File: evaluation.py

package info (click to toggle)
python-pynlpl 1.2.9-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,900 kB
  • sloc: python: 25,677; sh: 73; makefile: 3
file content (146 lines) | stat: -rwxr-xr-x 5,059 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python
#-*- coding:utf-8 -*-

#---------------------------------------------------------------
# PyNLPl - Test Units for Evaluation
#   by Maarten van Gompel, ILK, Universiteit van Tilburg
#   http://ilk.uvt.nl/~mvgompel
#   proycon AT anaproy DOT nl
#
#   Licensed under GPLv3
#
#-------------------------------------------------------------

from __future__ import print_function
from __future__ import unicode_literals
from __future__ import division
from __future__ import absolute_import
from pynlpl.common import u

import sys
import os
import unittest
import random

from pynlpl.evaluation import AbstractExperiment, WPSParamSearch, ExperimentPool, ClassEvaluation, OrdinalEvaluation

class ParamExperiment(AbstractExperiment):
    def defaultparameters(self):
        return {'a':1,'b':1,'c':1}

    def run(self):
        self.result = 0
        for line in self.inputdata:
            self.result += int(line) * self.parameters['a'] * self.parameters['b'] - self.parameters['c']

    def score(self):
        return self.result

    @staticmethod
    def sample(inputdata,n):
        n = int(n)
        if n > len(inputdata):
            return inputdata
        else:
            return random.sample(inputdata,int(n))

class PoolExperiment(AbstractExperiment):
    def start(self):
        self.startcommand('sleep',None,None,None,str(self.parameters['duration']))
        print("STARTING: sleep " + str(self.parameters['duration']))


class WPSTest(unittest.TestCase):
    def test_wps(self):
        inputdata = [ 1,2,3,4,5,6 ]
        parameterscope = [ ('a',[2,4]), ('b',[2,5,8]),  ('c',[3,6,9]) ]
        search = WPSParamSearch(ParamExperiment, inputdata, len(inputdata), parameterscope)
        solution = search.searchbest()
        self.assertEqual(solution,  (('a', 4), ('b', 8), ('c', 3)) )



class ExperimentPoolTest(unittest.TestCase):
    def test_pool(self):
        pool = ExperimentPool(4)
        for i in range(0,15):
            pool.append( PoolExperiment(None, duration=random.randint(1,6)) )
        for experiment in pool.run():
            print("DONE: sleep " + str(experiment.parameters['duration']))
        
        self.assertTrue(True) #if we got here, no exceptions were raised and it's okay 
        
class ClassEvaluationTest2(unittest.TestCase):
    def setUp(self):
        self.goals = ['sun','sun','rain','cloudy','sun','rain']
        self.observations = ['cloudy','cloudy','cloudy','rain','sun','sun']
    
       
    def test001(self):
        e = ClassEvaluation(self.goals, self.observations)
        print()
        print(e)
        print(e.confusionmatrix())

class OrdinalEvaluationTest(unittest.TestCase):
    def setUp(self):
        self.goals = [1,2,3,4,3,2]
        self.observations = [4,1,3,4,2,2]

    def test001(self):
        oe = OrdinalEvaluation(self.goals,self.observations)
        print(oe.mae())
        print(oe.mae(2))
        print(oe.rmse())
        print(oe.rmse(4))
    
class ClassEvaluationTest(unittest.TestCase):
    def setUp(self):
        self.goals =        ['cat','cat','cat','cat','cat','cat','cat','cat',    'dog',  'dog','dog','dog','dog','dog'      ,'rabbit','rabbit','rabbit','rabbit','rabbit','rabbit','rabbit','rabbit','rabbit','rabbit','rabbit','rabbit','rabbit']
        self.observations = ['cat','cat','cat','cat','cat','dog','dog','dog',  'cat','cat','rabbit','dog','dog','dog'   ,'rabbit','rabbit','rabbit','rabbit','rabbit','rabbit','rabbit','rabbit','rabbit','rabbit','rabbit','dog','dog']
    
        
    def test001(self):
        """Class evaluation test -- (See also http://en.wikipedia.org/wiki/Confusion_matrix , using same data)"""
        e = ClassEvaluation(self.goals, self.observations)
        
        print
        print(e)
        print(e.confusionmatrix())
    
                
        self.assertEqual(e.tp['cat'], 5)
        self.assertEqual(e.fp['cat'], 2)
        self.assertEqual(e.tn['cat'], 17)
        self.assertEqual(e.fn['cat'], 3)
        
        self.assertEqual(e.tp['rabbit'], 11)
        self.assertEqual(e.fp['rabbit'], 1)
        self.assertEqual(e.tn['rabbit'], 13)
        self.assertEqual(e.fn['rabbit'], 2)
        
        self.assertEqual(e.tp['dog'], 3)
        self.assertEqual(e.fp['dog'], 5)
        self.assertEqual(e.tn['dog'], 16)
        self.assertEqual(e.fn['dog'], 3)
        
        self.assertEqual( round(e.precision('cat'),6), 0.714286)
        self.assertEqual( round(e.precision('rabbit'),6), 0.916667)
        self.assertEqual( round(e.precision('dog'),6), 0.375000)

        self.assertEqual( round(e.recall('cat'),6), 0.625000)
        self.assertEqual( round(e.recall('rabbit'),6), 0.846154)
        self.assertEqual( round(e.recall('dog'),6),0.500000)

        self.assertEqual( round(e.fscore('cat'),6), 0.666667)
        self.assertEqual( round(e.fscore('rabbit'),6), 0.880000)
        self.assertEqual( round(e.fscore('dog'),6),0.428571)

        self.assertEqual( round(e.accuracy(),6), 0.703704)
        
        

if __name__ == '__main__':
    unittest.main()