in center
frequency /span mode.
""",
validator=joined_validators(strict_discrete_set, strict_range),
values=[["FULL", "ZERO"], [float("-inf"), float("inf")]],
set_process=lambda v: v if isinstance(v, str) else "%.11E Hz" % v,
get_process=lambda v: v if isinstance(v, str) else v
)
squelch = Instrument.control(
"SQUELCH?", "SQUELCH %s",
"""
Control the squelch level for demodulation. When this function is
on, a dashed line indicating the squelch level appears on the display.
A marker must be active and above the squelch line for demodulation to occur. Refer to
the :attr:`demodulation_mode` command. The default value is -120 dBm.
Type: :code:`str,int`
.. code-block:: python
instr.preset()
instr.start_frequency = 88e6
instr.stop_frequency = 108e6
instr.peak_search(PeakSearchMode.High)
instr.demodulation_time = 10
instr.squelch = -60
instr.demodulation_mode = DemodulationMode.FM
""",
validator=joined_validators(strict_discrete_set, strict_range),
values=[["ON", "OFF"], range(-220, 30)],
set_process=lambda v: v if isinstance(v, str) else f"{v} {{amplitude_unit}}"
)
squelch_enabled = Instrument.setting(
"SQUELCH %s",
"""
Set squelch for demodulation active or inactive. For further information see :attr:`squelch`
""",
map_values=True,
values={True: "ON", False: "OFF"},
validator=strict_discrete_set
)
def request_service(self, input):
"""Triggers a service request. This command allows you to force a
service request and test a program designed to handle service requests.
However, the service request can be triggered only if it is first
masked using the :attr:`request_service_conditions` command.
:param input: Bits to emulate a service request
:type input: :class:`StatusRegister`
"""
if input not in range(0, 255):
raise ValueError("Bit mask needs to be between 0 ... 255")
self.write("SRQ %d" % input)
# `center_frequency_step_size` would be a command but is pretty unnecesary
sweep_time = Instrument.control(
"ST?", "ST %s",
"""
Control the sweep time. This is normally a coupled function which is
automatically set to the optimum value allowed by the current instrument settings.
Alternatively, you may specify the sweep time. Note that when the specified sweep time is
too fast for the current instrument settings, the instrument is no longer calibrated and the
message 'MEAS UNCAL' appears on the display. The sweep time cannot be adjusted when the
resolution bandwidth is set to 10 Hz, 30 Hz, or 100 Hz.
Type: :code:`str, float`
Real from 50E—3 to 100 when the span is greater than 0 Hz; 50E—6 to 60 when
the span equals 0 Hz. When the resolution bandwidth is <100 Hz, the sweep time
cannot be adjusted.
""",
validator=joined_validators(strict_discrete_set, strict_range),
values=[["AUTO", "MAN"], np.arange(50E-6, 100)],
set_process=lambda v: v if isinstance(v, str) else ("%.3f S" % v)
)
status = Instrument.measurement(
"STB?",
"""
Get the decimal equivalent of the bits set in the
status byte (see the RQS and SRQ commands). STB is equivalent to a serial poll command.
The RQS and associated bits are cleared in the same way that a serial poll command would
clear them.
""",
get_process=lambda v: StatusRegister(int(v))
)
def store_open(self):
"""Save the current instrument state and trace A into nonvolatile
memory.
This command must be used in conjunction with the
:meth:`store_short` command and must precede the
:meth:`store_short` command. The data obtained during the store
open procedure is averaged with the data obtained during the
:meth:`store_short` procedure to provide an open/short
calibration. The instrument state (that is, instrument settings)
must not change between the :meth:`store_open` and
:meth:`store_short` operations in order for the open/short
calibration to be valid. Refer to the :meth:`store_short`
command description for more information.
"""
self.write("STOREOPEN")
def store_short(self):
"""Take currently displayed trace A data and averages this data with
previously stored open data, and stores it in trace B.
This command is used in conjunction with the :meth:`store_open`
command and must be preceded by it for proper operation. Refer
to the :meth:`store_open` command description for more
information. The state of the open/short average trace is stored
in state register #8.
"""
self.write("STORESHORT")
def store_thru(self):
"""Store a thru-calibration trace into trace B and into the nonvolatile
memory of the spectrum analyzer.
The state of the thru information is stored in state register
#9.
"""
self.write("STORETHRU")
sweep_couple = Instrument.control(
"SWPCPL?", "SWPCPL %s",
"""
Control the sweep couple mode which is either a stimulus-response or spectrum-analyzer
auto-coupled sweep time. In stimulus-response mode, auto-coupled sweep times are usually
much faster for swept-response measurements. Stimulus-response auto-coupled sweep times
are typicallly valid in stimulus-response measurements when the system’s frequency span is
less than 20 times the bandwidth of the device under test.
Type: :code:`str` or :class:`SweepCoupleMode`
""",
validator=strict_discrete_set,
values=[e for e in SweepCoupleMode]
)
sweep_output = Instrument.control(
"SWPOUT?", "SWPOUT %s",
"""
Control the sweep-related signal that is available from J8 on the rear
panel. FAV provides a dc ramp of 0.5V/GHz. RAMP provides a 0—10 V ramp corresponding
to the sweep ramp that tunes the first local oscillator (LO). For the HP 8561B, in multiband
sweeps one ramp is provided for each frequency band.
Type: :code:`str` or :class:`SweepOut`
""",
validator=strict_discrete_set,
values=[e for e in SweepOut]
)
trace_data_format = Instrument.control(
"TDF?", "TDF %s",
"""
Control the format used to input and output trace data (see the
TRA/TRB command, You must specify the desired format when
transferring data from the spectrum analyzer to a computer; this is optional when
transferring data to the analyzer.
Type: :code:`str` or :class:`TraceDataFormat`
.. warning::
Only needed for manual read out of trace data. Don't use this if you don't know what
You are doing.
""",
validator=strict_discrete_set,
values=[e for e in TraceDataFormat]
)
threshold = Instrument.control(
"TH?", "TH %.2E {amplitude_unit}",
"""
Control the minimum amplitude level and clips data at this value. Default
value is -90 dBm. See also - :attr:`marker_threshold` does not clip data below its threshold
Type: :code:`str, float` range -200 to 30
.. note::
When a trace is in max-hold mode, if the threshold is raised above any of the
trace data, the data below the threshold will be permanently lost.
""",
validator=strict_discrete_set,
values=np.arange(-200, 30),
)
threshold_enabled = Instrument.setting(
"TH %s",
"""
Set the threshold active or inactive. See :attr:`threshold`
""",
map_values=True,
values={True: "ON", False: "OFF"},
validator=strict_discrete_set
)
def set_title(self, string):
"""Sets character data in the title area of the display, which is in
the upper-right corner.
A title can be up to two rows of sixteen characters each, Carriage
return and line feed characters are not allowed.
"""
if not isinstance(string, str):
raise TypeError("Parameter should be of type 'str'")
if len(string) > 32:
raise ValueError("Title should have maximum 32 chars but has '%d'" % len(string))
self.write("TITLE@%s@" % string)
trigger_mode = Instrument.control(
"TM?", "TM %s",
"""
Control the trigger mode. Selected trigger conditions must be met in order for
a sweep to occur. For the available modes refer to :class:`TriggerMode`.
When any trigger mode other than free run is selected,
a "T" appears on the left edge of the display.
""",
validator=strict_discrete_set,
values=[e for e in TriggerMode]
)
def _get_trace_data(self, trace):
self.write("TDF M")
amp_units = str(self.ask("AUNITS?"))
ref_lvl = float(self.ask("RL?"))
log_scale = float(self.ask("LG?"))
cmd_str = ""
if trace is Trace.A:
cmd_str += "TRA?"
elif trace is Trace.B:
cmd_str += "TRB?"
values = self.values(cmd_str, cast=int)
if amp_units is AmplitudeUnits.W:
# calculate dbm from watts
ref_lvl = (10 * log10(ref_lvl)) + 30
elif amp_units is AmplitudeUnits.DBUV:
# calculate dbm from dbuv in 50 Ohm system
ref_lvl = ref_lvl - 107
elif amp_units is AmplitudeUnits.V:
# calculate dbm from volts in 50 Ohm system
ref_lvl = 20 * log10((ref_lvl / 0.05) ** 0.5)
elif amp_units is AmplitudeUnits.DBMV:
# calculate dbm from dbmv
ref_lvl = ref_lvl - 46.9897
result_values = []
for value in values:
if log_scale != 0:
result_value = round(ref_lvl + (log_scale * ((value - 600) / 60)), 2)
result_values.append(result_value)
else:
raise NotImplementedError("Linear scaling isn't supported by get_trace_data_ ")
return result_values
def get_trace_data_a(self):
"""
Get the data of trace A as a list.
The function returns the 601 data points as a list in the amplitude format.
Right now it doesn't support the linear scaling due to the manual just being wrong.
"""
return self._get_trace_data(Trace.A)
def get_trace_data_b(self):
"""
Get the data of trace B as a list.
The function returns the 601 data points as a list in the amplitude format.
Right now it doesn't support the linear scaling due to the manual just being wrong.
"""
return self._get_trace_data(Trace.B)
set_trace_data_a = Instrument.setting(
"TDF P;TRA %s",
"""
Set the trace data of trace A.
.. warning::
The string based method this attribute is using takes its time. Something around 5000ms
timeout at the adapter seems to work well.
""",
set_process=lambda v: (','.join([str(i) for i in v])),
)
set_trace_data_b = Instrument.setting(
"TDF P;TRB %s",
"""
Set the trace data of trace B also allows to write the data.
.. warning::
The string based method this attribute is using takes its time. Something around 5000ms
timeout at the adapter seems to work well.
""",
set_process=lambda v: (','.join([str(i) for i in v]))
)
def trigger_sweep(self):
"""Command the spectrum analyzer to take one full sweep across the trace display.
Commands following TS are not executed until after the analyzer has finished the trace
sweep. This ensures that the instrument is set to a known condition before subsequent
commands are executed.
"""
self.write("TS")
def create_fft_trace_window(self, trace, window_mode):
"""Creates a window trace array for the fast Fourier transform (FFT) function.
The trace-window function creates a trace array according to three built-in
algorithms: UNIFORM, HANNING, and FLATTOP. When used with the FFT command,
the three algorithms give resultant passband shapes that represent a compromise among
amplitude uncertainty, sensitivity, and frequency resolution. Refer to the FFT command
description for more information.
:param trace: A representation of the trace, either from :class:`Trace` or
use 'TRA' for Trace A or 'TRB' for Trace B
:type trace: str
:param window_mode: A representation of the window mode, either from :class:`WindowType` or
use 'HANNING', 'FLATTOP' or 'UNIFORM'
:type window_mode: str
"""
if not isinstance(trace, str):
raise TypeError("Should be of type string but is '%s'" % type(trace))
if trace not in [e for e in Trace]:
raise ValueError("Only accepts values of [%s] but was '%s'" % ([e for e in Trace],
trace))
if not isinstance(window_mode, str):
raise TypeError("Should be of type string but is '%s'" % type(window_mode))
if window_mode not in [e for e in WindowType]:
raise ValueError("Only accepts values of [%s] but was '%s'" % ([e for e in
WindowType],
window_mode))
self.write("TWNDOW %s,%s" % (trace, window_mode))
video_average = Instrument.control(
"VAVG?", "VAVG %d",
"""
Control the video averaging function. Video averaging smooths the
displayed trace without using a narrow bandwidth. 'video_average' sets the IF detector to
sample mode (see the DET command) and smooths the trace by averaging successive traces
with each other. If desired, you can change the detector mode during video averaging.
Video averaging is available only for trace A, and trace A must be in clear-write mode for
'video_average' to operate. After 'video_average' is executed, the number of sweeps that
have been averaged appears at the top of the analyzer screen. Using video averaging
allows you to view changes to the entire trace much faster than using narrow video
filters. Narrow video filters require long sweep times, which may not be desired. Video
averaging, though requiring more sweeps, uses faster sweep times; in some cases, it can
produce a smooth trace as fast as a video filter.
Type: :code:`str, int`
""",
validator=strict_range,
values=np.arange(1, 999),
cast=int
)
video_average_enabled = Instrument.setting(
"VAVG %s",
"""
Set the video averaging either active or inactive. See :attr:`video_average`
""",
map_values=True,
values={True: "ON", False: "OFF"},
validator=strict_discrete_set
)
video_bandwidth = Instrument.control(
"VB?", "VB %s",
"""
Control the video bandwidth. This is normally a coupled function that
is selected according to the ratio selected by the VBR command. (If no ratio is selected,
a default ratio, 1.0, is used instead.) Video bandwidth filters (or smooths) post-detected
video information. The bandwidth, which ranges from 1 Hz to 3 MHz, may also be selected
manually. If the specified video bandwidth is less than 300 Hz and the resolution bandwidth
is greater than or equal to 300 Hz, the IF detector is set to sample mode. Reducing the
video bandwidth or increasing the number of video averages will usually smooth the trace
by about as much for the same total measurement time. Reducing the video bandwidth to
one-third or less of the resolution bandwidth is desirable when the number of video
averages is above 25. For the case where the number of video averages is very large, and
the video bandwidth is equal to the resolution bandwidth, internal mathematical limitations
allow about 0.4 dB overresponse to noise on the logarithmic scale. The overresponse is
negligible (less than 0.1 dB) for narrower video bandwidths.
Type: :code:`int`
""",
validator=joined_validators(strict_discrete_set, strict_range),
values=[["AUTO", "MAN"], np.arange(1, 3e6)],
cast=int,
set_process=lambda v: v if isinstance(v, str) else f"{v} Hz"
)
video_bandwidth_to_resolution_bandwidth = Instrument.control(
"VBR?", "VBR %.3f",
"""
Control the coupling ratio between the video bandwidth and the
resolution bandwidth. Thus, when the resolution bandwidth is changed, the video bandwidth
changes to satisfy the ratio. The ratio ranges from 0.003 to 3 in a 1, 3, 10 sequence. The
default ratio is 1. When a new ratio is selected, the video bandwidth changes to satisfy the
new ratio—the resolution bandwidth does not change value.
""",
validator=strict_range,
values=np.arange(0.002, 0.10, 0.001)
)
def view_trace(self, trace):
"""Display the current contents of the selected trace, but does not update
the contents. View mode may be executed before a sweep is complete when :meth:`sweep_single`
and :meth:`trigger_sweep` are not used.
:param trace: A representation of the trace, either from :class:`Trace` or
use 'TRA' for Trace A or 'TRB' for Trace B
:type trace: str
:raises TypeError: Type isn't 'string'
:raises ValueError: Value is 'TRA' nor 'TRB'
"""
if not isinstance(trace, str):
raise TypeError("Should be of type string but is '%s'" % type(trace))
if trace not in [e for e in Trace]:
raise ValueError("Only accepts values of [%s] but was '%s'" % ([e for e in Trace],
trace))
self.write("VIEW " + trace)
video_trigger_level = Instrument.control(
"VTL?", "VTL %.3f {amplitude_unit}",
"""
Control the video trigger level when the trigger mode is set to VIDEO (refer
to the :attr:`trigger_mode` command). A dashed line appears on the display to indicate the
level. The default value is 0 dBm. Range -220 to 30.
Type: :code:`float`
""",
validator=strict_range,
values=[-220, 30]
)
class HP8560A(HP856Xx):
"""Represents the HP 8560A Spectrum Analyzer and provides a high-level
interface for interacting with the instrument.
.. code-block:: python
from pymeasure.instruments.hp import HP8560A
from pymeasure.instruments.hp.hp856Xx import AmplitudeUnits
sa = HP8560A("GPIB::1")
sa.amplitude_unit = AmplitudeUnits.DBUV
sa.start_frequency = 299.5e6
sa.stop_frequency = 300.5e6
print(sa.marker_amplitude)
"""
# HP8560A is able to go up to 2.9 GHz
MAX_FREQUENCY = 2.9e9
def __init__(self, adapter, name="Hewlett-Packard HP8560A", **kwargs):
super().__init__(
adapter,
name,
**kwargs,
)
self.center_frequency_values = [0, self.MAX_FREQUENCY]
self.start_frequency_values = [0, self.MAX_FREQUENCY]
self.stop_frequency_values = [0, self.MAX_FREQUENCY]
self.frequency_offset_values = [0, self.MAX_FREQUENCY]
self.marker_frequency_values = [0, self.MAX_FREQUENCY]
self.span_values = [["FULL", "ZERO"], [0, self.MAX_FREQUENCY]]
source_leveling_control = Instrument.control(
"SRCALC?", "SRCALC %s",
"""
Control if internal or external leveling is used with the
built-in tracking generator.
Takes either 'INT', 'EXT' or members of enumeration :class:`SourceLevelingControlMode`
Type: :code:`str`
.. code-block:: python
instr.preset()
instr.sweep_single()
instr.center_frequency = 300e6
instr.span = 1e6
instr.source_power = -5
instr.trigger_sweep()
instr.source_leveling_control = SourceLevelingControlMode.External
if ErrorCode(900) in instr.errors:
print("UNLEVELED CONDITION. CHECK LEVELING LOOP.")
.. note::
Only available with an HP 8560A Option 002.
""",
validator=strict_discrete_set,
values=[e for e in SourceLevelingControlMode]
)
tracking_adjust_coarse = Instrument.control(
"SRCCRSTK?", "SRCCRSTK %d",
"""
Control the coarse adjustment to the frequency of the built-in
tracking-generator oscillator. Once enabled, this adjustment is made in
digital-to-analogconverter (DAC) values from 0 to 255. For fine adjustment, refer to the
:attr:`tracking_adjust_fine` command description.
Type: :code:`int`
.. note::
Only available with an HP 8560A Option 002.
""",
validator=strict_range,
values=[0, 255],
cast=int
)
tracking_adjust_fine = Instrument.control(
"SRCFINTK?", "SRCFINTK %d",
"""
Control the fine adjustment of the frequency of the built-in
tracking-generator oscillator. Once enabled, this adjustment is made in
digital-to-analogconverter (DAC) values from 0 to 255. For coarse adjustment, refer to
the :attr:`tracking_adjust_coarse` command description.
Type: :code:`int`
.. note::
Only available with an HP 8560A Option 002.
""",
validator=strict_range,
values=[0, 255],
cast=int
)
source_power_offset = Instrument.control(
"SRCPOFS?", "SRCPOFS %g {amplitude_unit}",
"""
Control the offset of the displayed power of the built-in tracking generator so that
it is equal to the measured power at the input of the spectrum analyzer. This function may
be used to take into account system losses (for example, cable loss) or gains (for example,
preamplifier gain) reflecting the actual power delivered to the device under test.
Type: :code:`int`
.. note::
Only available with an HP 8560A Option 002.
""",
validator=strict_range,
values=[-100, 100],
cast=int
)
source_power_step = Instrument.control(
"SRCPSTP?", "SRCPSTP %.2f DB",
"""
Control the step size of the source power level, source power offset, and
power-sweep range functions. Range: 0.1 ... 12.75 DB with 0.05 steps.
Type: :code:`float`
.. note::
Only available with an HP 8560A Option 002.
""",
validator=strict_range,
values=np.arange(0.1, 12.75, 0.05)
)
source_power_sweep = Instrument.control(
"SRCPSWP?", "SRCPSWP %.2f DB",
"""
Control the power-sweep function, where the
output power of the tracking generator is swept over the power-sweep range chosen. The
starting source power level is set using the :attr:`source_power` command. The output power
of the tracking generator is swept according to the sweep rate of the spectrum analyzer.
Type: :code:`str, float`
.. note::
Only available with an HP 8560A Option 002.
""",
validator=truncated_discrete_set,
values=np.arange(0.1, 12.75, 0.05),
)
source_power_sweep_enabled = Instrument.setting(
"SRCPSWP %s",
"""
Set the power sweep active or inactive. See :attr:`source_power_sweep`.
""",
map_values=True,
values={True: "ON", False: "OFF"},
validator=strict_discrete_set
)
source_power = Instrument.control(
"SRCPWR?", "SRCPWR %s",
"""
Control the built-in tracking generator's output power.
Type: :code:`str, float`
.. note::
Only available with an HP 8560A Option 002.
""",
validator=joined_validators(strict_discrete_set, truncated_discrete_set),
values=[["OFF", "ON"], np.arange(-10, 2.8, 0.05)],
set_process=lambda v: v if isinstance(v, str) else ("%.2f {amplitude_unit}" % v)
)
source_power_enabled = Instrument.setting(
"SRCPWR %s",
"""
Set the built-in tracking generator on or off. See :attr:`source_power`
""",
map_values=True,
values={True: "ON", False: "OFF"},
validator=strict_discrete_set
)
def activate_source_peak_tracking(self):
"""Activate a routine which automatically adjusts both the coarse and
fine-tracking adjustments to obtain the peak response of the tracking
generator on the spectrum-analyzer display. Tracking peak is not
necessary for resolution bandwidths greater than or equal to 300 kHz. A
thru connection should be made prior to peaking in order to ensure
accuracy.
.. note::
Only available with an HP 8560A Option 002.
"""
self.write("SRCTKPK")
class HP8561B(HP856Xx):
"""Represents the HP 8561B Spectrum Analyzer and provides a high-level
interface for interacting with the instrument.
.. code-block:: python
from pymeasure.instruments.hp import 8561B
from pymeasure.instruments.hp.hp856Xx import AmplitudeUnits
sa = HP8560A("GPIB::1")
sa.amplitude_unit = AmplitudeUnits.DBUV
sa.start_frequency = 6.4e9
sa.stop_frequency = 6.5e9
print(sa.marker_amplitude)
"""
# HP8561B is able to go up to 6.5 GHz
MAX_FREQUENCY = 6.5e9
def __init__(self, adapter, name="Hewlett-Packard HP8561B", **kwargs):
super().__init__(
adapter,
name,
**kwargs,
)
self.center_frequency_values = [0, self.MAX_FREQUENCY]
self.start_frequency_values = [0, self.MAX_FREQUENCY]
self.stop_frequency_values = [0, self.MAX_FREQUENCY]
self.frequency_offset_values = [0, self.MAX_FREQUENCY]
self.marker_frequency_values = [0, self.MAX_FREQUENCY]
self.span_values = [["FULL", "ZERO"], [0, self.MAX_FREQUENCY]]
conversion_loss = Instrument.control(
"CNVLOSS?", "CNVLOSS %s DB",
"""
Control the compensation for losses outside the instrument when in external
mixer mode (such as losses within connector cables, external mixers, etc.).
'conversion_loss' specifies the mean conversion loss for the current harmonic band.
In a full frequency band (such as band K), the mean conversion loss is defined as the
minimum loss plus the maximum loss for that band divided by two.
Adjusting for conversion loss allows the system to remain
calibrated (that is, the displayed amplitude values have the conversion loss incorporated
into them). The default value for any band is 30 dB. The spectrum analyzer must be in
external-mixer mode in order for this command to work. When in internal-mixer mode,
querying 'conversion_loss' returns a zero.
""",
validator=strict_range,
values=[0, float("inf")]
)
def set_fullband(self, band):
"""Select a commonly-used, external-mixer frequency band, as shown in
the table. The harmonic lock function :attr:`harmonic_number_lock` is
also set; this locks the harmonic of the chosen band. External-mixing
functions are not available with an HP 8560A Option 002. Takes
frequency band letter as string.
.. list-table:: Title
:widths: 25 25 25 25
:header-rows: 1
* - Frequency Band
- Frequency Range (GHz)
- Mixing Harmonic
- Conversion Loss
* - K
- 18.0 — 26.5
- 6
- 30 dB
* - A
- 26.5 — 40.0
- 8
- 30 dB
* - Q
- 33.0—50.0
- 10
- 30 dB
* - U
- 40.0—60.0
- 10
- 30 dB
* - V
- 50.0—75.0
- 14
- 30 dB
* - E
- 60.0—-90.0
- 16
- 30 dB
* - W
- 75.0—110.0
- 18
- 30 dB
* - F
- 90.0—140.0
- 24
- 30 dB
* - D
- 110.0—170.0
- 30
- 30 dB
* - G
- 140.0—220.0
- 36
- 30 dB
* - Y
- 170.0—260.0
- 44
- 30 dB
* - J
- 220.0—325.0
- 54
- 30 dB
"""
frequency_mapping = {
"K": [18e9, 26.5e9],
"A": [26.5e9, 40e9],
"Q": [33e9, 50e9],
"U": [40e9, 60e9],
"V": [50e9, 75e9],
"E": [60e9, 90e9],
"W": [75e9, 110e9],
"F": [90e9, 140e9],
"D": [110e9, 170e9],
"G": [140e9, 220e9],
"Y": [170e9, 260e9],
"J": [220e9, 325e9],
}
if not isinstance(band, str):
raise TypeError("Frequency band should be of type string but is '%s'" % type(band))
if band not in frequency_mapping.keys():
raise ValueError("Should be one of the available bands but is '%s'" % band)
self.center_frequency_values = frequency_mapping[band]
self.start_frequency_values = frequency_mapping[band]
self.stop_frequency_values = frequency_mapping[band]
self.write("FULLBAND %s" % band)
harmonic_number_lock = Instrument.control(
"HNLOCK?", "HNLOCK %d",
"""
Control the lock to a chosen harmonic so only that harmonic is used to sweep
an external frequency band. To select a frequency band, use the 'fullband' command; it
selects an appropriate harmonic for the desired band. To change the harmonic number, use
'harmonic_number_lock'.
Note that 'harmonic_number_lock' also works in internal-mixing modes.
Once 'fullband' or 'harmonic_number_lock' are set, only center frequencies and spans that
fall within the frequency band of the current harmonic may be entered. When the
'set_full_span' command is activated, the span is limited to the frequency band of the
selected harmonic.
""",
validator=strict_range,
values=[1, 54],
cast=int
)
harmonic_number_lock_enabled = Instrument.setting(
"HNLOCK %s",
"""
Set the harmonic number locking active or inactive. See :attr:`harmonic_number_lock`.
""",
map_values=True,
values={True: "ON", False: "OFF"},
validator=strict_discrete_set
)
def unlock_harmonic_number(self):
"""Unlock the harmonic number, allowing you to select frequencies and
spans outside the range of the locked harmonic number.
Also, when HNUNLK is executed, more than one harmonic can then
be used to sweep across a desired span. For example, sweep a
span from 18 GHz to 40 GHz. In this case, the analyzer will
automatically sweep first using 6—, then using 8—.
"""
self.write("HUNLK")
def set_signal_identification_to_center_frequency(self):
"""Set the center frequency to the frequency obtained from the command
SIGID.
SIGID must be in AUTO mode and have found a valid result for
this command to execute properly. Use SIGID on signals greater
than 18 GHz {i.e., in external mixing mode). SIGID and IDCF may
also be used on signals less than 6.5 GHz in an HP 8561B.
"""
self.write("IDCF")
signal_identification_frequency = Instrument.measurement(
"IDFREQ?",
"""
Measure the frequency of the last identified signal. After an instrument preset or an
invalid signal identification, IDFREQ returns a “0”.
"""
)
mixer_bias = Instrument.control(
"MBIAS?", "MBIAS %.3f MA",
"""
Set the bias for an external mixer that requires diode bias for efficient
mixer operation. The bias, which is provided on the center conductor of the IF input, is
activated when MBIAS is executed. A "+" or "—" appears on the left edge of the spectrum
analyzer display, indicating that positive or negative bias is on. When the bias is
turned off, MBIAS is set to 0. Default units are in milliamps.
""",
validator=strict_range,
values=[float(-10E3), int(10E3)],
cast=float
)
mixer_bias_enabled = Instrument.setting(
"MBIAS %s",
"""
Control the bias for an external mixer. See :attr:`mixer_bias`.
""",
map_values=True,
values={True: "ON", False: "OFF"},
validator=strict_discrete_set
)
mixer_mode = Instrument.control(
"MXRMODE?", "MXRMODE %s",
"""
Control the mixer mode. Select either the internal mixer
or supply an external mixer. Takes enum 'MixerMode' or string 'INT', 'EXT'
""",
validator=strict_discrete_set,
values=[e for e in MixerMode]
)
def peak_preselector(self):
"""Peaks the preselector in the HP 8561B Spectrum Analyzer.
Make sure the entire frequency span is in high band, set the
desired trace to clear-write mode, place a marker on a desired
signal, then execute PP. The peaking routine zooms to zero span,
peaks the preselector tracking, then returns to the original
position. To read the new preselector peaking number, use the
PSDAC command. Commands following PP are not executed until
after the analyzer has finished peaking the preselector.
"""
self.write("PP")
preselector_dac_number = Instrument.control(
"PSDAC?", "PSDAC %d",
"""
Control the preselector peak DAC number. For use with an
HP 8561B Spectrum Analyzer.
Type: :code:`int`
""",
cast=int,
validator=strict_range,
values=[0, 255]
)
signal_identification = Instrument.control(
"SIGID?", "SIGID %s",
"""
Control the signal identification for identifying signals for the external
mixing frequency bands.
Two signal identification methods are available. AUTO employs the image response method
for locating correct mixer responses. Place a marker on the desired signal, then activate
signal_identification = 'AUTO'. The frequency of a correct response appears in the active
function block. Use this mode before executing the
:meth:`signal_identification_to_center_frequency` command. The second method of signal
identification, 'MAN', shifts responses both horizontally and vertically. A correct
response is shifted horizontally by less than 80 kHz. To ensure accuracy in MAN mode,
limit the frequency span to less than 20 MHz.
Where True = manual mode is active and False = auto mode is active or
'signal_identification' is off.
""",
map_values=True,
validator=strict_discrete_set,
values={True: "1", False: "0", "AUTO": "AUTO", "MAN": "MAN"},
cast=str
)
|