File: dsp_base.py

package info (click to toggle)
python-pymeasure 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 8,788 kB
  • sloc: python: 47,201; makefile: 155
file content (759 lines) | stat: -rw-r--r-- 27,195 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
#
# This file is part of the PyMeasure package.
#
# Copyright (c) 2013-2024 PyMeasure Developers
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#

# =============================================================================
# Libraries / modules
# =============================================================================

import logging
from time import sleep, time
import numpy as np
from pymeasure.instruments import Instrument
from pymeasure.instruments.validators import modular_range_bidirectional
from pymeasure.instruments.validators import strict_discrete_set
from pymeasure.instruments.validators import strict_range

# =============================================================================
# Logging
# =============================================================================

log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())


# =============================================================================
# Instrument file
# =============================================================================


class DSPBase(Instrument):
    """This is the base class for the Signal Recovery DSP 72XX lock-in
    amplifiers.

    Do not directly instantiate an object with this class. Use one of the
    DSP 72XX series instrument classes that inherit from this parent
    class. Floating point command mode (i.e., the inclusion of the ``.``
    character in commands) is included for usability.

    Untested commands are noted in docstrings.
    """

    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    # Constants
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    SENSITIVITIES = [
        np.nan, 2.0e-9, 5.0e-9, 10.0e-9, 20.0e-9, 50.0e-9, 100.0e-9,
        200.0e-9, 500.0e-9, 1.0e-6, 2.0e-6, 5.0e-6, 10.0e-6,
        20.0e-6, 50.0e-6, 100.0e-6, 200.0e-6, 500.0e-6, 1.0e-3,
        2.0e-3, 5.0e-3, 10.0e-3, 20.0e-3, 50.0e-3, 100.0e-3,
        200.0e-3, 500.0e-3, 1.0
    ]
    SEN_MULTIPLIER = [1, 1e-6, 1e-8]

    TIME_CONSTANTS = [
        10.0e-6, 20.0e-6, 40.0e-6, 80.0e-6, 160.0e-6, 320.0e-6,
        640.0e-6, 5.0e-3, 10.0e-3, 20.0e-3, 50.0e-3, 100.0e-3,
        200.0e-3, 500.0e-3, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0,
        100.0, 200.0, 500.0, 1.0e3, 2.0e3, 5.0e3, 10.0e3,
        20.0e3, 50.0e3
    ]
    REFERENCES = ['internal', 'external rear', 'external front']
    IMODES = ['voltage mode', 'current mode', 'low noise current mode']

    CURVE_BITS = ['x', 'y', 'magnitude', 'phase', 'sensitivity', 'adc1',
                  'adc2', 'dac1', 'dac2', 'noise', 'ratio', 'log ratio',
                  'event', 'frequency part 1', 'frequency part 2',
                  # Dual modes
                  'x2', 'y2', 'magnitude2', 'phase2', 'sensitivity2']

    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    # Initializer and important communication methods
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    def __init__(self, adapter, name="Signal Recovery DSP 72XX Base", **kwargs):
        super().__init__(
            adapter,
            name,
            includeSCPI=False,
            **kwargs
        )

    def read(self, **kwargs):
        """Read the response and remove extra unicode character from instrument readings."""
        return super().read(**kwargs).replace('\x00', '')

    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    # Properties
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    id = Instrument.measurement(
        "ID",
        """Measure the model number of the instrument.

        Returned value is an integer.""",
        cast=int
    )

    imode = Instrument.control(
        "IMODE", "IMODE %d",
        """Control the lock-in amplifier to detect a voltage or current
        signal.

        Valid values are ``voltage mode, ``current mode``, or ``low noise current mode``.
        """,
        validator=strict_discrete_set,
        values=IMODES,
        map_values=True
    )

    slope = Instrument.control(
        "SLOPE", "SLOPE %d",
        """Control the low-pass filter roll-off.

        Valid values are the integers 6, 12, 18, or 24, which represents the
        slope of the low-pass filter in dB/octave.
        """,
        validator=strict_discrete_set,
        values=[6, 12, 18, 24],
        map_values=True
    )

    time_constant = Instrument.control(
        "TC", "TC %d",
        """Control the filter time constant.

        Valid values are a strict set of time constants from 10 us to 50,000 s.
        Returned values are floating point numbers in seconds.
        """,
        validator=strict_discrete_set,
        values=TIME_CONSTANTS,
        map_values=True
    )

    shield = Instrument.control(
        "FLOAT", "FLOAT %d",
        """Control the input connector shield state.

        Valid values are 0 to have shields grounded or 1 to have the shields
        floating (i.e., connected to ground via a 1 kOhm resistor).
        """,
        validator=strict_discrete_set,
        values=[0, 1]
    )

    fet = Instrument.control(
        "FET", "FET %d",
        """Control the voltage preamplifier transistor type.

        Valid values are 0 for bipolar or 1 for FET.
        """,
        validator=strict_discrete_set,
        values=[0, 1]
    )

    coupling = Instrument.control(
        "CP", "CP %d",
        """Control the input coupling mode.

        Valid values are 0 for AC coupling mode or 1 for DC coupling mode.
        """,
        validator=strict_discrete_set,
        values=[0, 1]
    )

    voltage = Instrument.control(
        "OA.", "OA. %g",
        """Control the oscillator amplitude.

        Valid values are floating point numbers between 0 to 5 V.
        """,
        validator=strict_range,
        values=[0, 5]
    )

    frequency = Instrument.control(
        "OF.", "OF. %g",
        """Control the oscillator frequency.

        Valid values are floating point numbers representing the frequency in Hz.
        """,
        validator=strict_range,
        values=[0, 2.5e5],
        dynamic=True
    )

    reference = Instrument.control(
        "IE", "IE %d",
        """Control the oscillator reference input mode.

        Valid values are ``internal``, ``external rear`` or ``external front``.
        """,
        validator=strict_discrete_set,
        values=REFERENCES,
        map_values=True
    )

    harmonic = Instrument.control(
        "REFN", "REFN %d",
        """Control the reference harmonic mode.

        Valid values are integers.
        """,
        validator=strict_range,
        values=[1, 65535],
        dynamic=True
    )

    reference_phase = Instrument.control(
        "REFP.", "REFP. %g",
        """Control the reference absolute phase angle.

        Valid values are floating point numbers between 0 - 360 degrees.
         """,
        validator=modular_range_bidirectional,
        values=[0, 360]
    )

    dac1 = Instrument.control(
        "DAC. 1", "DAC. 1 %g",
        """Control the voltage of the DAC1 output on the rear panel.

        Valid values are floating point numbers between -12 to 12 V.
        """,
        validator=strict_range,
        values=[-12, 12]
    )

    dac2 = Instrument.control(
        "DAC. 2", "DAC. 2 %g",
        """Control the voltage of the DAC2 output on the rear panel.

        Valid values are floating point numbers between -12 to 12 V.
        """,
        validator=strict_range,
        values=[-12, 12]
    )

    @property
    def gain(self):
        """Control the AC gain of signal channel amplifier."""
        return self.values("ACGAIN")

    @gain.setter
    def gain(self, value):
        value = strict_discrete_set(int(value / 10), list(range(0, 10)))
        self.write("ACGAIN %d" % value)

    @property
    def sensitivity(self):
        """Control the signal's measurement sensitivity range.

        When in voltage measurement mode, valid values are discrete values from
        2 nV to 1 V. When in current measurement mode, valid values are
        discrete values from 2 fA to 1 µA (for normal current mode) or up to
        10 nA (for low noise current mode).
        """
        return self.values("SEN.")[0]

    @sensitivity.setter
    def sensitivity(self, value):
        # get the voltage/current mode:
        imode = self.IMODES.index(self.imode)

        # Scale the sensitivities to the correct range for voltage/current mode
        sensitivities = [s * self.SEN_MULTIPLIER[imode]
                         for s in self.SENSITIVITIES]
        if imode == 2:
            sensitivities[0:7] = [np.nan] * 7

        # Check and map the value
        value = strict_discrete_set(value, sensitivities)
        value = sensitivities.index(value)

        # Set sensitivity
        self.write("SEN %d" % value)

    @property
    def auto_gain(self):
        """Control lock-in amplifier for automatic AC gain."""
        return int(self.values("AUTOMATIC")) == 1

    @auto_gain.setter
    def auto_gain(self, value):
        if value:
            self.write("AUTOMATIC 1")
        else:
            self.write("AUTOMATIC 0")

    x = Instrument.measurement(
        "X.",
        """Measure the output signal's X channel.

        Returned value is a floating point number in volts.
        """
    )

    y = Instrument.measurement(
        "Y.",
        """Measure the output signal's Y channel.

        Returned value is a floating point number in volts.
        """
    )

    xy = Instrument.measurement(
        "XY.",
        """Measure both the X and Y channels.

        Returned values are floating point numbers in volts.
        """
    )

    mag = Instrument.measurement(
        "MAG.",
        """Measure the magnitude of the signal.

        Returned value is a floating point number in volts.
        """
    )

    phase = Instrument.measurement(
        "PHA.",
        """Measure the signal's absolute phase angle.

        Returned value is a floating point number in degrees.
        """
    )

    adc1 = Instrument.measurement(
        "ADC. 1",
        """Measure the voltage of the ADC1 input on the rear panel.

        Returned value is a floating point number in volts.
        """
    )

    adc2 = Instrument.measurement(
        "ADC. 2",
        """Measure the voltage of the ADC2 input on the rear panel.

        Returned value is a floating point number in volts.
        """
    )

    ratio = Instrument.measurement(
        "RT.",
        """Measure the ratio between the X channel and ADC1.

        Returned value is a unitless floating point number equivalent to the
        mathematical expression X/ADC1.
        """
    )

    log_ratio = Instrument.measurement(
        "LR.",
        """
        Measure the log (base 10) of the ratio between the X channel and ADC1.

        Returned value is a unitless floating point number equivalent to the
        mathematical expression log(X/ADC1).
        """
    )

    curve_buffer_bits = Instrument.control(
        "CBD", "CBD %d",
        """Control which data outputs are stored in the curve buffer.

        Valid values are values are integers between 1 and 65,535 (or 2,097,151
        in dual reference mode).
        """,
        values=[1, 2097151],
        validator=strict_range,
        cast=int,
        dynamic=True
    )

    curve_buffer_length = Instrument.control(
        "LEN", "LEN %d",
        """Control the length of the curve buffer.

        Valid values are integers between 1 and 32,768, but the actual maximum
        amount of points is determined by the amount of curves that are stored,
        as set via the curve_buffer_bits property (32,768 / n).
        """,
        values=[1, 32768],
        validator=strict_range,
        cast=int
    )

    curve_buffer_interval = Instrument.control(
        "STR", "STR %d",
        """Control the time interval between the collection of successive
        points in the curve buffer.

        Valid values to the time interval are integers in ms with a
        resolution of 5 ms; input values are rounded up to a multiple of 5.
        Valid values are values between 0 and 1,000,000,000 (corresponding to
        12 days). The interval may be set to 0, which sets the rate of data
        storage to the curve buffer to 1.25 ms/point (800 Hz). However this
        only allows storage of the X and Y channel outputs. There is no need to
        issue a CBD 3 command to set this up since it happens automatically
        when acquisition starts.
        """,
        values=[1, 1000000000],
        validator=strict_range,
        cast=int
    )

    curve_buffer_status = Instrument.measurement(
        "M",
        """Measure the status of the curve buffer acquisition.

        Command returns four values:
        **First value - Curve Acquisition Status:** Number with 5 possibilities:
        0: no activity
        1: acquisition via TD command running
        2: acquisition by a TDC command running
        5: acquisition via TD command halted
        6: acquisition bia TDC command halted
        **Second value - Number of Sweeps Acquired**: Number of sweeps already
        acquired.
        **Third value - Status Byte:** Decimal representation of the status byte
        (the same response as the ST command
        **Fourth value - Number of Points Acquired:** Number of points acquired
        in the curve buffer.
        """,
        cast=int,
    )

    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    # Methods
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    def set_voltage_mode(self):
        """Sets lock-in amplifier to measure a voltage signal."""
        self.write("IMODE 0")

    def setDifferentialMode(self, lineFiltering=True):
        """Sets lock-in amplifier to differential mode, measuring A-B."""
        self.write("VMODE 3")
        self.write("LF %d 0" % (3 if lineFiltering else 0))

    def setChannelAMode(self):
        """Sets lock-in amplifier to measure a voltage signal only from the A
        input connector.
        """
        self.write("VMODE 1")

    def auto_sensitivity(self):
        """Adjusts the full-scale sensitivity so signal's magnitude lies
        between 30 - 90 % of full-scale.
        """
        self.write("AS")

    def auto_phase(self):
        """Adjusts the reference absolute phase to maximize the X channel
        output and minimize the Y channel output signals.
        """
        self.write("AQN")

    def init_curve_buffer(self):
        """Initializes the curve storage memory and status variables. All
        record of previously taken curves is removed.
        """
        self.write("NC")

    def set_buffer(self, points, quantities=None, interval=10.0e-3):
        """Prepares the curve buffer for a measurement.

        :param int points:
            Number of points to be recorded in the curve buffer

        :param list quantities:
            List containing the quantities (strings) that are to be
            recorded in the curve buffer, can be any of:
            'x', 'y', 'magnitude', 'phase', 'sensitivity', 'adc1', 'adc2',
            'adc3', 'dac1', 'dac2',
            'noise', 'ratio', 'log ratio', 'event', 'frequency'
            (or 'frequency part 1' and 'frequency part 2');
            for both dual modes, additional options are:
            'x2', 'y2', 'magnitude2', 'phase2', 'sensitivity2'.
            Default is 'x' and 'y'.

        :param float interval:
            The interval between two subsequent points stored in the
            curve buffer in s. Default is 10 ms.
        """

        if quantities is None:
            quantities = ["x", "y"]

        if "frequency" in quantities:
            quantities.remove("frequency")
            quantities.extend([
                "frequency part 1",
                "frequency part 2"
            ])

        # remove all possible duplicates
        quantities = list({q.lower() for q in quantities})

        bits = 0
        for q in quantities:
            bits += 2 ** self.CURVE_BITS.index(q)

        self.curve_buffer_bits = bits
        self.curve_buffer_length = points

        self.curve_buffer_interval = int(interval * 1000)
        self.init_curve_buffer()

    def start_buffer(self):
        """Initiates data acquisition. Acquisition starts at the current
        position in the curve buffer and continues at the rate set by the STR
        command until the buffer is full.
        """
        self.write("TD")

    def wait_for_buffer(self, timeout=None, delay=0.1):
        """ Method that waits until the curve buffer is filled
        """
        start = time()
        while self.curve_buffer_status[0] == 1:
            sleep(delay)
            if timeout is not None and time() < start + timeout:
                break

    def get_buffer(self, quantity=None,
                   convert_to_float=True, wait_for_buffer=True):
        """Retrieves the buffer after it has been filled. The data retrieved
        from the lock-in is in a fixed-point format, which requires translation
        before it can be interpreted as meaningful data. When
        `convert_to_float` is True the conversion is performed (if possible)
        before returning the data.

        :param str quantity:
            If provided, names the quantity that is to be retrieved from the
            curve buffer; can be any of:
            'x', 'y', 'magnitude', 'phase', 'sensitivity', 'adc1', 'adc2',
            'adc3', 'dac1', 'dac2', 'noise', 'ratio', 'log ratio', 'event',
            'frequency part 1' and 'frequency part 2';
            for both dual modes, additional options are:
            'x2', 'y2', 'magnitude2', 'phase2', 'sensitivity2'.
            If no quantity is provided, all available data is retrieved.

        :param bool convert_to_float:
            Bool that determines whether to convert the fixed-point buffer-data
            to meaningful floating point values via the `buffer_to_float`
            method. If True, this method tries to convert all the available
            data to meaningful values; if this is not possible, an exception
            will be raised. If False, this conversion is not performed and the
            raw buffer-data is returned.

        :param bool wait_for_buffer:
            Bool that determines whether to wait for the data acquisition to
            finished if this method is called before the acquisition is
            finished. If True, the method waits until the buffer is filled
            before continuing; if False, the method raises an exception if the
            acquisition is not finished when the method is called.
        """

        # Check if buffer is finished
        if self.curve_buffer_status[0] != 0:
            if wait_for_buffer:
                self.wait_for_buffer()
            else:
                raise RuntimeError("Buffer acquisition is not yet finished.")

        # Check which quantities are recorded in the buffer
        bits = format(self.curve_buffer_bits, '021b')[::-1]
        quantity_enums = [e for e, b in enumerate(bits) if b == "1"]

        # Check if the provided quantity (if any) is indeed recorded
        if quantity is not None:
            if self.CURVE_BITS.index(quantity) in quantity_enums:
                quantity_enums = [self.CURVE_BITS.index(quantity)]
            else:
                raise KeyError("The selected quantity '%s' is not recorded;"
                               "quantity should be one of: %s" % (
                                   quantity, ", ".join(
                                       [self.CURVE_BITS[q] for q in quantity_enums]
                                   )))

        # Retrieve the data
        data = {}
        for enum in quantity_enums:
            self.write("DC %d" % enum)
            q_data = []

            while True:
                stb = format(self.adapter.connection.read_stb(), '08b')[::-1]

                if bool(int(stb[2])):
                    raise ValueError("Status byte reports command parameter error.")

                if bool(int(stb[0])):
                    break

                if bool(int(stb[7])):
                    q_data.append(int(self.read().strip()))

            data[self.CURVE_BITS[enum]] = np.array(q_data)

        if convert_to_float:
            data = self.buffer_to_float(data)

        if quantity is not None:
            data = data[quantity]

        return data

    def buffer_to_float(self, buffer_data, sensitivity=None,
                        sensitivity2=None, raise_error=True):
        """Converts fixed-point buffer data to floating point data.

        The provided data is converted as much as possible, but there are some
        requirements to the data if all provided columns are to be converted;
        if a key in the provided data cannot be converted it will be omitted in
        the returned data or an exception will be raised, depending on the
        value of raise_error.

        The requirements for converting the data are as follows:

        - Converting X, Y, magnitude and noise requires sensitivity data, which
          can either be part of the provided data or can be provided via the
          sensitivity argument
        - The same holds for X2, Y2 and magnitude2 with sensitivity2.
        - Converting the frequency requires both 'frequency part 1' and
          'frequency part 2'.

        :param dict buffer_data:
            The data to be converted. Must be in the format as returned by the
            `get_buffer` method: a dict of numpy arrays.

        :param sensitivity:
            If provided, the sensitivity used to convert X, Y, magnitude and
            noise. Can be provided as a float or as an array that matches the
            length of elements in `buffer_data`. If both a sensitivity is
            provided and present in the buffer_data, the provided value is used
            for the conversion, but the sensitivity in the buffer_data is
            stored in the returned dict.

        :param sensitivity2:
            Same as the first sensitivity argument, but for X2, Y2, magnitude2
            and noise2.

        :param bool raise_error:
            Determines whether an exception is raised in case not all keys
            provided in buffer_data can be converted. If False, the columns
            that cannot be converted are omitted in the returned dict.

        :return: Floating-point buffer data
        :rtype: dict
        """

        data = {}

        def maybe_raise(message):
            if raise_error:
                raise ValueError(message)

        def convert_if_present(keys, multiply_by=1):
            """Copy any available entries from buffer_data to data, scale with
            multiply_by.
            """
            for key in keys:
                if key in buffer_data:
                    data[key] = buffer_data[key] * multiply_by

        # Sensitivity (for both single and dual modes)
        for key in ["sensitivity", "sensitivity2"]:
            if key in buffer_data:
                data[key] = np.array([
                    self.SENSITIVITIES[v % 32] * self.SEN_MULTIPLIER[v // 32]
                    for v in buffer_data[key]
                ])
        # Try to set sensitivity values from arg or data
        sensitivity = sensitivity or data.get('sensitivity', None)
        sensitivity2 = sensitivity2 or data.get('sensitivity2', None)

        if any(["x" in buffer_data,
                "y" in buffer_data,
                "magnitude" in buffer_data,
                "noise" in buffer_data, ]):
            if sensitivity is None:
                maybe_raise("X, Y, magnitude and noise cannot be converted as "
                            "no sensitivity is provided, neither as argument "
                            "nor as part of the buffer_data. ")
            else:
                convert_if_present(["x", "y", "magnitude", "noise"], sensitivity / 10000)

        # phase data (for both single and dual modes)
        convert_if_present(["phase", "phase2"], 1 / 100)

        # frequency data from frequency part 1 and 2
        if "frequency part 1" in buffer_data or "frequency part 2" in buffer_data:
            if "frequency part 1" in buffer_data and "frequency part 2" in buffer_data:
                data["frequency"] = np.array([
                    int(format(v2, "016b") + format(v1, "016b"), 2) / 1000 for
                    v1, v2 in zip(buffer_data["frequency part 1"], buffer_data["frequency part 2"])
                ])
            else:
                maybe_raise("Can calculate the frequency only when both"
                            "frequency part 1 and 2 are provided.")

        # conversion for, adc1, adc2, dac1, dac2, ratio, and log ratio
        convert_if_present(["adc1", "adc2", "dac1",
                            "dac2", "ratio", "log ratio"], 1 / 1000)

        # adc3 (integrating converter); requires a call to adc3_time
        if "adc3" in buffer_data:
            data["adc3"] = buffer_data["adc3"] / (50000 * self.adc3_time)

        # event does not require a conversion
        convert_if_present(["event"])

        # X, Y, and magnitude data for both dual modes
        if any(["x2" in buffer_data,
                "y2" in buffer_data,
                "magnitude2" in buffer_data, ]):
            if sensitivity2 is None:
                maybe_raise("X2, Y2 and magnitude2 cannot be converted as no "
                            "sensitivity2 is provided, neither as argument nor "
                            "as part of the buffer_data. ")
            else:
                convert_if_present(["x2", "y2", "magnitude2"], sensitivity2 / 10000)

        return data

    def shutdown(self):
        """Safely shutdown the lock-in amplifier.

        Sets oscillator amplitude to 0 V and AC gain to 0 dB.
        """
        log.info("Shutting down %s." % self.name)
        self.voltage = 0.
        self.gain = 0.
        super().shutdown()