1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
import numba
import numpy as np
import heapq
from scipy.sparse import coo_matrix
from scipy.sparse.csgraph import connected_components
from itertools import combinations
import pynndescent.distances as pynnd_dist
import joblib
from pynndescent.utils import (
rejection_sample,
make_heap,
deheap_sort,
simple_heap_push,
has_been_visited,
mark_visited,
)
FLOAT32_EPS = np.finfo(np.float32).eps
def create_component_search(index):
alternative_dot = pynnd_dist.alternative_dot
alternative_cosine = pynnd_dist.alternative_cosine
data = index._raw_data
indptr = index._search_graph.indptr
indices = index._search_graph.indices
dist = index._distance_func
@numba.njit(
fastmath=True,
nogil=True,
locals={
"current_query": numba.types.float32[::1],
"i": numba.types.uint32,
"j": numba.types.uint32,
"heap_priorities": numba.types.float32[::1],
"heap_indices": numba.types.int32[::1],
"candidate": numba.types.int32,
"vertex": numba.types.int32,
"d": numba.types.float32,
"d_vertex": numba.types.float32,
"visited": numba.types.uint8[::1],
"indices": numba.types.int32[::1],
"indptr": numba.types.int32[::1],
"data": numba.types.float32[:, ::1],
"heap_size": numba.types.int16,
"distance_scale": numba.types.float32,
"distance_bound": numba.types.float32,
"seed_scale": numba.types.float32,
},
)
def custom_search_closure(query_points, candidate_indices, k, epsilon, visited):
result = make_heap(query_points.shape[0], k)
distance_scale = 1.0 + epsilon
for i in range(query_points.shape[0]):
visited[:] = 0
if dist == alternative_dot or dist == alternative_cosine:
norm = np.sqrt((query_points[i] ** 2).sum())
if norm > 0.0:
current_query = query_points[i] / norm
else:
continue
else:
current_query = query_points[i]
heap_priorities = result[1][i]
heap_indices = result[0][i]
seed_set = [(np.float32(np.inf), np.int32(-1)) for j in range(0)]
############ Init ################
n_initial_points = candidate_indices.shape[0]
for j in range(n_initial_points):
candidate = np.int32(candidate_indices[j])
d = dist(data[candidate], current_query)
# indices are guaranteed different
simple_heap_push(heap_priorities, heap_indices, d, candidate)
heapq.heappush(seed_set, (d, candidate))
mark_visited(visited, candidate)
############ Search ##############
distance_bound = distance_scale * heap_priorities[0]
# Find smallest seed point
d_vertex, vertex = heapq.heappop(seed_set)
while d_vertex < distance_bound:
for j in range(indptr[vertex], indptr[vertex + 1]):
candidate = indices[j]
if has_been_visited(visited, candidate) == 0:
mark_visited(visited, candidate)
d = dist(data[candidate], current_query)
if d < distance_bound:
simple_heap_push(
heap_priorities, heap_indices, d, candidate
)
heapq.heappush(seed_set, (d, candidate))
# Update bound
distance_bound = distance_scale * heap_priorities[0]
# find new smallest seed point
if len(seed_set) == 0:
break
else:
d_vertex, vertex = heapq.heappop(seed_set)
return result
return custom_search_closure
# @numba.njit(nogil=True)
def find_component_connection_edge(
component1,
component2,
search_closure,
raw_data,
visited,
rng_state,
search_size=10,
epsilon=0.0,
):
indices = [np.zeros(1, dtype=np.int64) for i in range(2)]
indices[0] = component1[
rejection_sample(np.int64(search_size), component1.shape[0], rng_state)
]
indices[1] = component2[
rejection_sample(np.int64(search_size), component2.shape[0], rng_state)
]
query_side = 0
query_points = raw_data[indices[query_side]]
candidate_indices = indices[1 - query_side].copy()
changed = [True, True]
best_dist = np.inf
best_edge = (indices[0][0], indices[1][0])
while changed[0] or changed[1]:
inds, dists, _ = search_closure(
query_points, candidate_indices, search_size, epsilon, visited
)
inds, dists = deheap_sort(inds, dists)
for i in range(dists.shape[0]):
for j in range(dists.shape[1]):
if dists[i, j] < best_dist:
best_dist = dists[i, j]
best_edge = (indices[query_side][i], inds[i, j])
candidate_indices = indices[query_side]
new_indices = np.unique(inds[:, 0])
if indices[1 - query_side].shape[0] == new_indices.shape[0]:
changed[1 - query_side] = np.any(indices[1 - query_side] != new_indices)
indices[1 - query_side] = new_indices
query_points = raw_data[indices[1 - query_side]]
query_side = 1 - query_side
return best_edge[0], best_edge[1], best_dist
def adjacency_matrix_representation(neighbor_indices, neighbor_distances):
result = coo_matrix(
(neighbor_indices.shape[0], neighbor_indices.shape[0]), dtype=np.float32
)
# Preserve any distance 0 points
neighbor_distances[neighbor_distances == 0.0] = FLOAT32_EPS
result.row = np.repeat(
np.arange(neighbor_indices.shape[0], dtype=np.int32), neighbor_indices.shape[1]
)
result.col = neighbor_indices.ravel()
result.data = neighbor_distances.ravel()
# Get rid of any -1 index entries
result = result.tocsr()
result.data[result.indices == -1] = 0.0
result.eliminate_zeros()
# Symmetrize
result = result.maximum(result.T)
return result
def connect_graph(graph, index, search_size=10, n_jobs=None):
search_closure = create_component_search(index)
n_components, component_ids = connected_components(graph)
result = graph.tolil()
# Translate component ids into internal vertex order
component_ids = component_ids[index._vertex_order]
def new_edge(c1, c2):
component1 = np.where(component_ids == c1)[0]
component2 = np.where(component_ids == c2)[0]
i, j, d = find_component_connection_edge(
component1,
component2,
search_closure,
index._raw_data,
index._visited,
index.rng_state,
search_size=search_size,
)
# Correct the distance if required
if index._distance_correction is not None:
d = index._distance_correction(d)
# Convert indices to original data order
i = index._vertex_order[i]
j = index._vertex_order[j]
return i, j, d
new_edges = joblib.Parallel(n_jobs=n_jobs, prefer="threads")(
joblib.delayed(new_edge)(c1, c2)
for c1, c2 in combinations(range(n_components), 2)
)
for i, j, d in new_edges:
result[i, j] = d
result[j, i] = d
return result.tocsr()
|