File: sr830.py

package info (click to toggle)
python-pymeasure 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 8,788 kB
  • sloc: python: 47,201; makefile: 155
file content (643 lines) | stat: -rw-r--r-- 23,980 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
#
# This file is part of the PyMeasure package.
#
# Copyright (c) 2013-2024 PyMeasure Developers
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#

import re
import time
import numpy as np
from enum import IntFlag
from pymeasure.instruments import Instrument
from pymeasure.instruments.validators import strict_discrete_set, \
    truncated_discrete_set, truncated_range, discreteTruncate


class LIAStatus(IntFlag):
    """ IntFlag type that is returned by the lia_status property.
    """
    NO_ERROR = 0
    INPUT_OVERLOAD = 1
    FILTER_OVERLOAD = 2
    OUTPUT_OVERLOAD = 4
    REF_UNLOCK = 8
    FREQ_RANGE_CHANGE = 16
    TC_CHANGE = 32
    TRIGGER = 64
    UNUSED = 128


class ERRStatus(IntFlag):
    """ IntFlag type that is returned by the err_status property.
    """
    NO_ERROR = 0
    BACKUP_ERR = 2
    RAM_ERR = 4
    ROM_ERR = 16
    GPIB_ERR = 32
    DSP_ERR = 64
    MATH_ERR = 128


class SR830(Instrument):
    SAMPLE_FREQUENCIES = [
        62.5e-3, 125e-3, 250e-3, 500e-3, 1, 2, 4, 8, 16,
        32, 64, 128, 256, 512
    ]
    SENSITIVITIES = [
        2e-9, 5e-9, 10e-9, 20e-9, 50e-9, 100e-9, 200e-9,
        500e-9, 1e-6, 2e-6, 5e-6, 10e-6, 20e-6, 50e-6, 100e-6,
        200e-6, 500e-6, 1e-3, 2e-3, 5e-3, 10e-3, 20e-3,
        50e-3, 100e-3, 200e-3, 500e-3, 1
    ]
    TIME_CONSTANTS = [
        10e-6, 30e-6, 100e-6, 300e-6, 1e-3, 3e-3, 10e-3,
        30e-3, 100e-3, 300e-3, 1, 3, 10, 30, 100, 300, 1e3,
        3e3, 10e3, 30e3
    ]
    FILTER_SLOPES = [6, 12, 18, 24]
    EXPANSION_VALUES = [1, 10, 100]
    RESERVE_VALUES = ['High Reserve', 'Normal', 'Low Noise']
    CHANNELS = ['X', 'Y', 'R']
    INPUT_CONFIGS = ['A', 'A - B', 'I (1 MOhm)', 'I (100 MOhm)']
    INPUT_GROUNDINGS = ['Float', 'Ground']
    INPUT_COUPLINGS = ['AC', 'DC']
    INPUT_NOTCH_CONFIGS = ['None', 'Line', '2 x Line', 'Both']
    REFERENCE_SOURCES = ['External', 'Internal']
    SNAP_ENUMERATION = {"x": 1, "y": 2, "r": 3, "theta": 4,
                        "aux in 1": 5, "aux in 2": 6, "aux in 3": 7, "aux in 4": 8,
                        "frequency": 9, "ch1": 10, "ch2": 11}
    REFERENCE_SOURCE_TRIGGER = ['SINE', 'POS EDGE', 'NEG EDGE']
    INPUT_FILTER = ['Off', 'On']

    status = Instrument.measurement(
        "*STB?",
        """Get the status byte and Master Summary Status bit.""",
        cast=str,
    )

    id = Instrument.measurement(
        "*IDN?",
        """Get the identification of the instrument.""",
        cast=str,
        maxsplit=0,
    )

    def clear(self):
        """Clear the instrument status byte."""
        self.write("*CLS")

    def reset(self):
        """Reset the instrument."""
        self.write("*RST")

    sine_voltage = Instrument.control(
        "SLVL?", "SLVL%0.3f",
        """ A floating point property that represents the reference sine-wave
        voltage in Volts. This property can be set. """,
        validator=truncated_range,
        values=[0.004, 5.0]
    )
    frequency = Instrument.control(
        "FREQ?", "FREQ%0.5e",
        """ A floating point property that represents the lock-in frequency
        in Hz. This property can be set. """,
        validator=truncated_range,
        values=[0.001, 102000]
    )
    phase = Instrument.control(
        "PHAS?", "PHAS%0.2f",
        """ A floating point property that represents the lock-in phase
        in degrees. This property can be set. """,
        validator=truncated_range,
        values=[-360, 729.99]
    )
    x = Instrument.measurement("OUTP?1",
                               """ Reads the X value in Volts. """
                               )
    y = Instrument.measurement("OUTP?2",
                               """ Reads the Y value in Volts. """
                               )

    lia_status = Instrument.measurement(
        "LIAS?",
        """ Reads the value of the lockin amplifier (LIA) status byte. Returns a binary string with
            positions within the string corresponding to different status flags:

            +----+--------------------------------------+
            |Bit | Status                               |
            +====+======================================+
            | 0  | Input/Amplifier overload             |
            +----+--------------------------------------+
            | 1  | Time constant filter overload        |
            +----+--------------------------------------+
            | 2  | Output overload                      |
            +----+--------------------------------------+
            | 3  | Reference unlock                     |
            +----+--------------------------------------+
            | 4  | Detection frequency range switched   |
            +----+--------------------------------------+
            | 5  | Time constant changed indirectly     |
            +----+--------------------------------------+
            | 6  | Data storage triggered               |
            +----+--------------------------------------+
            | 7  | unused                               |
            +----+--------------------------------------+
            """,
        get_process=lambda s: LIAStatus(int(s)),
    )

    err_status = Instrument.measurement(
        "ERRS?",
        """Reads the value of the lockin error (ERR) status byte. Returns an IntFlag type with
        positions within the string corresponding to different error flags:

        +----+--------------------------------------+
        |Bit | Status                               |
        +====+======================================+
        | 0  | unused                               |
        +----+--------------------------------------+
        | 1  | backup error                         |
        +----+--------------------------------------+
        | 2  | RAM error                            |
        +----+--------------------------------------+
        | 3  | unused                               |
        +----+--------------------------------------+
        | 4  | ROM error                            |
        +----+--------------------------------------+
        | 5  | GPIB error                           |
        +----+--------------------------------------+
        | 6  | DSP error                            |
        +----+--------------------------------------+
        | 7  | DSP error                            |
        +----+--------------------------------------+
        """,
        get_process=lambda s: ERRStatus(int(s)),
    )

    @property
    def xy(self):
        """ Reads the X and Y values in Volts. """
        return self.snap()

    magnitude = Instrument.measurement("OUTP?3",
                                       """ Reads the magnitude in Volts. """
                                       )
    theta = Instrument.measurement("OUTP?4",
                                   """ Reads the theta value in degrees. """
                                   )
    channel1 = Instrument.control(
        "DDEF?1;", "DDEF1,%d,0",
        """ A string property that represents the type of Channel 1,
        taking the values X, R, X Noise, Aux In 1, or Aux In 2.
        This property can be set.""",
        validator=strict_discrete_set,
        values=['X', 'R', 'X Noise', 'Aux In 1', 'Aux In 2'],
        map_values=True
    )
    channel2 = Instrument.control(
        "DDEF?2;", "DDEF2,%d,0",
        """ A string property that represents the type of Channel 2,
        taking the values Y, Theta, Y Noise, Aux In 3, or Aux In 4.
        This property can be set.""",
        validator=strict_discrete_set,
        values=['Y', 'Theta', 'Y Noise', 'Aux In 3', 'Aux In 4'],
        map_values=True
    )
    sensitivity = Instrument.control(
        "SENS?", "SENS%d",
        """ A floating point property that controls the sensitivity in Volts,
        which can take discrete values from 2 nV to 1 V. Values are truncated
        to the next highest level if they are not exact. """,
        validator=truncated_discrete_set,
        values=SENSITIVITIES,
        map_values=True
    )
    time_constant = Instrument.control(
        "OFLT?", "OFLT%d",
        """ A floating point property that controls the time constant
        in seconds, which can take discrete values from 10 microseconds
        to 30,000 seconds. Values are truncated to the next highest
        level if they are not exact. """,
        validator=truncated_discrete_set,
        values=TIME_CONSTANTS,
        map_values=True
    )
    filter_slope = Instrument.control(
        "OFSL?", "OFSL%d",
        """ An integer property that controls the filter slope, which
        can take on the values 6, 12, 18, and 24 dB/octave. Values are
        truncated to the next highest level if they are not exact. """,
        validator=truncated_discrete_set,
        values=FILTER_SLOPES,
        map_values=True
    )
    filter_synchronous = Instrument.control(
        "SYNC?", "SYNC %d",
        """A boolean property that controls the synchronous filter.
        This property can be set. Allowed values are: True or False """,
        validator=strict_discrete_set,
        values={True: 1, False: 0},
        map_values=True
    )
    harmonic = Instrument.control(
        "HARM?", "HARM%d",
        """ An integer property that controls the harmonic that is measured.
        Allowed values are 1 to 19999. Can be set. """,
        validator=strict_discrete_set,
        values=range(1, 19999),
    )
    input_config = Instrument.control(
        "ISRC?", "ISRC %d",
        """ An string property that controls the input configuration. Allowed
        values are: {}""".format(INPUT_CONFIGS),
        validator=strict_discrete_set,
        values=INPUT_CONFIGS,
        map_values=True
    )
    input_grounding = Instrument.control(
        "IGND?", "IGND %d",
        """ An string property that controls the input shield grounding. Allowed
        values are: {}""".format(INPUT_GROUNDINGS),
        validator=strict_discrete_set,
        values=INPUT_GROUNDINGS,
        map_values=True
    )
    input_coupling = Instrument.control(
        "ICPL?", "ICPL %d",
        """ An string property that controls the input coupling. Allowed
        values are: {}""".format(INPUT_COUPLINGS),
        validator=strict_discrete_set,
        values=INPUT_COUPLINGS,
        map_values=True
    )
    input_notch_config = Instrument.control(
        "ILIN?", "ILIN %d",
        """ An string property that controls the input line notch filter
        status. Allowed values are: {}""".format(INPUT_NOTCH_CONFIGS),
        validator=strict_discrete_set,
        values=INPUT_NOTCH_CONFIGS,
        map_values=True
    )
    reference_source = Instrument.control(
        "FMOD?", "FMOD %d",
        """ An string property that controls the reference source. Allowed
        values are: {}""".format(REFERENCE_SOURCES),
        validator=strict_discrete_set,
        values=REFERENCE_SOURCES,
        map_values=True
    )
    reference_source_trigger = Instrument.control(
        "RSLP?", "RSLP %d",
        """ A string property that controls the reference source triggering. Allowed
             values are: {}""".format(REFERENCE_SOURCE_TRIGGER),
        validator=strict_discrete_set,
        values=REFERENCE_SOURCE_TRIGGER,
        map_values=True
    )

    aux_out_1 = Instrument.control(
        "AUXV?1;", "AUXV1,%f;",
        """ A floating point property that controls the output of Aux output 1 in
        Volts, taking values between -10.5 V and +10.5 V.
        This property can be set.""",
        validator=truncated_range,
        values=[-10.5, 10.5]
    )
    # For consistency with other lock-in instrument classes
    dac1 = aux_out_1

    aux_out_2 = Instrument.control(
        "AUXV?2;", "AUXV2,%f;",
        """ A floating point property that controls the output of Aux output 2 in
        Volts, taking values between -10.5 V and +10.5 V.
        This property can be set.""",
        validator=truncated_range,
        values=[-10.5, 10.5]
    )
    # For consistency with other lock-in instrument classes
    dac2 = aux_out_2

    aux_out_3 = Instrument.control(
        "AUXV?3;", "AUXV3,%f;",
        """ A floating point property that controls the output of Aux output 3 in
        Volts, taking values between -10.5 V and +10.5 V.
        This property can be set.""",
        validator=truncated_range,
        values=[-10.5, 10.5]
    )
    # For consistency with other lock-in instrument classes
    dac3 = aux_out_3

    aux_out_4 = Instrument.control(
        "AUXV?4;", "AUXV4,%f;",
        """ A floating point property that controls the output of Aux output 4 in
        Volts, taking values between -10.5 V and +10.5 V.
        This property can be set.""",
        validator=truncated_range,
        values=[-10.5, 10.5]
    )
    # For consistency with other lock-in instrument classes
    dac4 = aux_out_4

    aux_in_1 = Instrument.measurement(
        "OAUX?1;",
        """ Reads the Aux input 1 value in Volts with 1/3 mV resolution. """
    )
    # For consistency with other lock-in instrument classes
    adc1 = aux_in_1

    aux_in_2 = Instrument.measurement(
        "OAUX?2;",
        """ Reads the Aux input 2 value in Volts with 1/3 mV resolution. """
    )
    # For consistency with other lock-in instrument classes
    adc2 = aux_in_2

    aux_in_3 = Instrument.measurement(
        "OAUX?3;",
        """ Reads the Aux input 3 value in Volts with 1/3 mV resolution. """
    )
    # For consistency with other lock-in instrument classes
    adc3 = aux_in_3

    aux_in_4 = Instrument.measurement(
        "OAUX?4;",
        """ Reads the Aux input 4 value in Volts with 1/3 mV resolution. """
    )
    # For consistency with other lock-in instrument classes
    adc4 = aux_in_4

    def __init__(self, adapter, name="Stanford Research Systems SR830 Lock-in amplifier",
                 **kwargs):
        super().__init__(
            adapter,
            name,
            includeSCPI=False,
            **kwargs
        )

    def auto_gain(self):
        self.write("AGAN")

    def auto_reserve(self):
        self.write("ARSV")

    def auto_phase(self):
        self.write("APHS")

    def auto_offset(self, channel):
        """ Offsets the channel (X, Y, or R) to zero """
        if channel not in self.CHANNELS:
            raise ValueError('SR830 channel is invalid')
        channel = self.CHANNELS.index(channel) + 1
        self.write("AOFF %d" % channel)

    def get_scaling(self, channel):
        """ Returns the offset percent and the expansion term
        that are used to scale the channel in question
        """
        if channel not in self.CHANNELS:
            raise ValueError('SR830 channel is invalid')
        channel = self.CHANNELS.index(channel) + 1
        offset, expand = self.ask("OEXP? %d" % channel).split(',')
        return float(offset), self.EXPANSION_VALUES[int(expand)]

    def set_scaling(self, channel, precent, expand=0):
        """ Sets the offset of a channel (X=1, Y=2, R=3) to a
        certain percent (-105% to 105%) of the signal, with
        an optional expansion term (0, 10=1, 100=2)
        """
        if channel not in self.CHANNELS:
            raise ValueError('SR830 channel is invalid')
        channel = self.CHANNELS.index(channel) + 1
        expand = discreteTruncate(expand, self.EXPANSION_VALUES)
        self.write("OEXP %i,%.2f,%i" % (channel, precent, expand))

    def output_conversion(self, channel):
        """ Returns a function that can be used to determine
        the signal from the channel output (X, Y, or R)
        """
        offset, _ = self.get_scaling(channel)
        sensitivity = self.sensitivity
        return lambda x: x + offset / 100 * sensitivity

    @property
    def sample_frequency(self):
        """ Gets the sample frequency in Hz """
        index = int(self.ask("SRAT?"))
        if index == 14:
            return None  # Trigger
        else:
            return SR830.SAMPLE_FREQUENCIES[index]

    @sample_frequency.setter
    def sample_frequency(self, frequency):
        """Sets the sample frequency in Hz (None is Trigger)"""
        assert type(frequency) in [float, int, type(None)]
        if frequency is None:
            index = 14  # Trigger
        else:
            frequency = discreteTruncate(frequency, SR830.SAMPLE_FREQUENCIES)
            index = SR830.SAMPLE_FREQUENCIES.index(frequency)
        self.write("SRAT%f" % index)

    def aquireOnTrigger(self, enable=True):
        self.write("TSTR%d" % enable)

    @property
    def reserve(self):
        return SR830.RESERVE_VALUES[int(self.ask("RMOD?"))]

    @reserve.setter
    def reserve(self, reserve):
        if reserve not in SR830.RESERVE_VALUES:
            index = 1
        else:
            index = SR830.RESERVE_VALUES.index(reserve)
        self.write("RMOD%d" % index)

    def is_out_of_range(self):
        """ Returns True if the magnitude is out of range
        """
        return int(self.ask("LIAS?2")) == 1

    def quick_range(self):
        """ While the magnitude is out of range, increase
        the sensitivity by one setting
        """
        self.write('LIAE 2,1')
        while self.is_out_of_range():
            self.write("SENS%d" % (int(self.ask("SENS?")) + 1))
            time.sleep(5.0 * self.time_constant)
            self.write("*CLS")
        # Set the range as low as possible
        newsensitivity = 1.15 * abs(self.magnitude)
        if self.input_config in ('I (1 MOhm)', 'I (100 MOhm)'):
            newsensitivity = newsensitivity * 1e6
        self.sensitivity = newsensitivity

    @property
    def buffer_count(self):
        query = self.ask("SPTS?")
        if query.count("\n") > 1:
            return int(re.match(r"\d+\n$", query, re.MULTILINE).group(0))
        else:
            return int(query)

    def fill_buffer(self, count: int, has_aborted=lambda: False, delay=0.001):
        """ Fill two numpy arrays with the content of the instrument buffer

        Eventually waiting until the specified number of recording is done
        """
        ch1 = np.empty(count, np.float32)
        ch2 = np.empty(count, np.float32)
        currentCount = self.buffer_count
        index = 0
        while currentCount < count:
            if currentCount > index:
                ch1[index:currentCount] = self.get_buffer(1, index, currentCount)
                ch2[index:currentCount] = self.get_buffer(2, index, currentCount)
                index = currentCount
                time.sleep(delay)
            currentCount = self.buffer_count
            if has_aborted():
                self.pause_buffer()
                return ch1, ch2
        self.pause_buffer()
        ch1[index: count + 1] = self.get_buffer(1, index, count)  # noqa: E203
        ch2[index: count + 1] = self.get_buffer(2, index, count)  # noqa: E203
        return ch1, ch2

    def buffer_measure(self, count, stopRequest=None, delay=1e-3):
        """ Start a fast measurement mode and transfers data from buffer to extract mean
        and std measurements

        Return the mean and std from both channels
        """
        self.write("FAST2;STRD")
        ch1 = np.empty(count, np.float64)
        ch2 = np.empty(count, np.float64)
        currentCount = self.buffer_count
        index = 0
        while currentCount < count:
            if currentCount > index:
                ch1[index:currentCount] = self.get_buffer(1, index, currentCount)
                ch2[index:currentCount] = self.get_buffer(2, index, currentCount)
                index = currentCount
                time.sleep(delay)
            currentCount = self.buffer_count
            if stopRequest is not None and stopRequest.isSet():
                self.pause_buffer()
                return (0, 0, 0, 0)
        self.pause_buffer()
        ch1[index:count] = self.get_buffer(1, index, count)
        ch2[index:count] = self.get_buffer(2, index, count)
        return (ch1.mean(), ch1.std(), ch2.mean(), ch2.std())

    def pause_buffer(self):
        self.write("PAUS")

    def start_buffer(self, fast=True):
        if fast:
            self.write("FAST2;STRD")
        else:
            self.write("FAST0")

    def wait_for_buffer(self, count, has_aborted=lambda: False,
                        timeout=60, timestep=0.01):
        """ Wait for the buffer to fill a certain count
        """
        i = 0
        while not self.buffer_count >= count and i < (timeout / timestep):
            time.sleep(timestep)
            i += 1
            if has_aborted():
                return False
        self.pause_buffer()

    def get_buffer(self, channel=1, start=0, end=None):
        """ Acquires the 32 bit floating point data through binary transfer
        """
        if end is None:
            end = self.buffer_count
        return self.binary_values("TRCB?%d,%d,%d" % (
            channel, start, end - start))

    def reset_buffer(self):
        self.write("REST")

    def trigger(self):
        self.write("TRIG")

    def snap(self, val1="X", val2="Y", *vals):
        """ Method that records and retrieves 2 to 6 parameters at a single
        instant. The parameters can be one of: X, Y, R, Theta, Aux In 1,
        Aux In 2, Aux In 3, Aux In 4, Frequency, CH1, CH2.
        Default is "X" and "Y".

        :param val1: first parameter to retrieve
        :param val2: second parameter to retrieve
        :param vals: other parameters to retrieve (optional)
        """
        if len(vals) > 4:
            raise ValueError("No more that 6 values (in total) can be captured"
                             "simultaneously.")

        # check if additional parameters are given as a list
        if len(vals) == 1 and isinstance(vals[0], (list, tuple)):
            vals = vals[0]

        # make a list of all vals
        vals = [val1, val2] + list(vals)

        vals_idx = [str(self.SNAP_ENUMERATION[val.lower()]) for val in vals]

        command = "SNAP? " + ",".join(vals_idx)
        return self.values(command)

    def save_setup(self, setup_number: int):
        """Save the current instrument configuration (all parameters) in a memory
        referred to by an integer

        :param setup_number: the integer referring to the memory (between 1 and 9 (included))
        """
        if 1 <= setup_number <= 9:
            self.write(f'SSET{setup_number:d};')

    def load_setup(self, setup_number: int):
        """ Load a previously saved instrument configuration from the memory referred
        to by an integer

        :param setup_number: the integer referring to the memory (between 1 and 9 (included))
        """
        if 1 <= setup_number <= 9:
            self.write(f'RSET{setup_number:d};')

    def start_scan(self):
        """ Start the data recording into the buffer
        """
        self.write('STRT')

    def pause_scan(self):
        """ Pause the data recording
        """
        self.write('PAUS')