1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
|
#
# This file is part of the PyMeasure package.
#
# Copyright (c) 2013-2024 PyMeasure Developers
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# =============================================================================
# Libraries / modules
# =============================================================================
import logging
from time import sleep, time
import numpy as np
from pymeasure.instruments import Instrument
from pymeasure.instruments.validators import modular_range_bidirectional
from pymeasure.instruments.validators import strict_discrete_set
from pymeasure.instruments.validators import strict_range
# =============================================================================
# Logging
# =============================================================================
log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())
# =============================================================================
# Instrument file
# =============================================================================
class DSPBase(Instrument):
"""This is the base class for the Signal Recovery DSP 72XX lock-in
amplifiers.
Do not directly instantiate an object with this class. Use one of the
DSP 72XX series instrument classes that inherit from this parent
class. Floating point command mode (i.e., the inclusion of the ``.``
character in commands) is included for usability.
Untested commands are noted in docstrings.
"""
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Constants
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SENSITIVITIES = [
np.nan, 2.0e-9, 5.0e-9, 10.0e-9, 20.0e-9, 50.0e-9, 100.0e-9,
200.0e-9, 500.0e-9, 1.0e-6, 2.0e-6, 5.0e-6, 10.0e-6,
20.0e-6, 50.0e-6, 100.0e-6, 200.0e-6, 500.0e-6, 1.0e-3,
2.0e-3, 5.0e-3, 10.0e-3, 20.0e-3, 50.0e-3, 100.0e-3,
200.0e-3, 500.0e-3, 1.0
]
SEN_MULTIPLIER = [1, 1e-6, 1e-8]
TIME_CONSTANTS = [
10.0e-6, 20.0e-6, 40.0e-6, 80.0e-6, 160.0e-6, 320.0e-6,
640.0e-6, 5.0e-3, 10.0e-3, 20.0e-3, 50.0e-3, 100.0e-3,
200.0e-3, 500.0e-3, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0,
100.0, 200.0, 500.0, 1.0e3, 2.0e3, 5.0e3, 10.0e3,
20.0e3, 50.0e3
]
REFERENCES = ['internal', 'external rear', 'external front']
IMODES = ['voltage mode', 'current mode', 'low noise current mode']
CURVE_BITS = ['x', 'y', 'magnitude', 'phase', 'sensitivity', 'adc1',
'adc2', 'dac1', 'dac2', 'noise', 'ratio', 'log ratio',
'event', 'frequency part 1', 'frequency part 2',
# Dual modes
'x2', 'y2', 'magnitude2', 'phase2', 'sensitivity2']
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Initializer and important communication methods
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def __init__(self, adapter, name="Signal Recovery DSP 72XX Base", **kwargs):
super().__init__(
adapter,
name,
includeSCPI=False,
**kwargs
)
def read(self, **kwargs):
"""Read the response and remove extra unicode character from instrument readings."""
return super().read(**kwargs).replace('\x00', '')
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Properties
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
id = Instrument.measurement(
"ID",
"""Measure the model number of the instrument.
Returned value is an integer.""",
cast=int
)
imode = Instrument.control(
"IMODE", "IMODE %d",
"""Control the lock-in amplifier to detect a voltage or current
signal.
Valid values are ``voltage mode, ``current mode``, or ``low noise current mode``.
""",
validator=strict_discrete_set,
values=IMODES,
map_values=True
)
slope = Instrument.control(
"SLOPE", "SLOPE %d",
"""Control the low-pass filter roll-off.
Valid values are the integers 6, 12, 18, or 24, which represents the
slope of the low-pass filter in dB/octave.
""",
validator=strict_discrete_set,
values=[6, 12, 18, 24],
map_values=True
)
time_constant = Instrument.control(
"TC", "TC %d",
"""Control the filter time constant.
Valid values are a strict set of time constants from 10 us to 50,000 s.
Returned values are floating point numbers in seconds.
""",
validator=strict_discrete_set,
values=TIME_CONSTANTS,
map_values=True
)
shield = Instrument.control(
"FLOAT", "FLOAT %d",
"""Control the input connector shield state.
Valid values are 0 to have shields grounded or 1 to have the shields
floating (i.e., connected to ground via a 1 kOhm resistor).
""",
validator=strict_discrete_set,
values=[0, 1]
)
fet = Instrument.control(
"FET", "FET %d",
"""Control the voltage preamplifier transistor type.
Valid values are 0 for bipolar or 1 for FET.
""",
validator=strict_discrete_set,
values=[0, 1]
)
coupling = Instrument.control(
"CP", "CP %d",
"""Control the input coupling mode.
Valid values are 0 for AC coupling mode or 1 for DC coupling mode.
""",
validator=strict_discrete_set,
values=[0, 1]
)
voltage = Instrument.control(
"OA.", "OA. %g",
"""Control the oscillator amplitude.
Valid values are floating point numbers between 0 to 5 V.
""",
validator=strict_range,
values=[0, 5]
)
frequency = Instrument.control(
"OF.", "OF. %g",
"""Control the oscillator frequency.
Valid values are floating point numbers representing the frequency in Hz.
""",
validator=strict_range,
values=[0, 2.5e5],
dynamic=True
)
reference = Instrument.control(
"IE", "IE %d",
"""Control the oscillator reference input mode.
Valid values are ``internal``, ``external rear`` or ``external front``.
""",
validator=strict_discrete_set,
values=REFERENCES,
map_values=True
)
harmonic = Instrument.control(
"REFN", "REFN %d",
"""Control the reference harmonic mode.
Valid values are integers.
""",
validator=strict_range,
values=[1, 65535],
dynamic=True
)
reference_phase = Instrument.control(
"REFP.", "REFP. %g",
"""Control the reference absolute phase angle.
Valid values are floating point numbers between 0 - 360 degrees.
""",
validator=modular_range_bidirectional,
values=[0, 360]
)
dac1 = Instrument.control(
"DAC. 1", "DAC. 1 %g",
"""Control the voltage of the DAC1 output on the rear panel.
Valid values are floating point numbers between -12 to 12 V.
""",
validator=strict_range,
values=[-12, 12]
)
dac2 = Instrument.control(
"DAC. 2", "DAC. 2 %g",
"""Control the voltage of the DAC2 output on the rear panel.
Valid values are floating point numbers between -12 to 12 V.
""",
validator=strict_range,
values=[-12, 12]
)
@property
def gain(self):
"""Control the AC gain of signal channel amplifier."""
return self.values("ACGAIN")
@gain.setter
def gain(self, value):
value = strict_discrete_set(int(value / 10), list(range(0, 10)))
self.write("ACGAIN %d" % value)
@property
def sensitivity(self):
"""Control the signal's measurement sensitivity range.
When in voltage measurement mode, valid values are discrete values from
2 nV to 1 V. When in current measurement mode, valid values are
discrete values from 2 fA to 1 µA (for normal current mode) or up to
10 nA (for low noise current mode).
"""
return self.values("SEN.")[0]
@sensitivity.setter
def sensitivity(self, value):
# get the voltage/current mode:
imode = self.IMODES.index(self.imode)
# Scale the sensitivities to the correct range for voltage/current mode
sensitivities = [s * self.SEN_MULTIPLIER[imode]
for s in self.SENSITIVITIES]
if imode == 2:
sensitivities[0:7] = [np.nan] * 7
# Check and map the value
value = strict_discrete_set(value, sensitivities)
value = sensitivities.index(value)
# Set sensitivity
self.write("SEN %d" % value)
@property
def auto_gain(self):
"""Control lock-in amplifier for automatic AC gain."""
return int(self.values("AUTOMATIC")) == 1
@auto_gain.setter
def auto_gain(self, value):
if value:
self.write("AUTOMATIC 1")
else:
self.write("AUTOMATIC 0")
x = Instrument.measurement(
"X.",
"""Measure the output signal's X channel.
Returned value is a floating point number in volts.
"""
)
y = Instrument.measurement(
"Y.",
"""Measure the output signal's Y channel.
Returned value is a floating point number in volts.
"""
)
xy = Instrument.measurement(
"XY.",
"""Measure both the X and Y channels.
Returned values are floating point numbers in volts.
"""
)
mag = Instrument.measurement(
"MAG.",
"""Measure the magnitude of the signal.
Returned value is a floating point number in volts.
"""
)
phase = Instrument.measurement(
"PHA.",
"""Measure the signal's absolute phase angle.
Returned value is a floating point number in degrees.
"""
)
adc1 = Instrument.measurement(
"ADC. 1",
"""Measure the voltage of the ADC1 input on the rear panel.
Returned value is a floating point number in volts.
"""
)
adc2 = Instrument.measurement(
"ADC. 2",
"""Measure the voltage of the ADC2 input on the rear panel.
Returned value is a floating point number in volts.
"""
)
ratio = Instrument.measurement(
"RT.",
"""Measure the ratio between the X channel and ADC1.
Returned value is a unitless floating point number equivalent to the
mathematical expression X/ADC1.
"""
)
log_ratio = Instrument.measurement(
"LR.",
"""
Measure the log (base 10) of the ratio between the X channel and ADC1.
Returned value is a unitless floating point number equivalent to the
mathematical expression log(X/ADC1).
"""
)
curve_buffer_bits = Instrument.control(
"CBD", "CBD %d",
"""Control which data outputs are stored in the curve buffer.
Valid values are values are integers between 1 and 65,535 (or 2,097,151
in dual reference mode).
""",
values=[1, 2097151],
validator=strict_range,
cast=int,
dynamic=True
)
curve_buffer_length = Instrument.control(
"LEN", "LEN %d",
"""Control the length of the curve buffer.
Valid values are integers between 1 and 32,768, but the actual maximum
amount of points is determined by the amount of curves that are stored,
as set via the curve_buffer_bits property (32,768 / n).
""",
values=[1, 32768],
validator=strict_range,
cast=int
)
curve_buffer_interval = Instrument.control(
"STR", "STR %d",
"""Control the time interval between the collection of successive
points in the curve buffer.
Valid values to the time interval are integers in ms with a
resolution of 5 ms; input values are rounded up to a multiple of 5.
Valid values are values between 0 and 1,000,000,000 (corresponding to
12 days). The interval may be set to 0, which sets the rate of data
storage to the curve buffer to 1.25 ms/point (800 Hz). However this
only allows storage of the X and Y channel outputs. There is no need to
issue a CBD 3 command to set this up since it happens automatically
when acquisition starts.
""",
values=[1, 1000000000],
validator=strict_range,
cast=int
)
curve_buffer_status = Instrument.measurement(
"M",
"""Measure the status of the curve buffer acquisition.
Command returns four values:
**First value - Curve Acquisition Status:** Number with 5 possibilities:
0: no activity
1: acquisition via TD command running
2: acquisition by a TDC command running
5: acquisition via TD command halted
6: acquisition bia TDC command halted
**Second value - Number of Sweeps Acquired**: Number of sweeps already
acquired.
**Third value - Status Byte:** Decimal representation of the status byte
(the same response as the ST command
**Fourth value - Number of Points Acquired:** Number of points acquired
in the curve buffer.
""",
cast=int,
)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Methods
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def set_voltage_mode(self):
"""Sets lock-in amplifier to measure a voltage signal."""
self.write("IMODE 0")
def setDifferentialMode(self, lineFiltering=True):
"""Sets lock-in amplifier to differential mode, measuring A-B."""
self.write("VMODE 3")
self.write("LF %d 0" % (3 if lineFiltering else 0))
def setChannelAMode(self):
"""Sets lock-in amplifier to measure a voltage signal only from the A
input connector.
"""
self.write("VMODE 1")
def auto_sensitivity(self):
"""Adjusts the full-scale sensitivity so signal's magnitude lies
between 30 - 90 % of full-scale.
"""
self.write("AS")
def auto_phase(self):
"""Adjusts the reference absolute phase to maximize the X channel
output and minimize the Y channel output signals.
"""
self.write("AQN")
def init_curve_buffer(self):
"""Initializes the curve storage memory and status variables. All
record of previously taken curves is removed.
"""
self.write("NC")
def set_buffer(self, points, quantities=None, interval=10.0e-3):
"""Prepares the curve buffer for a measurement.
:param int points:
Number of points to be recorded in the curve buffer
:param list quantities:
List containing the quantities (strings) that are to be
recorded in the curve buffer, can be any of:
'x', 'y', 'magnitude', 'phase', 'sensitivity', 'adc1', 'adc2',
'adc3', 'dac1', 'dac2',
'noise', 'ratio', 'log ratio', 'event', 'frequency'
(or 'frequency part 1' and 'frequency part 2');
for both dual modes, additional options are:
'x2', 'y2', 'magnitude2', 'phase2', 'sensitivity2'.
Default is 'x' and 'y'.
:param float interval:
The interval between two subsequent points stored in the
curve buffer in s. Default is 10 ms.
"""
if quantities is None:
quantities = ["x", "y"]
if "frequency" in quantities:
quantities.remove("frequency")
quantities.extend([
"frequency part 1",
"frequency part 2"
])
# remove all possible duplicates
quantities = list({q.lower() for q in quantities})
bits = 0
for q in quantities:
bits += 2 ** self.CURVE_BITS.index(q)
self.curve_buffer_bits = bits
self.curve_buffer_length = points
self.curve_buffer_interval = int(interval * 1000)
self.init_curve_buffer()
def start_buffer(self):
"""Initiates data acquisition. Acquisition starts at the current
position in the curve buffer and continues at the rate set by the STR
command until the buffer is full.
"""
self.write("TD")
def wait_for_buffer(self, timeout=None, delay=0.1):
""" Method that waits until the curve buffer is filled
"""
start = time()
while self.curve_buffer_status[0] == 1:
sleep(delay)
if timeout is not None and time() < start + timeout:
break
def get_buffer(self, quantity=None,
convert_to_float=True, wait_for_buffer=True):
"""Retrieves the buffer after it has been filled. The data retrieved
from the lock-in is in a fixed-point format, which requires translation
before it can be interpreted as meaningful data. When
`convert_to_float` is True the conversion is performed (if possible)
before returning the data.
:param str quantity:
If provided, names the quantity that is to be retrieved from the
curve buffer; can be any of:
'x', 'y', 'magnitude', 'phase', 'sensitivity', 'adc1', 'adc2',
'adc3', 'dac1', 'dac2', 'noise', 'ratio', 'log ratio', 'event',
'frequency part 1' and 'frequency part 2';
for both dual modes, additional options are:
'x2', 'y2', 'magnitude2', 'phase2', 'sensitivity2'.
If no quantity is provided, all available data is retrieved.
:param bool convert_to_float:
Bool that determines whether to convert the fixed-point buffer-data
to meaningful floating point values via the `buffer_to_float`
method. If True, this method tries to convert all the available
data to meaningful values; if this is not possible, an exception
will be raised. If False, this conversion is not performed and the
raw buffer-data is returned.
:param bool wait_for_buffer:
Bool that determines whether to wait for the data acquisition to
finished if this method is called before the acquisition is
finished. If True, the method waits until the buffer is filled
before continuing; if False, the method raises an exception if the
acquisition is not finished when the method is called.
"""
# Check if buffer is finished
if self.curve_buffer_status[0] != 0:
if wait_for_buffer:
self.wait_for_buffer()
else:
raise RuntimeError("Buffer acquisition is not yet finished.")
# Check which quantities are recorded in the buffer
bits = format(self.curve_buffer_bits, '021b')[::-1]
quantity_enums = [e for e, b in enumerate(bits) if b == "1"]
# Check if the provided quantity (if any) is indeed recorded
if quantity is not None:
if self.CURVE_BITS.index(quantity) in quantity_enums:
quantity_enums = [self.CURVE_BITS.index(quantity)]
else:
raise KeyError("The selected quantity '%s' is not recorded;"
"quantity should be one of: %s" % (
quantity, ", ".join(
[self.CURVE_BITS[q] for q in quantity_enums]
)))
# Retrieve the data
data = {}
for enum in quantity_enums:
self.write("DC %d" % enum)
q_data = []
while True:
stb = format(self.adapter.connection.read_stb(), '08b')[::-1]
if bool(int(stb[2])):
raise ValueError("Status byte reports command parameter error.")
if bool(int(stb[0])):
break
if bool(int(stb[7])):
q_data.append(int(self.read().strip()))
data[self.CURVE_BITS[enum]] = np.array(q_data)
if convert_to_float:
data = self.buffer_to_float(data)
if quantity is not None:
data = data[quantity]
return data
def buffer_to_float(self, buffer_data, sensitivity=None,
sensitivity2=None, raise_error=True):
"""Converts fixed-point buffer data to floating point data.
The provided data is converted as much as possible, but there are some
requirements to the data if all provided columns are to be converted;
if a key in the provided data cannot be converted it will be omitted in
the returned data or an exception will be raised, depending on the
value of raise_error.
The requirements for converting the data are as follows:
- Converting X, Y, magnitude and noise requires sensitivity data, which
can either be part of the provided data or can be provided via the
sensitivity argument
- The same holds for X2, Y2 and magnitude2 with sensitivity2.
- Converting the frequency requires both 'frequency part 1' and
'frequency part 2'.
:param dict buffer_data:
The data to be converted. Must be in the format as returned by the
`get_buffer` method: a dict of numpy arrays.
:param sensitivity:
If provided, the sensitivity used to convert X, Y, magnitude and
noise. Can be provided as a float or as an array that matches the
length of elements in `buffer_data`. If both a sensitivity is
provided and present in the buffer_data, the provided value is used
for the conversion, but the sensitivity in the buffer_data is
stored in the returned dict.
:param sensitivity2:
Same as the first sensitivity argument, but for X2, Y2, magnitude2
and noise2.
:param bool raise_error:
Determines whether an exception is raised in case not all keys
provided in buffer_data can be converted. If False, the columns
that cannot be converted are omitted in the returned dict.
:return: Floating-point buffer data
:rtype: dict
"""
data = {}
def maybe_raise(message):
if raise_error:
raise ValueError(message)
def convert_if_present(keys, multiply_by=1):
"""Copy any available entries from buffer_data to data, scale with
multiply_by.
"""
for key in keys:
if key in buffer_data:
data[key] = buffer_data[key] * multiply_by
# Sensitivity (for both single and dual modes)
for key in ["sensitivity", "sensitivity2"]:
if key in buffer_data:
data[key] = np.array([
self.SENSITIVITIES[v % 32] * self.SEN_MULTIPLIER[v // 32]
for v in buffer_data[key]
])
# Try to set sensitivity values from arg or data
sensitivity = sensitivity or data.get('sensitivity', None)
sensitivity2 = sensitivity2 or data.get('sensitivity2', None)
if any(["x" in buffer_data,
"y" in buffer_data,
"magnitude" in buffer_data,
"noise" in buffer_data, ]):
if sensitivity is None:
maybe_raise("X, Y, magnitude and noise cannot be converted as "
"no sensitivity is provided, neither as argument "
"nor as part of the buffer_data. ")
else:
convert_if_present(["x", "y", "magnitude", "noise"], sensitivity / 10000)
# phase data (for both single and dual modes)
convert_if_present(["phase", "phase2"], 1 / 100)
# frequency data from frequency part 1 and 2
if "frequency part 1" in buffer_data or "frequency part 2" in buffer_data:
if "frequency part 1" in buffer_data and "frequency part 2" in buffer_data:
data["frequency"] = np.array([
int(format(v2, "016b") + format(v1, "016b"), 2) / 1000 for
v1, v2 in zip(buffer_data["frequency part 1"], buffer_data["frequency part 2"])
])
else:
maybe_raise("Can calculate the frequency only when both"
"frequency part 1 and 2 are provided.")
# conversion for, adc1, adc2, dac1, dac2, ratio, and log ratio
convert_if_present(["adc1", "adc2", "dac1",
"dac2", "ratio", "log ratio"], 1 / 1000)
# adc3 (integrating converter); requires a call to adc3_time
if "adc3" in buffer_data:
data["adc3"] = buffer_data["adc3"] / (50000 * self.adc3_time)
# event does not require a conversion
convert_if_present(["event"])
# X, Y, and magnitude data for both dual modes
if any(["x2" in buffer_data,
"y2" in buffer_data,
"magnitude2" in buffer_data, ]):
if sensitivity2 is None:
maybe_raise("X2, Y2 and magnitude2 cannot be converted as no "
"sensitivity2 is provided, neither as argument nor "
"as part of the buffer_data. ")
else:
convert_if_present(["x2", "y2", "magnitude2"], sensitivity2 / 10000)
return data
def shutdown(self):
"""Safely shutdown the lock-in amplifier.
Sets oscillator amplitude to 0 V and AC gain to 0 dB.
"""
log.info("Shutting down %s." % self.name)
self.voltage = 0.
self.gain = 0.
super().shutdown()
|