File: distances.py

package info (click to toggle)
python-pynndescent 0.5.11-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,088 kB
  • sloc: python: 7,107; makefile: 12; sh: 8
file content (971 lines) | stat: -rw-r--r-- 24,602 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
# Author: Leland McInnes <leland.mcinnes@gmail.com>
#
# License: BSD 3 clause
import numpy as np
import numba

from pynndescent.optimal_transport import (
    allocate_graph_structures,
    initialize_graph_structures,
    initialize_supply,
    initialize_cost,
    network_simplex_core,
    total_cost,
    ProblemStatus,
    sinkhorn_transport_plan,
)

_mock_identity = np.eye(2, dtype=np.float32)
_mock_ones = np.ones(2, dtype=np.float32)
_dummy_cost = np.zeros((2, 2), dtype=np.float64)

FLOAT32_EPS = np.finfo(np.float32).eps
FLOAT32_MAX = np.finfo(np.float32).max


@numba.njit(fastmath=True)
def euclidean(x, y):
    r"""Standard euclidean distance.

    .. math::
        D(x, y) = \\sqrt{\sum_i (x_i - y_i)^2}
    """
    result = 0.0
    for i in range(x.shape[0]):
        result += (x[i] - y[i]) ** 2
    return np.sqrt(result)


@numba.njit(
    [
        "f4(f4[::1],f4[::1])",
        numba.types.float32(
            numba.types.Array(numba.types.float32, 1, "C", readonly=True),
            numba.types.Array(numba.types.float32, 1, "C", readonly=True),
        ),
    ],
    fastmath=True,
    locals={
        "result": numba.types.float32,
        "diff": numba.types.float32,
        "dim": numba.types.intp,
        "i": numba.types.uint16,
    },
)
def squared_euclidean(x, y):
    r"""Squared euclidean distance.

    .. math::
        D(x, y) = \sum_i (x_i - y_i)^2
    """
    result = 0.0
    dim = x.shape[0]
    for i in range(dim):
        diff = x[i] - y[i]
        result += diff * diff

    return result


@numba.njit(fastmath=True)
def standardised_euclidean(x, y, sigma=_mock_ones):
    r"""Euclidean distance standardised against a vector of standard
    deviations per coordinate.

    .. math::
        D(x, y) = \sqrt{\sum_i \frac{(x_i - y_i)**2}{v_i}}
    """
    result = 0.0
    for i in range(x.shape[0]):
        result += ((x[i] - y[i]) ** 2) / sigma[i]

    return np.sqrt(result)


@numba.njit(fastmath=True)
def manhattan(x, y):
    r"""Manhattan, taxicab, or l1 distance.

    .. math::
        D(x, y) = \sum_i |x_i - y_i|
    """
    result = 0.0
    for i in range(x.shape[0]):
        result += np.abs(x[i] - y[i])

    return result


@numba.njit(fastmath=True)
def chebyshev(x, y):
    r"""Chebyshev or l-infinity distance.

    .. math::
        D(x, y) = \max_i |x_i - y_i|
    """
    result = 0.0
    for i in range(x.shape[0]):
        result = max(result, np.abs(x[i] - y[i]))

    return result


@numba.njit(fastmath=True)
def minkowski(x, y, p=2):
    r"""Minkowski distance.

    .. math::
        D(x, y) = \left(\sum_i |x_i - y_i|^p\right)^{\frac{1}{p}}

    This is a general distance. For p=1 it is equivalent to
    manhattan distance, for p=2 it is Euclidean distance, and
    for p=infinity it is Chebyshev distance. In general it is better
    to use the more specialised functions for those distances.
    """
    result = 0.0
    for i in range(x.shape[0]):
        result += (np.abs(x[i] - y[i])) ** p

    return result ** (1.0 / p)


@numba.njit(fastmath=True)
def weighted_minkowski(x, y, w=_mock_ones, p=2):
    r"""A weighted version of Minkowski distance.

    .. math::
        D(x, y) = \left(\sum_i w_i |x_i - y_i|^p\right)^{\frac{1}{p}}

    If weights w_i are inverse standard deviations of graph_data in each dimension
    then this represented a standardised Minkowski distance (and is
    equivalent to standardised Euclidean distance for p=1).
    """
    result = 0.0
    for i in range(x.shape[0]):
        result += w[i] * np.abs(x[i] - y[i]) ** p

    return result ** (1.0 / p)


@numba.njit(fastmath=True)
def mahalanobis(x, y, vinv=_mock_identity):
    result = 0.0

    diff = np.empty(x.shape[0], dtype=np.float32)

    for i in range(x.shape[0]):
        diff[i] = x[i] - y[i]

    for i in range(x.shape[0]):
        tmp = 0.0
        for j in range(x.shape[0]):
            tmp += vinv[i, j] * diff[j]
        result += tmp * diff[i]

    return np.sqrt(result)


@numba.njit(fastmath=True)
def hamming(x, y):
    result = 0.0
    for i in range(x.shape[0]):
        if x[i] != y[i]:
            result += 1.0

    return float(result) / x.shape[0]


@numba.njit(fastmath=True)
def canberra(x, y):
    result = 0.0
    for i in range(x.shape[0]):
        denominator = np.abs(x[i]) + np.abs(y[i])
        if denominator > 0:
            result += np.abs(x[i] - y[i]) / denominator

    return result


@numba.njit(fastmath=True)
def bray_curtis(x, y):
    numerator = 0.0
    denominator = 0.0
    for i in range(x.shape[0]):
        numerator += np.abs(x[i] - y[i])
        denominator += np.abs(x[i] + y[i])

    if denominator > 0.0:
        return float(numerator) / denominator
    else:
        return 0.0


@numba.njit(fastmath=True)
def jaccard(x, y):
    num_non_zero = 0.0
    num_equal = 0.0
    for i in range(x.shape[0]):
        x_true = x[i] != 0
        y_true = y[i] != 0
        num_non_zero += x_true or y_true
        num_equal += x_true and y_true

    if num_non_zero == 0.0:
        return 0.0
    else:
        return float(num_non_zero - num_equal) / num_non_zero


@numba.njit(
    [
        "f4(f4[::1],f4[::1])",
        numba.types.float32(
            numba.types.Array(numba.types.float32, 1, "C", readonly=True),
            numba.types.Array(numba.types.float32, 1, "C", readonly=True),
        ),
    ],
    fastmath=True,
    locals={
        "result": numba.types.float32,
        "num_non_zero": numba.types.float32,
        "num_equal": numba.types.float32,
        "x_true": numba.types.uint8,
        "y_true": numba.types.uint8,
        "dim": numba.types.intp,
        "i": numba.types.uint16,
    },
)
def alternative_jaccard(x, y):
    num_non_zero = 0.0
    num_equal = 0.0
    dim = x.shape[0]
    for i in range(dim):
        x_true = x[i] != 0
        y_true = y[i] != 0
        num_non_zero += x_true or y_true
        num_equal += x_true and y_true

    if num_non_zero == 0.0:
        return 0.0
    else:
        return -np.log2(num_equal / num_non_zero)


@numba.vectorize(fastmath=True)
def correct_alternative_jaccard(v):
    return 1.0 - pow(2.0, -v)


@numba.njit(fastmath=True)
def matching(x, y):
    num_not_equal = 0.0
    for i in range(x.shape[0]):
        x_true = x[i] != 0
        y_true = y[i] != 0
        num_not_equal += x_true != y_true

    return float(num_not_equal) / x.shape[0]


@numba.njit(fastmath=True)
def dice(x, y):
    num_true_true = 0.0
    num_not_equal = 0.0
    for i in range(x.shape[0]):
        x_true = x[i] != 0
        y_true = y[i] != 0
        num_true_true += x_true and y_true
        num_not_equal += x_true != y_true

    if num_not_equal == 0.0:
        return 0.0
    else:
        return num_not_equal / (2.0 * num_true_true + num_not_equal)


@numba.njit(fastmath=True)
def kulsinski(x, y):
    num_true_true = 0.0
    num_not_equal = 0.0
    for i in range(x.shape[0]):
        x_true = x[i] != 0
        y_true = y[i] != 0
        num_true_true += x_true and y_true
        num_not_equal += x_true != y_true

    if num_not_equal == 0:
        return 0.0
    else:
        return float(num_not_equal - num_true_true + x.shape[0]) / (
            num_not_equal + x.shape[0]
        )


@numba.njit(fastmath=True)
def rogers_tanimoto(x, y):
    num_not_equal = 0.0
    for i in range(x.shape[0]):
        x_true = x[i] != 0
        y_true = y[i] != 0
        num_not_equal += x_true != y_true

    return (2.0 * num_not_equal) / (x.shape[0] + num_not_equal)


@numba.njit(fastmath=True)
def russellrao(x, y):
    num_true_true = 0.0
    for i in range(x.shape[0]):
        x_true = x[i] != 0
        y_true = y[i] != 0
        num_true_true += x_true and y_true

    if num_true_true == np.sum(x != 0) and num_true_true == np.sum(y != 0):
        return 0.0
    else:
        return float(x.shape[0] - num_true_true) / (x.shape[0])


@numba.njit(fastmath=True)
def sokal_michener(x, y):
    num_not_equal = 0.0
    for i in range(x.shape[0]):
        x_true = x[i] != 0
        y_true = y[i] != 0
        num_not_equal += x_true != y_true

    return (2.0 * num_not_equal) / (x.shape[0] + num_not_equal)


@numba.njit(fastmath=True)
def sokal_sneath(x, y):
    num_true_true = 0.0
    num_not_equal = 0.0
    for i in range(x.shape[0]):
        x_true = x[i] != 0
        y_true = y[i] != 0
        num_true_true += x_true and y_true
        num_not_equal += x_true != y_true

    if num_not_equal == 0.0:
        return 0.0
    else:
        return num_not_equal / (0.5 * num_true_true + num_not_equal)


@numba.njit(fastmath=True)
def haversine(x, y):
    if x.shape[0] != 2:
        raise ValueError("haversine is only defined for 2 dimensional graph_data")
    sin_lat = np.sin(0.5 * (x[0] - y[0]))
    sin_long = np.sin(0.5 * (x[1] - y[1]))
    result = np.sqrt(sin_lat**2 + np.cos(x[0]) * np.cos(y[0]) * sin_long**2)
    return 2.0 * np.arcsin(result)


@numba.njit(fastmath=True)
def yule(x, y):
    num_true_true = 0.0
    num_true_false = 0.0
    num_false_true = 0.0
    for i in range(x.shape[0]):
        x_true = x[i] != 0
        y_true = y[i] != 0
        num_true_true += x_true and y_true
        num_true_false += x_true and (not y_true)
        num_false_true += (not x_true) and y_true

    num_false_false = x.shape[0] - num_true_true - num_true_false - num_false_true

    if num_true_false == 0.0 or num_false_true == 0.0:
        return 0.0
    else:
        return (2.0 * num_true_false * num_false_true) / (
            num_true_true * num_false_false + num_true_false * num_false_true
        )


@numba.njit(fastmath=True)
def cosine(x, y):
    result = 0.0
    norm_x = 0.0
    norm_y = 0.0
    for i in range(x.shape[0]):
        result += x[i] * y[i]
        norm_x += x[i] ** 2
        norm_y += y[i] ** 2

    if norm_x == 0.0 and norm_y == 0.0:
        return 0.0
    elif norm_x == 0.0 or norm_y == 0.0:
        return 1.0
    else:
        return 1.0 - (result / np.sqrt(norm_x * norm_y))


@numba.njit(
    [
        "f4(f4[::1],f4[::1])",
        numba.types.float32(
            numba.types.Array(numba.types.float32, 1, "C", readonly=True),
            numba.types.Array(numba.types.float32, 1, "C", readonly=True),
        ),
    ],
    fastmath=True,
    locals={
        "result": numba.types.float32,
        "norm_x": numba.types.float32,
        "norm_y": numba.types.float32,
        "dim": numba.types.intp,
        "i": numba.types.uint16,
    },
)
def alternative_cosine(x, y):
    result = 0.0
    norm_x = 0.0
    norm_y = 0.0
    dim = x.shape[0]
    for i in range(dim):
        result += x[i] * y[i]
        norm_x += x[i] * x[i]
        norm_y += y[i] * y[i]

    if norm_x == 0.0 and norm_y == 0.0:
        return 0.0
    elif norm_x == 0.0 or norm_y == 0.0:
        return FLOAT32_MAX
    elif result <= 0.0:
        return FLOAT32_MAX
    else:
        result = np.sqrt(norm_x * norm_y) / result
        return np.log2(result)


@numba.njit(
    "f4(f4[::1],f4[::1])",
    fastmath=True,
    locals={
        "result": numba.types.float32,
        "dim": numba.types.intp,
        "i": numba.types.uint16,
    },
)
def dot(x, y):
    result = 0.0
    dim = x.shape[0]
    for i in range(dim):
        result += x[i] * y[i]

    if result <= 0.0:
        return 1.0
    else:
        return 1.0 - result


@numba.njit(
    [
        "f4(f4[::1],f4[::1])",
        numba.types.float32(
            numba.types.Array(numba.types.float32, 1, "C", readonly=True),
            numba.types.Array(numba.types.float32, 1, "C", readonly=True),
        ),
    ],
    fastmath=True,
    locals={
        "result": numba.types.float32,
        "dim": numba.types.intp,
        "i": numba.types.uint16,
    },
)
def alternative_dot(x, y):
    result = 0.0
    dim = x.shape[0]
    for i in range(dim):
        result += x[i] * y[i]

    if result <= 0.0:
        return FLOAT32_MAX
    else:
        return -np.log2(result)


@numba.vectorize(fastmath=True)
def correct_alternative_cosine(d):
    return 1.0 - pow(2.0, -d)


@numba.njit(fastmath=True)
def tsss(x, y):
    d_euc_squared = 0.0
    d_cos = 0.0
    norm_x = 0.0
    norm_y = 0.0
    dim = x.shape[0]

    for i in range(dim):
        diff = x[i] - y[i]
        d_euc_squared += diff * diff
        d_cos += x[i] * y[i]
        norm_x += x[i] * x[i]
        norm_y += y[i] * y[i]

    norm_x = np.sqrt(norm_x)
    norm_y = np.sqrt(norm_y)
    magnitude_difference = np.abs(norm_x - norm_y)
    d_cos /= norm_x * norm_y
    theta = np.arccos(d_cos) + np.radians(10)  # Add 10 degrees as an "epsilon" to
    # avoid problems
    sector = ((np.sqrt(d_euc_squared) + magnitude_difference) ** 2) * theta
    triangle = norm_x * norm_y * np.sin(theta) / 2.0
    return triangle * sector


@numba.njit(fastmath=True)
def true_angular(x, y):
    result = 0.0
    norm_x = 0.0
    norm_y = 0.0
    dim = x.shape[0]
    for i in range(dim):
        result += x[i] * y[i]
        norm_x += x[i] * x[i]
        norm_y += y[i] * y[i]

    if norm_x == 0.0 and norm_y == 0.0:
        return 0.0
    elif norm_x == 0.0 or norm_y == 0.0:
        return FLOAT32_MAX
    elif result <= 0.0:
        return FLOAT32_MAX
    else:
        result = result / np.sqrt(norm_x * norm_y)
        return 1.0 - (np.arccos(result) / np.pi)


@numba.vectorize(fastmath=True)
def true_angular_from_alt_cosine(d):
    return 1.0 - (np.arccos(pow(2.0, -d)) / np.pi)


@numba.njit(fastmath=True)
def correlation(x, y):
    mu_x = 0.0
    mu_y = 0.0
    norm_x = 0.0
    norm_y = 0.0
    dot_product = 0.0

    for i in range(x.shape[0]):
        mu_x += x[i]
        mu_y += y[i]

    mu_x /= x.shape[0]
    mu_y /= x.shape[0]

    for i in range(x.shape[0]):
        shifted_x = x[i] - mu_x
        shifted_y = y[i] - mu_y
        norm_x += shifted_x**2
        norm_y += shifted_y**2
        dot_product += shifted_x * shifted_y

    if norm_x == 0.0 and norm_y == 0.0:
        return 0.0
    elif dot_product == 0.0:
        return 1.0
    else:
        return 1.0 - (dot_product / np.sqrt(norm_x * norm_y))


@numba.njit(
    [
        "f4(f4[::1],f4[::1])",
        numba.types.float32(
            numba.types.Array(numba.types.float32, 1, "C", readonly=True),
            numba.types.Array(numba.types.float32, 1, "C", readonly=True),
        ),
    ],
    fastmath=True,
    locals={
        "result": numba.types.float32,
        "l1_norm_x": numba.types.float32,
        "l1_norm_y": numba.types.float32,
        "dim": numba.types.intp,
        "i": numba.types.uint16,
    },
)
def hellinger(x, y):
    result = 0.0
    l1_norm_x = 0.0
    l1_norm_y = 0.0
    dim = x.shape[0]

    for i in range(dim):
        result += np.sqrt(x[i] * y[i])
        l1_norm_x += x[i]
        l1_norm_y += y[i]

    if l1_norm_x == 0 and l1_norm_y == 0:
        return 0.0
    elif l1_norm_x == 0 or l1_norm_y == 0:
        return 1.0
    else:
        return np.sqrt(1 - result / np.sqrt(l1_norm_x * l1_norm_y))


@numba.njit(
    [
        "f4(f4[::1],f4[::1])",
        numba.types.float32(
            numba.types.Array(numba.types.float32, 1, "C", readonly=True),
            numba.types.Array(numba.types.float32, 1, "C", readonly=True),
        ),
    ],
    fastmath=True,
    locals={
        "result": numba.types.float32,
        "l1_norm_x": numba.types.float32,
        "l1_norm_y": numba.types.float32,
        "dim": numba.types.intp,
        "i": numba.types.uint16,
    },
)
def alternative_hellinger(x, y):
    result = 0.0
    l1_norm_x = 0.0
    l1_norm_y = 0.0
    dim = x.shape[0]

    for i in range(dim):
        result += np.sqrt(x[i] * y[i])
        l1_norm_x += x[i]
        l1_norm_y += y[i]

    if l1_norm_x == 0 and l1_norm_y == 0:
        return 0.0
    elif l1_norm_x == 0 or l1_norm_y == 0:
        return FLOAT32_MAX
    elif result <= 0:
        return FLOAT32_MAX
    else:
        result = np.sqrt(l1_norm_x * l1_norm_y) / result
        return np.log2(result)


@numba.vectorize(fastmath=True)
def correct_alternative_hellinger(d):
    return np.sqrt(1.0 - pow(2.0, -d))


@numba.njit()
def rankdata(a, method="average"):
    arr = np.ravel(np.asarray(a))
    if method == "ordinal":
        sorter = arr.argsort(kind="mergesort")
    else:
        sorter = arr.argsort(kind="quicksort")

    inv = np.empty(sorter.size, dtype=np.intp)
    inv[sorter] = np.arange(sorter.size)

    if method == "ordinal":
        return (inv + 1).astype(np.float64)

    arr = arr[sorter]
    obs = np.ones(arr.size, np.bool_)
    obs[1:] = arr[1:] != arr[:-1]
    dense = obs.cumsum()[inv]

    if method == "dense":
        return dense.astype(np.float64)

    # cumulative counts of each unique value
    nonzero = np.nonzero(obs)[0]
    count = np.concatenate((nonzero, np.array([len(obs)], nonzero.dtype)))

    if method == "max":
        return count[dense].astype(np.float64)

    if method == "min":
        return (count[dense - 1] + 1).astype(np.float64)

    # average method
    return 0.5 * (count[dense] + count[dense - 1] + 1)


@numba.njit(fastmath=True)
def spearmanr(x, y):
    x_rank = rankdata(x)
    y_rank = rankdata(y)

    return correlation(x_rank, y_rank)


@numba.njit(nogil=True)
def kantorovich(x, y, cost=_dummy_cost, max_iter=100000):

    row_mask = x != 0
    col_mask = y != 0

    a = x[row_mask].astype(np.float64)
    b = y[col_mask].astype(np.float64)

    a_sum = a.sum()
    b_sum = b.sum()

    # if not isclose(a_sum, b_sum):
    #     raise ValueError(
    #         "Kantorovich distance inputs must be valid probability distributions."
    #     )

    a /= a_sum
    b /= b_sum

    sub_cost = cost[row_mask, :][:, col_mask]

    node_arc_data, spanning_tree, graph = allocate_graph_structures(
        a.shape[0], b.shape[0], False
    )
    initialize_supply(a, -b, graph, node_arc_data.supply)
    initialize_cost(sub_cost, graph, node_arc_data.cost)
    # initialize_cost(cost, graph, node_arc_data.cost)
    init_status = initialize_graph_structures(graph, node_arc_data, spanning_tree)
    if init_status == False:
        raise ValueError(
            "Kantorovich distance inputs must be valid probability distributions."
        )
    solve_status = network_simplex_core(node_arc_data, spanning_tree, graph, max_iter)
    # if solve_status == ProblemStatus.MAX_ITER_REACHED:
    #     print("WARNING: RESULT MIGHT BE INACCURATE\nMax number of iteration reached!")
    if solve_status == ProblemStatus.INFEASIBLE:
        raise ValueError(
            "Optimal transport problem was INFEASIBLE. Please check inputs."
        )
    elif solve_status == ProblemStatus.UNBOUNDED:
        raise ValueError(
            "Optimal transport problem was UNBOUNDED. Please check inputs."
        )
    result = total_cost(node_arc_data.flow, node_arc_data.cost)

    return result


@numba.njit(fastmath=True)
def sinkhorn(x, y, cost=_dummy_cost, regularization=1.0):
    row_mask = x != 0
    col_mask = y != 0

    a = x[row_mask].astype(np.float64)
    b = y[col_mask].astype(np.float64)

    a_sum = a.sum()
    b_sum = b.sum()

    a /= a_sum
    b /= b_sum

    sub_cost = cost[row_mask, :][:, col_mask]

    transport_plan = sinkhorn_transport_plan(
        x, y, cost=sub_cost, regularization=regularization
    )
    dim_i = transport_plan.shape[0]
    dim_j = transport_plan.shape[1]
    result = 0.0
    for i in range(dim_i):
        for j in range(dim_j):
            result += transport_plan[i, j] * cost[i, j]

    return result


@numba.njit()
def jensen_shannon_divergence(x, y):
    result = 0.0
    l1_norm_x = 0.0
    l1_norm_y = 0.0
    dim = x.shape[0]

    for i in range(dim):
        l1_norm_x += x[i]
        l1_norm_y += y[i]

    l1_norm_x += FLOAT32_EPS * dim
    l1_norm_y += FLOAT32_EPS * dim

    pdf_x = (x + FLOAT32_EPS) / l1_norm_x
    pdf_y = (y + FLOAT32_EPS) / l1_norm_y
    m = 0.5 * (pdf_x + pdf_y)

    for i in range(dim):
        result += 0.5 * (
            pdf_x[i] * np.log(pdf_x[i] / m[i]) + pdf_y[i] * np.log(pdf_y[i] / m[i])
        )

    return result


@numba.njit()
def wasserstein_1d(x, y, p=1):
    x_sum = 0.0
    y_sum = 0.0
    for i in range(x.shape[0]):
        x_sum += x[i]
        y_sum += y[i]

    x_cdf = x / x_sum
    y_cdf = y / y_sum

    for i in range(1, x_cdf.shape[0]):
        x_cdf[i] += x_cdf[i - 1]
        y_cdf[i] += y_cdf[i - 1]

    return minkowski(x_cdf, y_cdf, p)


@numba.njit()
def circular_kantorovich(x, y, p=1):
    x_sum = 0.0
    y_sum = 0.0
    for i in range(x.shape[0]):
        x_sum += x[i]
        y_sum += y[i]

    x_cdf = x / x_sum
    y_cdf = y / y_sum

    for i in range(1, x_cdf.shape[0]):
        x_cdf[i] += x_cdf[i - 1]
        y_cdf[i] += y_cdf[i - 1]

    mu = np.median((x_cdf - y_cdf) ** p)

    # Now we just want minkowski distance on the CDFs shifted by mu
    result = 0.0
    if p > 2:
        for i in range(x_cdf.shape[0]):
            result += np.abs(x_cdf[i] - y_cdf[i] - mu) ** p

        return result ** (1.0 / p)

    elif p == 2:
        for i in range(x_cdf.shape[0]):
            val = x_cdf[i] - y_cdf[i] - mu
            result += val * val

        return np.sqrt(result)

    elif p == 1:
        for i in range(x_cdf.shape[0]):
            result += np.abs(x_cdf[i] - y_cdf[i] - mu)

        return result

    else:
        raise ValueError("Invalid p supplied to Kantorvich distance")


@numba.njit()
def symmetric_kl_divergence(x, y):
    result = 0.0
    l1_norm_x = 0.0
    l1_norm_y = 0.0
    dim = x.shape[0]

    for i in range(dim):
        l1_norm_x += x[i]
        l1_norm_y += y[i]

    l1_norm_x += FLOAT32_EPS * dim
    l1_norm_y += FLOAT32_EPS * dim

    pdf_x = (x + FLOAT32_EPS) / l1_norm_x
    pdf_y = (y + FLOAT32_EPS) / l1_norm_y

    for i in range(dim):
        result += pdf_x[i] * np.log(pdf_x[i] / pdf_y[i]) + pdf_y[i] * np.log(
            pdf_y[i] / pdf_x[i]
        )

    return result


named_distances = {
    # general minkowski distances
    "euclidean": euclidean,
    "l2": euclidean,
    "sqeuclidean": squared_euclidean,
    "manhattan": manhattan,
    "taxicab": manhattan,
    "l1": manhattan,
    "chebyshev": chebyshev,
    "linfinity": chebyshev,
    "linfty": chebyshev,
    "linf": chebyshev,
    "minkowski": minkowski,
    # Standardised/weighted distances
    "seuclidean": standardised_euclidean,
    "standardised_euclidean": standardised_euclidean,
    "wminkowski": weighted_minkowski,
    "weighted_minkowski": weighted_minkowski,
    "mahalanobis": mahalanobis,
    # Other distances
    "canberra": canberra,
    "cosine": cosine,
    "dot": dot,
    "correlation": correlation,
    "haversine": haversine,
    "braycurtis": bray_curtis,
    "spearmanr": spearmanr,
    "tsss": tsss,
    "true_angular": true_angular,
    # Distribution distances
    "hellinger": hellinger,
    "kantorovich": kantorovich,
    "wasserstein": kantorovich,
    "wasserstein_1d": wasserstein_1d,
    "wasserstein-1d": wasserstein_1d,
    "kantorovich-1d": wasserstein_1d,
    "kantorovich_1d": wasserstein_1d,
    "circular_kantorovich": circular_kantorovich,
    "circular_wasserstein": circular_kantorovich,
    "sinkhorn": sinkhorn,
    "jensen-shannon": jensen_shannon_divergence,
    "jensen_shannon": jensen_shannon_divergence,
    "symmetric-kl": symmetric_kl_divergence,
    "symmetric_kl": symmetric_kl_divergence,
    "symmetric_kullback_liebler": symmetric_kl_divergence,
    # Binary distances
    "hamming": hamming,
    "jaccard": jaccard,
    "dice": dice,
    "matching": matching,
    "kulsinski": kulsinski,
    "rogerstanimoto": rogers_tanimoto,
    "russellrao": russellrao,
    "sokalsneath": sokal_sneath,
    "sokalmichener": sokal_michener,
    "yule": yule,
}

# Some distances have a faster to compute alternative that
# retains the same ordering of distances. We can compute with
# this instead, and then correct the final distances when complete.
# This provides a list of distances that have such an alternative
# along with the alternative distance function and the correction
# function to be applied.
fast_distance_alternatives = {
    "euclidean": {"dist": squared_euclidean, "correction": np.sqrt},
    "l2": {"dist": squared_euclidean, "correction": np.sqrt},
    "cosine": {"dist": alternative_cosine, "correction": correct_alternative_cosine},
    "dot": {"dist": alternative_dot, "correction": correct_alternative_cosine},
    "true_angular": {
        "dist": alternative_cosine,
        "correction": true_angular_from_alt_cosine,
    },
    "hellinger": {
        "dist": alternative_hellinger,
        "correction": correct_alternative_hellinger,
    },
    "jaccard": {"dist": alternative_jaccard, "correction": correct_alternative_jaccard},
}