File: plot_spectrum_with_annotation.inc

package info (click to toggle)
python-pymzml 2.5.2%2Brepack1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 27,792 kB
  • sloc: python: 6,495; pascal: 341; makefile: 233; sh: 30
file content (213 lines) | stat: -rwxr-xr-x 7,169 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
.. code-block:: python

	#!/usr/bin/env python
	# -*- coding: utf-8 -*-
	
	import copy
	import os
	
	import pymzml
	
	
	def main():
	    """
	    This script shows how to plot multiple spectra in one plot and
	    how to use label for the annotation of spectra.
	    The first plot is an MS1 spectrum with the annotated precursor ion.
	    The second plot is a zoom into the precursor isotope pattern.
	    The third plot is an annotated fragmentation spectrum (MS2) of the
	    peptide HLVDEPQNLIK from BSA.
	    These examples also show the use of 'layout' to define the appearance
	    of a plot.
	
	    usage:
	
	        ./plot_spectrum_with_annotation.py
	
	    """
	
	    # First we define some general layout attributes
	    layout = {
	        "xaxis": {
	            "title": "<i>m/z</i>",
	            "tickmode": "auto",
	            "showticklabels": True,
	            "ticklen": 5,
	            "tickwidth": 1,
	            "ticks": "outside",
	            "showline": True,
	            "showgrid": False,
	        },
	        "yaxis": {
	            "color": "#000000",
	            "tickmode": "auto",
	            "showticklabels": True,
	            "ticklen": 5,
	            "tickwidth": 1,
	            "ticks": "outside",
	            "showline": True,
	            "showgrid": False,
	        },
	    }
	
	    # The example BSA file will be used
	    example_file = os.path.join(
	        os.path.dirname(__file__), os.pardir, "tests", "data", "BSA1.mzML.gz"
	    )
	
	    # Define different precisions for MS1 and MS2
	    run = pymzml.run.Reader(example_file, MS_precisions={1: 5e-6, 2: 5e-4})
	    p = pymzml.plot.Factory()
	    plot_layout = {}
	
	    # Now that everything is set up, we can plot the MS1 spectrum
	    # Spectrum ID: 1574
	    p.new_plot(title="MS1 Spectrum")
	    ms1_spectrum = run[1574]
	
	    # The measured peaks are added as first trace
	    p.add(
	        ms1_spectrum.peaks("centroided"),
	        color=(0, 0, 0),
	        opacity=1,
	        style="sticks",
	        name="raw data plot 1",
	    )
	
	    # The label for the precursor ion is added as a seperate trace.
	    # Note that triangle.MS_precision is used here as a label.
	    # By zooming in at this peak one can therefore check if the measured
	    # peak fits into defined the mass accuracy range.
	    precursor_mz_calc = 435.9102
	    p.add(
	        [(precursor_mz_calc, "max_intensity", "theoretical precursor")],
	        color=(255, 0, 0),
	        opacity=0.6,
	        style="label.triangle.MS_precision",
	        name="theoretical precursor plot 1",
	    )
	
	    # Define the layout for the first subplot.
	    # The x- and y-axes of subplots are numbered, starting at 1.
	    for axis in layout.keys():
	        plot_layout["{0}1".format(axis)] = copy.copy(layout[axis])
	
	    # Now we can add a second plot, the same way as above but as a zoom-in.
	    # Therefore, we define a mz_range
	    p.new_plot(title="MS1 Spectrum Zoom")
	    p.add(
	        ms1_spectrum.peaks("centroided"),
	        color=(0, 0, 0),
	        opacity=1,
	        style="sticks",
	        name="raw data plot 2",
	        plot_num=1,
	        mz_range=[435.7, 437],
	    )
	
	    p.add(
	        [(precursor_mz_calc, "max_intensity", "theoretical precursor")],
	        color=(255, 0, 0),
	        opacity=0.3,
	        plot_num=1,
	        style="label.triangle.MS_precision",
	        name="theoretical precursor plot 2",
	    )
	
	    # The mz_range can be included in the layout as well.
	    # In contrast to mz_range in the add() function, which limits the included
	    # datapoints, the layout range only defines the area that is depicted (i.e. the zoom)
	    for axis in layout.keys():
	        plot_layout["{0}2".format(axis)] = copy.copy(layout[axis])
	    plot_layout["xaxis2"]["autorange"] = False
	    plot_layout["xaxis2"]["range"] = [435.7, 437]
	
	    # Now the third plot will be added, a fragmentation spectrum of HLVDEPQNLIK
	    ms2_spectrum = run[3542]
	
	    # The MS_precision for the plotting option label.triangle.MS_precision
	    # needs to be defined
	    p.new_plot(title="MS2 Spectrum Annotated: HLVDEPQNLIK", MS_precision=5e-4)
	    p.add(
	        ms2_spectrum.peaks("centroided"),
	        color=(0, 0, 0),
	        opacity=1,
	        style="sticks",
	        name="raw data plot 3",
	        plot_num=2,
	    )
	
	    theoretical_b_ions = {
	        "b<sub>2</sub><sup>+2</sup>": 126.0788,
	        "b<sub>3</sub><sup>+2</sup>": 175.6130,
	        "b<sub>4</sub><sup>+2</sup>": 233.1264,
	        "b<sub>2</sub>": 251.1503,
	        "b<sub>5</sub><sup>+2</sup>": 297.6477,
	        "b<sub>6</sub><sup>+2</sup>": 346.1741,
	        "b<sub>3</sub>": 350.2187,
	        "b<sub>7</sub><sup>+2</sup>": 410.2034,
	        "b<sub>4</sub>": 465.2456,
	        "b<sub>8</sub><sup>+2</sup>": 467.2249,
	        "b<sub>9</sub><sup>+2</sup>": 523.7669,
	        "b<sub>10</sub><sup>+2</sup>": 580.3089,
	        "b<sub>5</sub>": 594.2882,
	        "b<sub>6</sub>": 691.341,
	        "b<sub>7</sub>": 819.3995,
	        "b<sub>8</sub>": 933.4425,
	        "b<sub>9</sub>": 1046.5265,
	        "b<sub>10</sub>": 1159.6106,
	    }
	
	    theoretical_y_ions = {
	        "y<sub>1</sub><sup>+2</sup>": 74.0600,
	        "y<sub>2</sub><sup>+2</sup>": 130.6021,
	        "y<sub>1</sub>": 147.1128,
	        "y<sub>3</sub><sup>+2</sup>": 187.1441,
	        "y<sub>4</sub><sup>+2</sup>": 244.1656,
	        "y<sub>2</sub>": 260.1969,
	        "y<sub>5</sub><sup>+2</sup>": 308.1949,
	        "y<sub>6</sub><sup>+2</sup>": 356.7212,
	        "y<sub>3</sub>": 373.2809,
	        "y<sub>7</sub><sup>+2</sup>": 421.2425,
	        "y<sub>8</sub><sup>+2</sup>": 478.7560,
	        "y<sub>4</sub>": 487.3239,
	        "y<sub>9</sub><sup>+2</sup>": 528.2902,
	        "y<sub>10</sub><sup>+2</sup>": 584.8322,
	        "y<sub>5</sub>": 615.3824,
	        "y<sub>6</sub>": 712.4352,
	        "y<sub>7</sub>": 841.4778,
	        "y<sub>8</sub>": 956.5047,
	        "y<sub>9</sub>": 1055.5732,
	        "y<sub>10</sub>": 1168.6572,
	    }
	
	    # Check which theoretical fragments are present in the spectrum
	    # using the has_peak() function
	    for ion_list in [theoretical_b_ions, theoretical_y_ions]:
	        label_list = []
	        for fragment in ion_list.keys():
	            peak = ms2_spectrum.has_peak(ion_list[fragment])
	            if len(peak) != 0:
	                label_list.append((ion_list[fragment], peak[0][1], fragment))
	        if ion_list == theoretical_b_ions:
	            color = (0, 0, 255)
	        else:
	            color = (0, 255, 0)
	        p.add(
	            label_list,
	            color=color,
	            style="label.triangle.MS_precision",
	            name="theoretical fragment ions plot 3",
	        )
	
	    for axis in layout.keys():
	        plot_layout["{0}3".format(axis)] = copy.copy(layout[axis])
	
	    # Save the plot in a file using the defined plot_layout
	    filename = "example_plot_{0}_annotation.html".format(os.path.basename(example_file))
	    p.save(filename=filename, layout=plot_layout)
	    print("Plotted file: {0}".format(filename))
	
	
	if __name__ == "__main__":
	    main()