1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
#
# This file is part of the PyMeasure package.
#
# Copyright (c) 2013-2024 PyMeasure Developers
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
from time import sleep
from unittest.mock import ANY
import numpy as np
import pytest
from pyvisa.errors import VisaIOError
from pymeasure.instruments.lecroy.lecroyT3DSO1204 import LeCroyT3DSO1204
class TestLeCroyT3DSO1204:
"""
Unit tests for LeCroyT3DSO1204 class.
This test suite, needs the following setup to work properly:
- A LeCroyT3DSO1204 device should be connected to the computer;
- The device's address must be set in the RESOURCE constant;
- A probe on Channel 1 must be connected to the Demo output of the oscilloscope.
"""
#########################
# PARAMETRIZATION CASES #
#########################
BOOLEANS = [False, True]
CHANNEL_COUPLINGS = ["ac 1M", "dc 1M", "ground"]
ACQUISITION_TYPES = ["normal", "average", "peak", "highres"]
TRIGGER_LEVELS = [0.125, 0.150, 0.175]
TRIGGER_SLOPES = ["negative", "positive", "window"]
ACQUISITION_AVERAGE = [4, 16, 32, 64, 128, 256]
WAVEFORM_POINTS = [100, 1000, 10000]
WAVEFORM_SOURCES = ["C1", "C2", "C3", "C4"]
CHANNELS = [1, 2, 3, 4]
############
# FIXTURES #
############
@pytest.fixture(scope="module")
def instrument(self, connected_device_address):
return LeCroyT3DSO1204(connected_device_address)
@pytest.fixture
def resetted_instrument(self, instrument):
instrument.reset()
sleep(7)
return instrument
@pytest.fixture
def autoscaled_instrument(self, instrument):
instrument.reset()
sleep(7)
instrument.autoscale()
sleep(7)
return instrument
#########
# TESTS #
#########
# noinspection PyTypeChecker
def test_instrument_connection(self):
bad_resource = "USB0::10893::45848::MY12345678::0::INSTR"
# The pure python VISA library (pyvisa-py) raises a ValueError while the
# PyVISA library raises a VisaIOError.
with pytest.raises((ValueError, VisaIOError)):
LeCroyT3DSO1204(bad_resource)
# Channel
def test_ch_current_configuration(self, autoscaled_instrument):
autoscaled_instrument.ch_1.offset = 0
autoscaled_instrument.ch_1.trigger_level = 0
autoscaled_instrument.ch_1.trigger_level2 = 0
expected = {
"channel": 1,
"attenuation": 1.0,
"bandwidth_limit": False,
"coupling": "dc 1M",
"offset": 0.0,
"skew_factor": 0.0,
"display": True,
"unit": "V",
"volts_div": 0.05,
"inverted": False,
"trigger_coupling": "dc",
"trigger_level": 0.0,
"trigger_level2": 0.0,
"trigger_slope": "positive",
}
actual = autoscaled_instrument.ch(1).current_configuration
assert actual == expected
@pytest.mark.parametrize("ch_number", CHANNELS)
@pytest.mark.parametrize("case", BOOLEANS)
def test_ch_bwlimit(self, instrument, ch_number, case):
instrument.ch(ch_number).bwlimit = case
assert instrument.ch(ch_number).bwlimit == case
@pytest.mark.parametrize("ch_number", CHANNELS)
@pytest.mark.parametrize("case", CHANNEL_COUPLINGS)
def test_ch_coupling(self, instrument, ch_number, case):
instrument.ch(ch_number).coupling = case
assert instrument.ch(ch_number).coupling == case
@pytest.mark.parametrize("ch_number", CHANNELS)
@pytest.mark.parametrize("case", BOOLEANS)
def test_ch_display(self, instrument, ch_number, case):
instrument.ch(ch_number).display = case
assert instrument.ch(ch_number).display == case
@pytest.mark.parametrize("ch_number", CHANNELS)
@pytest.mark.parametrize("case", BOOLEANS)
def test_ch_invert(self, instrument, ch_number, case):
instrument.ch(ch_number).invert = case
assert instrument.ch(ch_number).invert == case
@pytest.mark.parametrize("ch_number", CHANNELS)
def test_ch_offset(self, instrument, ch_number):
instrument.ch(ch_number).offset = 1
assert instrument.ch(ch_number).offset == 1
@pytest.mark.parametrize("ch_number", CHANNELS)
def test_ch_probe_attenuation(self, instrument, ch_number):
instrument.ch(ch_number).probe_attenuation = 10
assert instrument.ch(ch_number).probe_attenuation == 10
@pytest.mark.parametrize("ch_number", CHANNELS)
def test_ch_scale(self, instrument, ch_number):
instrument.ch(ch_number).scale = 1
assert instrument.ch(ch_number).scale == 1
def test_ch_trigger_level(self, autoscaled_instrument):
for case in self.TRIGGER_LEVELS:
autoscaled_instrument.ch_1.trigger_level = case
assert autoscaled_instrument.ch_1.trigger_level == case
def test_ch_trigger_level2(self, autoscaled_instrument):
for case in self.TRIGGER_LEVELS:
autoscaled_instrument.ch_1.trigger_level2 = case
assert autoscaled_instrument.ch_1.trigger_level2 == case
def test_ch_trigger_slope(self, autoscaled_instrument):
with pytest.raises(ValueError):
autoscaled_instrument.ch_1.trigger_slope = "abcd"
autoscaled_instrument.trigger_select = ("edge", "c1", "off")
for case in self.TRIGGER_SLOPES:
autoscaled_instrument.ch_1.trigger_slope = case
assert autoscaled_instrument.ch_1.trigger_slope == case
# Timebase
def test_timebase(self, autoscaled_instrument):
autoscaled_instrument.timebase_hor_magnify = 5e-6
autoscaled_instrument.timebase_hor_position = 0
expected = {
"timebase_scale": 5e-4,
"timebase_offset": 0.0,
"timebase_hor_magnify": 5e-6,
"timebase_hor_position": 0.0,
}
actual = autoscaled_instrument.timebase
for key, val in actual.items():
assert pytest.approx(val, 0.1) == expected[key]
def test_timebase_scale(self, resetted_instrument):
resetted_instrument.timebase_scale = 1e-3
assert resetted_instrument.timebase_scale == 1e-3
def test_timebase_offset(self, instrument):
instrument.timebase_offset = 1e-3
assert instrument.timebase_offset == 1e-3
def test_timebase_hor_magnify(self, instrument):
instrument.timebase_hor_magnify = 1e-4
assert instrument.timebase_hor_magnify == 1e-4
def test_timebase_hor_position(self, instrument):
instrument.timebase_hor_position = 5e-4
assert pytest.approx(instrument.timebase_hor_position, 0.1) == 5e-4
# Acquisition
@pytest.mark.parametrize("case", ACQUISITION_TYPES)
def test_acquisition_type(self, resetted_instrument, case):
if case == "average":
resetted_instrument.acquisition_type = case
resetted_instrument.acquisition_average = 16
assert resetted_instrument.acquisition_type == ["average", 16]
else:
resetted_instrument.acquisition_type = case
assert resetted_instrument.acquisition_type == case
@pytest.mark.parametrize("case", ACQUISITION_AVERAGE)
def test_acquisition_average(self, instrument, case):
instrument.acquisition_average = case
assert instrument.acquisition_average == case
def test_acquisition_status(self, autoscaled_instrument):
assert autoscaled_instrument.acquisition_status == "triggered"
autoscaled_instrument.stop()
assert autoscaled_instrument.acquisition_status == "stopped"
def test_acquisition_sampling_rate(self, resetted_instrument):
assert resetted_instrument.acquisition_sampling_rate == 1e9
@pytest.mark.parametrize("case", WAVEFORM_POINTS)
def test_waveform_points(self, instrument, case):
instrument.waveform_points = case
assert instrument.waveform_points == case
def test_waveform_preamble(self, autoscaled_instrument):
autoscaled_instrument.acquisition_type = "normal"
autoscaled_instrument.ch_1.offset = 0
autoscaled_instrument.waveform_points = 0
autoscaled_instrument.waveform_first_point = 0
autoscaled_instrument.waveform_sparsing = 1
autoscaled_instrument.waveform_source = "C1"
expected_preamble = {
"sparsing": 1.0,
"requested_points": 0.0,
"memory_size": 14e6,
"sampled_points": 7e6,
"transmitted_points": None,
"first_point": 0.0,
"source": autoscaled_instrument.waveform_source,
"type": "normal",
"average": None,
"sampling_rate": 1e9,
"grid_number": 14,
"status": ANY,
"xdiv": 5e-4,
"xoffset": -0.0,
"ydiv": 0.05,
"yoffset": 0.0,
"unit": "V",
}
preamble = autoscaled_instrument.waveform_preamble
assert preamble == expected_preamble
# Setup methods
@pytest.mark.parametrize("ch_number", CHANNELS)
def test_channel_setup(self, instrument, ch_number):
# Only autoscale on the first channel
instrument = instrument
if ch_number == self.CHANNELS[0]:
instrument.reset()
sleep(7)
instrument.autoscale()
sleep(7)
# Not testing the actual values assignment since different combinations of
# parameters can play off each other.
expected = instrument.ch(ch_number).current_configuration
instrument.ch(ch_number).setup()
assert instrument.ch(ch_number).current_configuration == expected
with pytest.raises(AttributeError):
instrument.ch(5)
instrument.ch(ch_number).setup(
bwlimit=False,
coupling="dc 1M",
display=True,
invert=False,
offset=0.0,
skew_factor=0.0,
probe_attenuation=1.0,
scale=0.05,
unit="V",
trigger_coupling="dc",
trigger_level=0.150,
trigger_level2=0.150,
trigger_slope="positive",
)
expected = {
"channel": ch_number,
"attenuation": 1.0,
"bandwidth_limit": False,
"coupling": "dc 1M",
"offset": 0.0,
"skew_factor": 0.0,
"display": True,
"unit": "V",
"volts_div": 0.05,
"inverted": False,
"trigger_coupling": "dc",
"trigger_level": 0.150,
"trigger_level2": 0.150,
"trigger_slope": "positive",
}
actual = instrument.ch(ch_number).current_configuration
assert actual == expected
def test_timebase_setup(self, resetted_instrument):
expected = resetted_instrument.timebase
resetted_instrument.timebase_setup()
assert resetted_instrument.timebase == expected
# Download methods
def test_download_image_default_arguments(self, autoscaled_instrument):
img = autoscaled_instrument.download_image()
assert type(img) is bytearray
assert pytest.approx(len(img), 0.1) == 768067
def test_download_data_missing_argument(self, resetted_instrument):
with pytest.raises(TypeError):
# noinspection PyArgumentList
resetted_instrument.download_waveform()
@pytest.mark.parametrize("case1", WAVEFORM_SOURCES)
@pytest.mark.parametrize("case2", WAVEFORM_POINTS)
def test_download_data(self, instrument, case1, case2):
if case1 == self.WAVEFORM_SOURCES[0] and case2 == self.WAVEFORM_POINTS[0]:
instrument.reset()
sleep(7)
instrument.autoscale()
sleep(7)
instrument.ch(case1).display = True
instrument.single()
sleep(1)
data, time, preamble = instrument.download_waveform(
source=case1, requested_points=case2, sparsing=0
)
assert type(data) is np.ndarray
assert len(data) == case2
assert type(time) is np.ndarray
assert len(time) == case2
assert type(preamble) is dict
def test_download_single_point(self, instrument):
instrument.acquisition_type = "normal"
instrument.ch_1.display = True
instrument.single()
sleep(1)
data, time, preamble = instrument.download_waveform(source="c1", requested_points=1)
assert type(data) is np.ndarray
assert len(data) == 1
assert type(time) is np.ndarray
assert len(time) == 1
assert type(preamble) is dict
assert preamble == {'average': None,
'first_point': 0,
'grid_number': 14,
'memory_size': 7000000.0,
'requested_points': 1,
'sampled_points': 3500000.0,
'sampling_rate': 500000000.0,
'source': 'C1',
'sparsing': 1.0,
'status': 'stopped',
'transmitted_points': 1,
'type': 'normal',
'unit': 'V',
'xdiv': 0.0005,
'xoffset': -0.0,
'ydiv': ANY,
'yoffset': ANY}
@pytest.mark.skip(reason="A human is needed to check the output waveform")
def test_download_data_all_points(self, instrument):
from matplotlib import pyplot as plt
instrument.ch_1.display = True
instrument.single()
sleep(3)
data, time, preamble = instrument.download_waveform(source="c1", requested_points=0)
assert type(data) is np.ndarray
assert type(time) is np.ndarray
assert type(preamble) is dict
print(preamble)
plt.scatter(x=time, y=data)
plt.show()
@pytest.mark.skip(reason="A human is needed to check the output waveform")
def test_download_data_sparsing(self, instrument):
from matplotlib import pyplot as plt
instrument.ch_1.display = True
instrument.single()
sleep(1)
data, time, preamble = instrument.download_waveform(
source="c1", requested_points=7e5, sparsing=10
)
assert type(data) is np.ndarray
assert len(data) == 7e5 or len(data) == 7e4
assert type(time) is np.ndarray
assert len(time) == 7e5 or len(time) == 7e4
assert type(preamble) is dict
assert preamble["type"] == "normal"
assert preamble["sparsing"] == 10
assert preamble["transmitted_points"] == 7e5 or preamble["transmitted_points"] == 7e4
print(preamble)
plt.scatter(x=time, y=data)
plt.show()
@pytest.mark.skip(reason="A human is needed to check the output waveform")
def test_download_data_averaging_16(self, instrument):
from matplotlib import pyplot as plt
instrument.ch_1.display = True
instrument.run()
instrument.acquisition_type = "average"
instrument.acquisition_average = 16
instrument.single()
sleep(1)
data, time, preamble = instrument.download_waveform(
source="c1", requested_points=1.75e5, sparsing=10
)
assert type(data) is np.ndarray
assert len(data) == 1.75e5 or len(data) == 7e4
assert type(time) is np.ndarray
assert len(time) == 1.75e5 or len(time) == 7e4
assert type(preamble) is dict
assert preamble["type"] == ["average", 16]
assert preamble["average"] == 16
assert preamble["transmitted_points"] == 1.75e5 or preamble["transmitted_points"] == 7e4
print(preamble)
plt.scatter(x=time, y=data)
plt.show()
@pytest.mark.skip(reason="A human is needed to check the output waveform")
def test_download_data_averaging_256(self, instrument):
from matplotlib import pyplot as plt
instrument.ch_1.display = True
instrument.run()
instrument.acquisition_type = "average"
instrument.acquisition_average = 256
instrument.single()
sleep(1)
data, time, preamble = instrument.download_waveform(
source="c1", requested_points=1.75e5, sparsing=10
)
assert type(data) is np.ndarray
assert len(data) == 1.75e5 or len(data) == 7e4
assert type(time) is np.ndarray
assert len(time) == 1.75e5 or len(time) == 7e4
assert type(preamble) is dict
assert preamble["type"] == ["average", 256]
assert preamble["average"] == 256
assert preamble["transmitted_points"] == 1.75e5 or preamble["transmitted_points"] == 7e4
print(preamble)
plt.scatter(x=time, y=data)
plt.show()
@pytest.mark.skip(reason="A human is needed to check the output waveform")
def test_download_math(self, instrument):
""" Be careful because there is no way to turn on and off the MATH function
programmatically, so the user should push on the MATH button and make sure
that the (white) math line is displayed before running this test. """
from matplotlib import pyplot as plt
instrument.single()
sleep(1)
data, time, preamble = instrument.download_waveform(
source="math", requested_points=0, sparsing=10
)
assert type(data) is np.ndarray
assert type(time) is np.ndarray
assert type(preamble) is dict
print(preamble)
plt.scatter(x=time, y=data)
plt.show()
# Trigger
def test_trigger_select(self, resetted_instrument):
with pytest.raises(ValueError):
resetted_instrument.trigger_select = "edge"
with pytest.raises(ValueError):
resetted_instrument.trigger_select = ("edge", "c2")
with pytest.raises(ValueError):
resetted_instrument.trigger_select = ("edge", "c2", "time")
with pytest.raises(ValueError):
resetted_instrument.trigger_select = ("ABCD", "c1", "time", 0)
with pytest.raises(ValueError):
resetted_instrument.trigger_select = ("edge", "c1", "time", 1000)
with pytest.raises(ValueError):
resetted_instrument.trigger_select = ("edge", "c1", "time", 0, 1)
resetted_instrument.trigger_select = ("edge", "c1", "off")
resetted_instrument.trigger_select = ("EDGE", "C1", "OFF")
assert resetted_instrument.trigger_select == ["edge", "c1", "off"]
resetted_instrument.trigger_select = ("glit", "c1", "p2", 1e-3, 2e-3)
assert resetted_instrument.trigger_select == ["glit", "c1", "p2", 1e-3, 2e-3]
def test_trigger_setup(self, resetted_instrument):
expected = resetted_instrument.trigger
resetted_instrument.trigger_setup(**expected)
assert resetted_instrument.trigger == expected
if __name__ == "__main__":
pytest.main()
|