1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
|
#
# This file is part of the PyMeasure package.
#
# Copyright (c) 2013-2022 PyMeasure Developers
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
from abc import ABCMeta
import re
import sys
import time
from decimal import Decimal
import numpy as np
from pymeasure.instruments import Instrument, Channel, SCPIUnknownMixin
from pymeasure.instruments.validators import strict_discrete_set, strict_range, \
strict_discrete_range
def sanitize_source(source):
"""Parse source string.
:param source: can be "cX", "ch X", "chan X", "channel X", "math" or "line", where X is
a single digit integer. The parser is case and white space insensitive.
:return: can be "C1", "C2", "C3", "C4", "MATH" or "LINE.
"""
match = re.match(r"^\s*(C|CH|CHAN|CHANNEL)\s*(?P<number>\d)\s*$|"
r"^\s*(?P<name_only>MATH|LINE)\s*$", source, re.IGNORECASE)
if match:
if match.group("number") is not None:
source = "C" + match.group("number")
else:
source = match.group("name_only")
source = source.upper()
else:
raise ValueError(f"source {source} not recognized")
return source
def _trigger_select_num_pars(value):
"""Find the expected number of parameters for the trigger_select property.
:param value: input parameters as a tuple
"""
value = tuple(map(lambda v: v.upper() if isinstance(v, str) else v, value))
num_expected_pars = 0
if 3 <= len(value) <= 5:
if value[0] == "EDGE":
num_expected_pars = 3 if value[2] == "OFF" else 4
elif value[0] in ["SLEW", "INTV"]:
num_expected_pars = 4 if value[2] in ["IS", "IL"] else 5
elif value[0] in ["GLIT", "RUNT"]:
num_expected_pars = 4 if value[2] in ["PS", "PL"] else 5
elif value[0] == "DROP":
num_expected_pars = 4
else:
raise ValueError('Number of parameters {} can only be 3, 4, 5'.format(len(value)))
return num_expected_pars
def _trigger_select_validator(value, values, num_pars_finder=_trigger_select_num_pars):
"""Validate the input of the trigger_select property.
:param value: input parameters as a tuple
:param values: allowed space for each parameter
:param num_pars_finder: function to find the number of expected parameters
"""
if not isinstance(value, tuple):
raise ValueError('Input value {} of trigger_select should be a tuple'.format(value))
if len(value) < 3 or len(value) > 5:
raise ValueError('Number of parameters {} can only be 3, 4, 5'.format(len(value)))
value = tuple(map(lambda v: v.upper() if isinstance(v, str) else v, value))
value = list(value)
value[1] = sanitize_source(value[1])
value = tuple(value)
if value[0] not in values.keys():
raise ValueError('Value {} not in the discrete set {}'.format(value[0], values.keys()))
num_expected_pars = num_pars_finder(value)
if len(value) != num_expected_pars:
raise ValueError('Number of parameters {} != {}'.format(len(value), num_expected_pars))
for i, element in enumerate(value[1:], start=1):
if i < 3:
strict_discrete_set(element, values=values[value[0]][i - 1])
else:
strict_range(element, values=values[value[0]][i - 1])
return value
def _trigger_select_get_process(value):
"""Process the output of the trigger_select property.
The format of the input list is
<trig_type>, SR, <source>, HT, <hold_type>[, HV, <hold_value1>S][, HV2, <hold_value2>S]
The format of the output list is
<trig_type>, <source>, <hold_type>[, <hold_value1>][, <hold_value2>]
:param value: output parameters as a list
"""
output = []
if len(value) > 0:
output.append(value[0].lower())
if "SR" in value:
output.append(value[value.index("SR") + 1].lower())
if "HT" in value:
output.append(value[value.index("HT") + 1].lower())
if "HV" in value:
output.append(float(value[value.index("HV") + 1][:-1]))
if "HV2" in value:
output.append(float(value[value.index("HV2") + 1][:-1]))
return output
def _results_list_to_dict(results):
"""Turn a list into a dict, using the uneven indices as keys.
E.g. turn ['C1', 'OFF', 'C2', 'OFF'] into {'C1': 'OFF', 'C2': 'OFF'}
"""
keys = results[::2]
values = results[1::2]
return dict(zip(keys, values))
def _remove_unit(value):
"""Remove a unit from the returned string and cast to float."""
if isinstance(value, float):
return value
if value.endswith(" V"):
value = value[:-2]
return float(value)
def _intensity_validator(value, values):
"""Validate the input of the intensity property (grid intensity and trace intensity).
:param value: input parameters as a 2-element tuple
:param values: allowed space for each parameter
"""
if not isinstance(value, tuple):
raise ValueError('Input value {} of trigger_select should be a tuple'.format(value))
if len(value) != 2:
raise ValueError('Number of parameters {} different from 2'.format(len(value)))
for i in range(2):
strict_discrete_range(value=value[i], values=values[i], step=1)
return value
class _ChunkResizer:
"""The only purpose of this class is to resize the chunk size of the instrument adapter.
This is necessary when reading a big chunk of data from the oscilloscope like image dumps and
waveforms.
.. Note::
Only if the new chunk size is bigger than the current chunk size, it is resized.
"""
def __init__(self, adapter, chunk_size):
"""Just initialize the object attributes.
:param adapter: Adapter of the instrument. This is usually accessed through the
Instrument::adapter attribute.
:param chunk_size: new chunk size (int).
"""
self.adapter = adapter
self.old_chunk_size = None
self.new_chunk_size = int(chunk_size) if chunk_size else 0
def __enter__(self):
"""Only resize the chunk size if the adapter support this feature."""
if (self.adapter.connection is not None
and hasattr(self.adapter.connection, "chunk_size")):
if self.new_chunk_size > self.adapter.connection.chunk_size:
self.old_chunk_size = self.adapter.connection.chunk_size
self.adapter.connection.chunk_size = self.new_chunk_size
def __exit__(self, exc_type, exc_val, exc_tb):
if self.old_chunk_size is not None:
self.adapter.connection.chunk_size = self.old_chunk_size
class TeledyneOscilloscopeChannel(Channel, metaclass=ABCMeta):
"""A base abstract class for channel on a :class:`TeledyneOscilloscope` device."""
_BOOLS = {True: "ON", False: "OFF"}
BANDWIDTH_LIMITS = ["OFF", "ON"]
TRIGGER_SLOPES = {"negative": "NEG", "positive": "POS"}
# Capture and split a reply like "RMS,281E-6" and "RMS,281E-6,OK"
# The third response item ("state"), is not present in all oscilloscopes
# For compatibility it is captured if it can, but ignored otherwise
_re_pava_response = re.compile(r"^\s*"
r"(?P<parameter>\w+),\s*"
r"(?P<value>[^,]*)\s*"
r"(?:,(?P<state>\w+)\s*)?$")
bwlimit = Instrument.control(
"BWL?", "BWL %s",
"""Control the internal low-pass filter for this channel.
The current bandwidths can only be read back for all channels at once!
""",
validator=strict_discrete_set,
values=BANDWIDTH_LIMITS,
get_process=_results_list_to_dict,
dynamic=True,
)
coupling = Instrument.control(
"CPL?", "CPL %s",
"""Control the coupling with a string parameter ("ac 1M", "dc 1M", "ground").""",
validator=strict_discrete_set,
values={"ac 1M": "A1M", "dc 1M": "D1M", "ground": "GND"},
map_values=True
)
display = Instrument.control(
"TRA?", "TRA %s",
"""Control the display enabled state. (strict bool)""",
validator=strict_discrete_set,
values=_BOOLS,
map_values=True
)
offset = Instrument.control(
"OFST?", "OFST %.2EV",
"""Control the center of the screen in Volts by a a float parameter.
The range of legal values varies depending on range and scale. If the specified
value is outside of the legal range, the offset value is automatically set to the nearest
legal value.
"""
)
probe_attenuation = Instrument.control(
"ATTN?", "ATTN %g",
"""Control the probe attenuation. The probe attenuation may be from 0.1 to 10000.""",
validator=strict_discrete_set,
values={0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000}
)
scale = Instrument.control(
"VDIV?", "VDIV %.2EV",
"""Control the vertical scale (units per division) in Volts."""
)
trigger_coupling = Instrument.control(
"TRCP?", "TRCP %s",
"""Control the input coupling for the selected trigger sources (string).
- ac: AC coupling block DC component in the trigger path, removing dc offset
voltage from the trigger waveform. Use AC coupling to get a stable edge trigger when
your waveform has a large dc offset.
- dc: DC coupling allows dc and ac signals into the trigger path.
- lowpass: HFREJ coupling places a lowpass filter in the trigger path.
- highpass: LFREJ coupling places a highpass filter in the trigger path.
""",
validator=strict_discrete_set,
values={"ac": "AC", "dc": "DC", "lowpass": "HFREJ", "highpass": "LFREJ"},
map_values=True
)
trigger_level = Instrument.control(
"TRLV?", "TRLV %.2EV",
"""Control the trigger level voltage for the active trigger source (float).
When there are two trigger levels to set, this command is used to set the higher
trigger level voltage for the specified source. :attr:`trigger_level2` is used to set
the lower trigger level voltage.
When setting the trigger level it must be divided by the probe attenuation. This is
not documented in the datasheet and it is probably a bug of the scope firmware.
An out-of-range value will be adjusted to the closest legal value.
""",
get_process=_remove_unit,
)
trigger_slope = Instrument.control(
"TRSL?", "TRSL %s",
"""Control the trigger slope of the specified trigger source (string).
<trig_slope>:={NEG,POS,WINDOW} for edge trigger
<trig_slope>:={NEG,POS} for other trigger
+------------+--------------------------------------------------+
| parameter | trigger slope |
+------------+--------------------------------------------------+
| negative | Negative slope for edge trigger or other trigger |
+------------+--------------------------------------------------+
| positive | Positive slope for edge trigger or other trigger |
+------------+--------------------------------------------------+
| window | Window slope for edge trigger |
+------------+--------------------------------------------------+
""",
validator=strict_discrete_set,
values=TRIGGER_SLOPES,
map_values=True,
dynamic=True,
)
_measurable_parameters = ["PKPK", "MAX", "MIN", "AMPL", "TOP", "BASE", "CMEAN", "MEAN", "RMS",
"CRMS", "OVSN", "FPRE", "OVSP", "RPRE", "PER", "FREQ", "PWID",
"NWID", "RISE", "FALL", "WID", "DUTY", "NDUTY", "ALL"]
display_parameter = Instrument.setting(
"PACU %s",
"""Set the waveform processing of this channel with the specified algorithm and the result
is displayed on the front panel.
The command accepts the following parameters:
========= ===================================
Parameter Description
========= ===================================
PKPK vertical peak-to-peak
MAX maximum vertical value
MIN minimum vertical value
AMPL vertical amplitude
TOP waveform top value
BASE waveform base value
CMEAN average value in the first cycle
MEAN average value
RMS RMS value
CRMS RMS value in the first cycle
OVSN overshoot of a falling edge
FPRE preshoot of a falling edge
OVSP overshoot of a rising edge
RPRE preshoot of a rising edge
PER period
FREQ frequency
PWID positive pulse width
NWID negative pulse width
RISE rise-time
FALL fall-time
WID Burst width
DUTY positive duty cycle
NDUTY negative duty cycle
ALL All measurement
========= ===================================
""",
validator=strict_discrete_set,
values=_measurable_parameters
)
def measure_parameter(self, parameter: str):
"""Process a waveform with the selected algorithm and returns the specified measurement.
:param parameter: same as the display_parameter property
"""
parameter = strict_discrete_set(value=parameter, values=self._measurable_parameters)
output = self.ask("PAVA? %s" % parameter)
match = self._re_pava_response.match(output)
if match:
if match.group('parameter') != parameter:
raise ValueError(f"Parameter {match.group('parameter')} different from {parameter}")
if match.group('state') and match.group('state') == 'IV':
raise ValueError(f"Parameter state for {parameter} is invalid")
return float(match.group('value'))
else:
raise ValueError(f"Cannot extract value from output {output}")
def insert_id(self, command):
# only in case of the BWL and PACU commands the syntax is different. Why? SIGLENT Why?
if command[0:4] == "BWL ":
return "BWL C%d,%s" % (self.id, command[4:])
elif command[0:5] == "PACU ":
return "PACU %s,C%d" % (command[5:], self.id)
else:
return "C%d:%s" % (self.id, command)
# noinspection PyIncorrectDocstring
def setup(self, **kwargs):
"""Setup channel. Unspecified settings are not modified.
Modifying values such as probe attenuation will modify offset, range, etc. Refer to
oscilloscope documentation and make multiple consecutive calls to setup() if needed.
See property descriptions for more information.
:param bwlimit:
:param coupling:
:param display:
:param invert:
:param offset:
:param skew_factor:
:param probe_attenuation:
:param scale:
:param unit:
:param trigger_coupling:
:param trigger_level:
:param trigger_level2:
:param trigger_slope:
"""
for key, value in kwargs.items():
setattr(self, key, value)
@property
def current_configuration(self):
"""Get channel configuration as a dict containing the following keys:
- "channel": channel number (int)
- "attenuation": probe attenuation (float)
- "bandwidth_limit": bandwidth limiting enabled (bool)
- "coupling": "ac 1M", "dc 1M", "ground" coupling (str)
- "offset": vertical offset (float)
- "skew_factor": channel-tochannel skew factor (float)
- "display": currently displayed (bool)
- "unit": "A" or "V" units (str)
- "volts_div": vertical divisions (float)
- "inverted": inverted (bool)
- "trigger_coupling": trigger coupling can be "dc" "ac" "highpass" "lowpass" (str)
- "trigger_level": trigger level (float)
- "trigger_level2": trigger lower level for SLEW or RUNT trigger (float)
- "trigger_slope": trigger slope can be "negative" "positive" "window" (str)
"""
ch_setup = {
"channel": self.id,
"attenuation": self.probe_attenuation,
"bandwidth_limit": self.bwlimit,
"coupling": self.coupling,
"offset": self.offset,
"skew_factor": self.skew_factor,
"display": self.display,
"unit": self.unit,
"volts_div": self.scale,
"inverted": self.invert,
"trigger_coupling": self.trigger_coupling,
"trigger_level": self.trigger_level,
"trigger_level2": self.trigger_level2,
"trigger_slope": self.trigger_slope
}
return ch_setup
class TeledyneOscilloscope(SCPIUnknownMixin, Instrument, metaclass=ABCMeta):
"""A base abstract class for any Teledyne Lecroy oscilloscope.
All Teledyne oscilloscopes have a very similar interface, hence this base class to combine
them. Note that specific models will likely have conflicts in their interface.
Attributes:
WRITE_INTERVAL_S: minimum time between two commands. If a command is received less than
WRITE_INTERVAL_S after the previous one, the code blocks until at least WRITE_INTERVAL_S
seconds have passed.
Because the oscilloscope takes a non neglibile time to perform some operations, it might
be needed for the user to tweak the sleep time between commands.
The WRITE_INTERVAL_S is set to 10ms as default however its optimal value heavily depends
on the actual commands and on the connection type, so it is impossible to give a unique
value to fit all cases. An interval between 10ms and 500ms second proved to be good,
depending on the commands and connection latency.
"""
_BOOLS = TeledyneOscilloscopeChannel._BOOLS
WRITE_INTERVAL_S = 0.02 # seconds
ch_1 = Instrument.ChannelCreator(TeledyneOscilloscopeChannel, 1)
ch_2 = Instrument.ChannelCreator(TeledyneOscilloscopeChannel, 2)
ch_3 = Instrument.ChannelCreator(TeledyneOscilloscopeChannel, 3)
ch_4 = Instrument.ChannelCreator(TeledyneOscilloscopeChannel, 4)
def __init__(self, adapter, name="Teledyne Oscilloscope", **kwargs):
super().__init__(adapter, name=name, **kwargs)
if self.adapter.connection is not None:
self.adapter.connection.timeout = 3000
self._grid_number = 14 # Number of grids in the horizontal direction
self._seconds_since_last_write = 0 # Timestamp of the last command
self._header_size = 16 # bytes
self._footer_size = 2 # bytes
self.waveform_source = "C1"
self.default_setup()
################
# System Setup #
################
def default_setup(self):
""" Set up the oscilloscope for remote operation.
The COMM_HEADER command controls the
way the oscilloscope formats response to queries. This command does not affect the
interpretation of messages sent to the oscilloscope. Headers can be sent in their long or
short form regardless of the CHDR setting.
By setting the COMM_HEADER to OFF, the instrument is going to reply with minimal
information, and this makes the response message much easier to parse.
The user should not be fiddling with the COMM_HEADER during operation, because
if the communication header is anything other than OFF, the whole driver breaks down.
"""
self._comm_header = "OFF"
def ch(self, source):
""" Get channel object from its index or its name. Or if source is "math", just return the
scope object.
:param source: can be 1, 2, 3, 4 or C1, C2, C3, C4, MATH
:return: handle to the selected source.
"""
if isinstance(source, str):
source = sanitize_source(source)
if source == "MATH":
return self
elif source == "LINE":
raise ValueError("LINE is not a valid channel")
else:
return getattr(self, f"ch_{source if isinstance(source, int) else source[-1]}")
def autoscale(self):
""" Autoscale displayed channels."""
self.write("ASET")
def write(self, command, **kwargs):
"""Write the command to the instrument through the adapter.
Note: if the last command was sent less than WRITE_INTERVAL_S before, this method blocks for
the remaining time so that commands are never sent with rate more than 1/WRITE_INTERVAL_S
Hz.
:param command: command string to be sent to the instrument
"""
seconds_since_last_write = time.monotonic() - self._seconds_since_last_write
if seconds_since_last_write < self.WRITE_INTERVAL_S:
time.sleep(self.WRITE_INTERVAL_S - seconds_since_last_write)
self._seconds_since_last_write = seconds_since_last_write
super().write(command, **kwargs)
_comm_header = Instrument.control(
"CHDR?", "CHDR %s",
"""Control the way the oscilloscope formats response to queries.
The user should not be fiddling with the COMM_HEADER during operation, because
if the communication header is anything other than OFF, the whole driver breaks down.
• SHORT — response starts with the short form of the header word.
• LONG — response starts with the long form of the header word.
• OFF — header is omitted from the response and units in numbers are suppressed.""",
validator=strict_discrete_set,
values=["OFF", "SHORT", "LONG"],
)
###########
# General #
###########
bwlimit = Instrument.control(
"BWL?", "BWL %s",
"""Set the internal low-pass filter for all channels.""",
validator=strict_discrete_set,
values=TeledyneOscilloscopeChannel.BANDWIDTH_LIMITS,
get_process=_results_list_to_dict,
dynamic=True,
)
##################
# Timebase Setup #
##################
timebase_offset = Instrument.control(
"TRDL?", "TRDL %.2ES",
"""Control the time interval in seconds between the trigger event and the reference
position (at center of screen by default)."""
)
timebase_scale = Instrument.control(
"TDIV?", "TDIV %.2ES",
"""Control the horizontal scale (units per division) in seconds for the main
window (float).""",
validator=strict_range,
values=[1e-9, 100]
)
@property
def timebase(self):
"""Get timebase setup as a dict containing the following keys:
- "timebase_scale": horizontal scale in seconds/div (float)
- "timebase_offset": interval in seconds between the trigger and the reference
position (float)
"""
tb_setup = {
"timebase_scale": self.timebase_scale,
"timebase_offset": self.timebase_offset,
}
return tb_setup
def timebase_setup(self, scale=None, offset=None):
"""Set up timebase. Unspecified parameters are not modified. Modifying a single parameter
might impact other parameters. Refer to oscilloscope documentation and make multiple
consecutive calls to timebase_setup if needed.
:param scale: interval in seconds between the trigger event and the reference position.
:param offset: horizontal scale per division in seconds/div.
"""
if scale is not None:
self.timebase_scale = scale
if offset is not None:
self.timebase_offset = offset
###############
# Acquisition #
###############
def run(self):
"""Starts repetitive acquisitions.
This is the same as pressing the Run key on the front panel.
"""
self.trigger_mode = "normal"
def stop(self):
""" Stops the acquisition. This is the same as pressing the Stop key on the front panel."""
self.write("STOP")
def single(self):
"""Causes the instrument to acquire a single trigger of data.
This is the same as pressing the Single key on the front panel.
"""
self.write("ARM")
##################
# Waveform #
##################
waveform_points = Instrument.control(
"WFSU?", "WFSU NP,%d",
"""Control the number of waveform points to be transferred with
the digitize method (int). NP = 0 sends all data points.
Note that the oscilloscope may provide less than the specified nb of points.
""",
validator=strict_range,
get_process=lambda vals: vals[vals.index("NP") + 1],
values=[0, sys.maxsize]
)
waveform_sparsing = Instrument.control(
"WFSU?", "WFSU SP,%d",
"""Control the interval between data points (integer). For example:
SP = 0 sends all data points.
SP = 4 sends 1 point every 4 data points.
""",
validator=strict_range,
get_process=lambda vals: vals[vals.index("SP") + 1],
values=[0, sys.maxsize]
)
waveform_first_point = Instrument.control(
"WFSU?", "WFSU FP,%d",
"""Control the address of the first data point to be sent (int).
For waveforms acquired in sequence mode, this refers to the relative address in the
given segment. The first data point starts at zero and is strictly positive.""",
validator=strict_range,
get_process=lambda vals: vals[vals.index("FP") + 1],
values=[0, sys.maxsize]
)
##################
# Waveform #
##################
memory_size = Instrument.control(
"MSIZ?", "MSIZ %s",
"""Control the maximum depth of memory (float or string).
Assign for example 500, 100e6, "100K", "25MA".
The reply will always be a float.
"""
)
@property
def waveform_preamble(self):
"""Get preamble information for the selected waveform source as a dict with the
following keys:
- "requested_points": number of data points requested by the user (int)
- "sampled_points": number of data points sampled by the oscilloscope (int)
- "transmitted_points": number of data points actually transmitted (optional) (int)
- "memory_size": size of the oscilloscope internal memory in bytes (int)
- "sparsing": sparse point. It defines the interval between data points. (int)
- "first_point": address of the first data point to be sent (int)
- "source": source of the data : "C1", "C2", "C3", "C4", "MATH".
- "grid_number": number of horizontal grids (it is a read-only property)
- "xdiv": horizontal scale (units per division) in seconds
- "xoffset": time interval in seconds between the trigger event and the reference position
- "ydiv": vertical scale (units per division) in Volts
- "yoffset": value that is represented at center of screen in Volts
"""
vals = self.values("WFSU?")
preamble = {
"sparsing": vals[vals.index("SP") + 1],
"requested_points": vals[vals.index("NP") + 1],
"first_point": vals[vals.index("FP") + 1],
"transmitted_points": None,
"source": self.waveform_source,
"grid_number": self._grid_number,
"memory_size": self.memory_size,
"xdiv": self.timebase_scale,
"xoffset": self.timebase_offset
}
return self._fill_yaxis_preamble(preamble)
def _fill_yaxis_preamble(self, preamble=None):
"""Fill waveform preamble section concerning the Y-axis.
:param preamble: waveform preamble to be filled
:return: filled preamble
"""
if preamble is None:
preamble = {}
if self.waveform_source == "MATH":
preamble["ydiv"] = self.math_vdiv
preamble["yoffset"] = self.math_vpos
else:
preamble["ydiv"] = self.ch(self.waveform_source).scale
preamble["yoffset"] = self.ch(self.waveform_source).offset
return preamble
def _digitize(self, src, num_bytes=None):
"""Acquire waveforms according to the settings of the acquire commands.
Note.
If the requested number of bytes is not specified, the default chunk size is used,
but in such a case it cannot be quaranteed that the message is received in its entirety.
:param src: source of data: "C1", "C2", "C3", "C4", "MATH".
:param: num_bytes: number of bytes expected from the scope (including the header and
footer).
:return: bytearray with raw data.
"""
with _ChunkResizer(self.adapter, num_bytes):
binary_values = self.binary_values(f"{src}:WF? DAT2", dtype=np.uint8)
if num_bytes is not None and len(binary_values) != num_bytes:
raise BufferError(f"read bytes ({len(binary_values)}) != requested bytes ({num_bytes})")
return binary_values
def _header_footer_sanity_checks(self, message):
"""Check that the header follows the predefined format.
The format of the header is DAT2,#9XXXXXXX where XXXXXXX is the number of acquired
points, and it is zero padded.
Then check that the footer is present. The footer is a double line-carriage \n\n
:param message: raw bytes received from the scope """
message_header = bytes(message[0:self._header_size]).decode("ascii")
# Sanity check on header and footer
if message_header[0:7] != "DAT2,#9":
raise ValueError(f"Waveform data in invalid : header is {message_header}")
message_footer = bytes(message[-self._footer_size:]).decode("ascii")
if message_footer != "\n\n":
raise ValueError(f"Waveform data in invalid : footer is {message_footer}")
def _npoints_sanity_checks(self, message):
"""Check that the number of transmitted points is consistent with the message length.
:param message: raw bytes received from the scope """
message_header = bytes(message[0:self._header_size]).decode("ascii")
transmitted_points = int(message_header[-9:])
received_points = len(message) - self._header_size - self._footer_size
if transmitted_points != received_points:
raise ValueError(f"Number of transmitted points ({transmitted_points}) != "
f"number of received points ({received_points})")
def _acquire_data(self, requested_points=0, sparsing=1):
"""Acquire raw data points from the scope. The header, footer and number of points are
sanity-checked, but they are not processed otherwise. For a description of the input
arguments refer to the download_waveform method.
If the number of expected points is big enough, the transmission is split in smaller
chunks of 20k points and read one chunk at a time. I do not know the reason why,
but if the chunk size is big enough the transmission does not complete successfully.
:return: raw data points as numpy array and waveform preamble
"""
# Setup waveform acquisition parameters
self.waveform_sparsing = sparsing
self.waveform_points = requested_points
self.waveform_first_point = 0
# Calculate how many points are to be expected
sample_points = self.acquisition_sample_size(self.waveform_source)
if requested_points > 0:
expected_points = min(requested_points, int(sample_points / sparsing))
else:
expected_points = int(sample_points / sparsing)
# If the number of points is big enough, split the data in small chunks and read it one
# chunk at a time. For less than a certain amount of points we do not bother splitting them.
chunk_bytes = 20000
chunk_points = chunk_bytes - self._header_size - self._footer_size
iterations = -(expected_points // -chunk_points)
i = 0
data = []
while i < iterations:
# number of points already read
read_points = i * chunk_points
# number of points still to read
remaining_points = expected_points - read_points
# number of points requested in a single chunk
requested_points = chunk_points if remaining_points > chunk_points else remaining_points
self.waveform_points = requested_points
# number of bytes requested in a single chunk
requested_bytes = requested_points + self._header_size + self._footer_size
# read the next chunk starting from this points
first_point = read_points * sparsing
self.waveform_first_point = first_point
# read chunk of points
values = self._digitize(src=self.waveform_source, num_bytes=requested_bytes)
# perform many sanity checks on the received data
self._header_footer_sanity_checks(values)
self._npoints_sanity_checks(values)
# append the points without the header and footer
data.append(values[self._header_size:-self._footer_size])
i += 1
data = np.concatenate(data)
preamble = self.waveform_preamble
return data, preamble
#################
# Download data #
#################
def download_image(self):
"""Get a BMP image of oscilloscope screen in bytearray of specified file format.
"""
# Using binary_values query because default interface does not support binary transfer
with _ChunkResizer(self.adapter, 20 * 1024 * 1024):
img = self.binary_values("SCDP", dtype=np.uint8)
return bytearray(img)
def _process_data(self, ydata, preamble):
"""Apply scale and offset to the data points acquired from the scope.
- Y axis : the scale is ydiv / 25 and the offset -yoffset. the
offset is not applied for the MATH source.
- X axis : the scale is sparsing / sampling_rate and the offset is -xdiv * 7. The
7 = 14 / 2 factor comes from the fact that there are 14 vertical grid lines and the data
starts from the left half of the screen.
:return: tuple of (numpy array of Y points, numpy array of X points, waveform preamble) """
def _scale_data(y):
if preamble["source"] == "MATH":
value = int.from_bytes([y], byteorder='big', signed=False) * preamble["ydiv"] / 25.
value -= preamble["ydiv"] * (preamble["yoffset"] + 255) / 50.
else:
value = int.from_bytes([y], byteorder='big', signed=True) * preamble["ydiv"] / 25.
value -= preamble["yoffset"]
return value
def _scale_time(x):
return float(Decimal(-preamble["xdiv"] * self._grid_number / 2.) +
Decimal(float(x * preamble["sparsing"])) /
Decimal(preamble["sampling_rate"]))
data_points = np.vectorize(_scale_data)(ydata)
time_points = np.vectorize(_scale_time)(np.arange(len(data_points)))
return data_points, time_points, preamble
def download_waveform(self, source, requested_points=None, sparsing=None):
"""Get data points from the specified source of the oscilloscope.
The returned objects are two np.ndarray of data and time points and a dict with the
waveform preamble, that contains metadata about the waveform.
:param source: measurement source. It can be "C1", "C2", "C3", "C4", "MATH".
:param requested_points: number of points to acquire. If None the number of points
requested in the previous call will be assumed, i.e. the value of the number of
points stored in the oscilloscope memory. If 0 the maximum number of points will
be returned.
:param sparsing: interval between data points. For example if sparsing = 4, only one
point every 4 points is read. If 0 or None the sparsing of the previous call is
assumed, i.e. the value of the sparsing stored in the oscilloscope memory.
:return: data_ndarray, time_ndarray, waveform_preamble_dict: see waveform_preamble
property for dict format.
"""
# Sanitize the input arguments
if not sparsing:
sparsing = self.waveform_sparsing
if requested_points is None:
requested_points = self.waveform_points
self.waveform_source = sanitize_source(source)
# Acquire the Y data and the preable
ydata, preamble = self._acquire_data(requested_points, sparsing)
# Update the preamble with info about actually acquired data
preamble["transmitted_points"] = len(ydata)
preamble["requested_points"] = requested_points
preamble["sparsing"] = sparsing
preamble["first_point"] = 0
# Scale the Y-data and create the X-data
return self._process_data(ydata, preamble)
###############
# Trigger #
###############
trigger_mode = Instrument.control(
"TRMD?", "TRMD %s",
"""Control the trigger sweep mode (string).
<mode>:= {AUTO,NORM,SINGLE,STOP}
- auto : When AUTO sweep mode is selected, the oscilloscope begins to search for the
trigger signal that meets the conditions.
If the trigger signal is satisfied, the running state on the top left corner of
the user interface shows Trig'd, and the interface shows stable waveform.
Otherwise, the running state always shows Auto, and the interface shows unstable
waveform.
- normal : When NORMAL sweep mode is selected, the oscilloscope enters the wait trigger
state and begins to search for trigger signals that meet the conditions.
If the trigger signal is satisfied, the running state shows Trig'd, and the interface
shows stable waveform.
Otherwise, the running state shows Ready, and the interface displays the last
triggered waveform (previous trigger) or does not display the waveform (no
previous trigger).
- single : When SINGLE sweep mode is selected, the backlight of SINGLE key lights up,
the oscilloscope enters the waiting trigger state and begins to search for the
trigger signal that meets the conditions.
If the trigger signal is satisfied, the running state shows Trig'd, and the interface
shows stable waveform.
Then, the oscilloscope stops scanning, the RUN/STOP key is red light,
and the running status shows Stop.
Otherwise, the running state shows Ready, and the interface does not display the waveform.
- stopped : STOP is a part of the option of this command, but not a trigger mode of the
oscilloscope.
""",
validator=strict_discrete_set,
values={"stopped": "STOP", "normal": "NORM", "single": "SINGLE", "auto": "AUTO"},
map_values=True
)
_trigger_select_vals = {
"EDGE": [["C1", "C2", "C3", "C4", "LINE"], ["TI", "OFF"], [80e-9, 1.5]],
"DROP": [["C1", "C2", "C3", "C4"], ["TI"], [2e-9, 4.2]],
"GLIT": [["C1", "C2", "C3", "C4"], ["PS", "PL", "P2", "P1"], [2e-9, 4.2], [2e-9, 4.2]],
"RUNT": [["C1", "C2", "C3", "C4"], ["PS", "PL", "P2", "P1"], [2e-9, 4.2]],
"SLEW": [["C1", "C2", "C3", "C4"], ["IS", "IL", "I2", "I1"], [2e-9, 4.2]],
"INTV": [["C1", "C2", "C3", "C4"], ["IS", "IL", "I2", "I1"], [2e-9, 4.2]]
}
_trigger_select_short_command = "TRSE %s,SR,%s,HT,%s"
_trigger_select_normal_command = "TRSE %s,SR,%s,HT,%s,HV,%.2E"
_trigger_select_extended_command = "TRSE %s,SR,%s,HT,%s,HV,%.2E,HV2,%.2E"
_trigger_select = Instrument.control(
"TRSE?", _trigger_select_normal_command,
"""Control the trigger, see :meth:`~trigger_select()` documentation.""",
get_process=_trigger_select_get_process,
validator=_trigger_select_validator,
values=_trigger_select_vals,
dynamic=True
)
def center_trigger(self):
"""Set the trigger levels to center of the trigger source waveform."""
self.write("SET50")
@property
def trigger_select(self):
"""Control the condition that will trigger the acquisition of waveforms (string).
Depending on the trigger type, additional parameters must be specified. These additional
parameters are grouped in pairs. The first in the pair names the variable to be modified,
while the second gives the new value to be assigned. Pairs may be given in any order and
restricted to those variables to be changed.
There are five parameters that can be specified. Parameters 1. 2. 3. are always mandatory.
Parameters 4. 5. are required only for certain combinations of the previous parameters.
1. <trig_type>:={edge, slew, glit, intv, runt, drop}
2. <source>:={c1, c2, c3, c4, line}
3. <hold_type>:=
* {ti, off} for edge trigger.
* {ti} for drop trigger.
* {ps, pl, p2, p1} for glit/runt trigger.
* {is, il, i2, i1} for slew/intv trigger.
4. <hold_value1>:= a time value with unit.
5. <hold_value2>:= a time value with unit.
Note:
- "line" can only be selected when the trigger type is "edge".
- All time arguments should be given in multiples of seconds. Use the scientific notation
if necessary.
- The range of hold_values varies from trigger types. [80nS, 1.5S] for "edge" trigger,
and [2nS, 4.2S] for others.
- The trigger_select command is switched automatically between the short, normal and
extended version depending on the number of expected parameters.
"""
return self._trigger_select
# noinspection PyAttributeOutsideInit
@trigger_select.setter
def trigger_select(self, value):
num_expected_pars = _trigger_select_num_pars(value)
if num_expected_pars == 3:
self._trigger_select_set_command = self._trigger_select_short_command
elif num_expected_pars == 4:
self._trigger_select_set_command = self._trigger_select_normal_command
elif num_expected_pars == 5:
self._trigger_select_set_command = self._trigger_select_extended_command
self._trigger_select = value
def trigger_setup(self, mode=None, source=None, trigger_type=None, hold_type=None,
hold_value1=None, hold_value2=None, coupling=None, level=None, level2=None,
slope=None):
"""Set up trigger.
Unspecified parameters are not modified. Modifying a single parameter
might impact other parameters. Refer to oscilloscope documentation and make multiple
consecutive calls to trigger_setup and channel_setup if needed.
:param mode: trigger sweep mode [auto, normal, single, stop]
:param source: trigger source [c1, c2, c3, c4, line]
:param trigger_type: condition that will trigger the acquisition of waveforms
[edge,slew,glit,intv,runt,drop]
:param hold_type: hold type (refer to page 172 of programing guide)
:param hold_value1: hold value1 (refer to page 172 of programing guide)
:param hold_value2: hold value2 (refer to page 172 of programing guide)
:param coupling: input coupling for the selected trigger sources
:param level: trigger level voltage for the active trigger source
:param level2: trigger lower level voltage for the active trigger source (only slew/runt
trigger)
:param slope: trigger slope of the specified trigger source
"""
if mode is not None:
self.trigger_mode = mode
if all(i is not None for i in [source, trigger_type, hold_type]):
args = [trigger_type, source, hold_type]
if hold_value1 is not None:
args.append(hold_value1)
if hold_value2 is not None:
args.append(hold_value2)
self.trigger_select = tuple(args)
elif any(i is not None for i in [source, trigger_type, hold_type]):
raise ValueError("Need to specify all of source, trigger_type and hold_type arguments")
if source is not None:
source = sanitize_source(source)
strict_discrete_set(source, ["C1", "C2", "C3", "C4", "LINE"])
ch = self.ch(source)
if coupling is not None:
ch.trigger_coupling = coupling
if level is not None:
ch.trigger_level = level
if level2 is not None:
ch.trigger_level2 = level2
if slope is not None:
ch.trigger_slope = slope
@property
def trigger(self):
"""Get trigger setup as a dict containing the following keys:
- "mode": trigger sweep mode [auto, normal, single, stop]
- "trigger_type": condition that will trigger the acquisition of waveforms [edge,
slew,glit,intv,runt,drop]
- "source": trigger source [c1,c2,c3,c4]
- "hold_type": hold type (refer to page 172 of programing guide)
- "hold_value1": hold value1 (refer to page 172 of programing guide)
- "hold_value2": hold value2 (refer to page 172 of programing guide)
- "coupling": input coupling for the selected trigger sources
- "level": trigger level voltage for the active trigger source
- "level2": trigger lower level voltage for the active trigger source (only slew/runt
trigger)
- "slope": trigger slope of the specified trigger source
"""
trigger_select = self.trigger_select
ch = self.ch(trigger_select[1])
tb_setup = {
"mode": self.trigger_mode,
"trigger_type": trigger_select[0],
"source": trigger_select[1],
"hold_type": trigger_select[2],
"hold_value1": trigger_select[3] if len(trigger_select) >= 4 else None,
"hold_value2": trigger_select[4] if len(trigger_select) >= 5 else None,
"coupling": ch.trigger_coupling,
"level": ch.trigger_level,
"level2": ch.trigger_level2,
"slope": ch.trigger_slope
}
return tb_setup
###############
# Math #
###############
###############
# Measure #
###############
def display_parameter(self, parameter, channel):
"""Same as the display_parameter method in the Channel subclass."""
self.ch(channel).display_parameter = parameter
def measure_parameter(self, parameter, channel):
"""
Same as the measure_parameter method in the Channel subclass
"""
# noinspection PyArgumentList
return self.ch(channel).measure_parameter(parameter)
###############
# Display #
###############
intensity = Instrument.control(
"INTS?", "INTS GRID,%d,TRACE,%d",
"""Set the intensity level of the grid or the trace in percent """,
validator=_intensity_validator,
values=[[0, 100], [0, 100]],
get_process=lambda v: {v[0]: v[1], v[2]: v[3]}
)
|