1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
|
#############################################################################
# This code draws from the Python Optimal Transport version of the
# network simplex algorithm, which in turn was adapted from the LEMON
# library. The copyrights/comment blocks for those are preserved below.
# The Python/Numba implementation was adapted by Leland McInnes (2020).
#
# * This file has been adapted by Nicolas Bonneel (2013),
# * from network_simplex.h from LEMON, a generic C++ optimization library,
# * to implement a lightweight network simplex for mass transport, more
# * memory efficient that the original file. A previous version of this file
# * is used as part of the Displacement Interpolation project,
# * Web: http://www.cs.ubc.ca/labs/imager/tr/2011/DisplacementInterpolation/
# *
# *
# **** Original file Copyright Notice :
# *
# * Copyright (C) 2003-2010
# * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
# * (Egervary Research Group on Combinatorial Optimization, EGRES).
# *
# * Permission to use, modify and distribute this software is granted
# * provided that this copyright notice appears in all copies. For
# * precise terms see the accompanying LICENSE file.
# *
# * This software is provided "AS IS" with no warranty of any kind,
# * express or implied, and with no claim as to its suitability for any
# * purpose.
import numpy as np
import numba
from collections import namedtuple
from enum import Enum, IntEnum
_mock_identity = np.eye(2, dtype=np.float32)
_mock_ones = np.ones(2, dtype=np.float32)
_dummy_cost = np.zeros((2, 2), dtype=np.float64)
# Accuracy tolerance and net supply tolerance
EPSILON = 2.2204460492503131e-15
NET_SUPPLY_ERROR_TOLERANCE = 1e-8
## Defaults to double for everythig in POT
INFINITY = np.finfo(np.float64).max
MAX = np.finfo(np.float64).max
dummy_cost = np.zeros((2, 2), dtype=np.float64)
# Invalid Arc num
INVALID = -1
# Problem Status
class ProblemStatus(Enum):
OPTIMAL = 0
MAX_ITER_REACHED = 1
UNBOUNDED = 2
INFEASIBLE = 3
# Arc States
class ArcState(IntEnum):
STATE_UPPER = -1
STATE_TREE = 0
STATE_LOWER = 1
SpanningTree = namedtuple(
"SpanningTree",
[
"parent", # int array
"pred", # int array
"thread", # int array
"rev_thread", # int array
"succ_num", # int array
"last_succ", # int array
"forward", # bool array
"state", # state array
"root", # int
],
)
DiGraph = namedtuple(
"DiGraph",
[
"n_nodes", # int
"n_arcs", # int
"n", # int
"m", # int
"use_arc_mixing", # bool
"num_total_big_subsequence_numbers", # int
"subsequence_length", # int
"num_big_subsequences", # int
"mixing_coeff",
],
)
NodeArcData = namedtuple(
"NodeArcData",
[
"cost", # double array
"supply", # double array
"flow", # double array
"pi", # double array
"source", # unsigned int array
"target", # unsigned int array
],
)
LeavingArcData = namedtuple(
"LeavingArcData", ["u_in", "u_out", "v_in", "delta", "change"]
)
# Just reproduce a simpler version of numpy isclose (not numba supported yet)
@numba.njit()
def isclose(a, b, rtol=1.0e-5, atol=EPSILON):
diff = np.abs(a - b)
return diff <= (atol + rtol * np.abs(b))
# locals: c, min, e, cnt, a
# modifies _in_arc, _next_arc,
@numba.njit(locals={"a": numba.uint32, "e": numba.uint32})
def find_entering_arc(
pivot_block_size,
pivot_next_arc,
search_arc_num,
state_vector,
node_arc_data,
in_arc,
):
min = 0
cnt = pivot_block_size
# Pull from tuple for quick reference
cost = node_arc_data.cost
pi = node_arc_data.pi
source = node_arc_data.source
target = node_arc_data.target
for e in range(pivot_next_arc, search_arc_num):
c = state_vector[e] * (cost[e] + pi[source[e]] - pi[target[e]])
if c < min:
min = c
in_arc = e
cnt -= 1
if cnt == 0:
if np.fabs(pi[source[in_arc]]) > np.fabs(pi[target[in_arc]]):
a = np.fabs(pi[source[in_arc]])
else:
a = np.fabs(pi[target[in_arc]])
if a <= np.fabs(cost[in_arc]):
a = np.fabs(cost[in_arc])
if min < -(EPSILON * a):
pivot_next_arc = e
return in_arc, pivot_next_arc
else:
cnt = pivot_block_size
for e in range(pivot_next_arc):
c = state_vector[e] * (cost[e] + pi[source[e]] - pi[target[e]])
if c < min:
min = c
in_arc = e
cnt -= 1
if cnt == 0:
if np.fabs(pi[source[in_arc]]) > np.fabs(pi[target[in_arc]]):
a = np.fabs(pi[source[in_arc]])
else:
a = np.fabs(pi[target[in_arc]])
if a <= np.fabs(cost[in_arc]):
a = np.fabs(cost[in_arc])
if min < -(EPSILON * a):
pivot_next_arc = e
return in_arc, pivot_next_arc
else:
cnt = pivot_block_size
# assert(pivot_block.next_arc[0] == 0 or e == pivot_block.next_arc[0] - 1)
if np.fabs(pi[source[in_arc]]) > np.fabs(pi[target[in_arc]]):
a = np.fabs(pi[source[in_arc]])
else:
a = np.fabs(pi[target[in_arc]])
if a <= np.fabs(cost[in_arc]):
a = np.fabs(cost[in_arc])
if min >= -(EPSILON * a):
return -1, 0
return in_arc, pivot_next_arc
# Find the join node
# Operates with graph (_source, _target) and MST (_succ_num, _parent, in_arc) data
# locals: u, v
# modifies: join
@numba.njit(locals={"u": numba.types.uint16, "v": numba.types.uint16})
def find_join_node(source, target, succ_num, parent, in_arc):
u = source[in_arc]
v = target[in_arc]
while u != v:
if succ_num[u] < succ_num[v]:
u = parent[u]
else:
v = parent[v]
join = u
return join
# Find the leaving arc of the cycle and returns true if the
# leaving arc is not the same as the entering arc
# locals: first, second, result, d, e
# modifies: u_in, v_in, u_out, delta
@numba.njit(
locals={
"u": numba.uint16,
"u_in": numba.uint16,
"u_out": numba.uint16,
"v_in": numba.uint16,
"first": numba.uint16,
"second": numba.uint16,
"result": numba.uint8,
"in_arc": numba.uint32,
}
)
def find_leaving_arc(join, in_arc, node_arc_data, spanning_tree):
source = node_arc_data.source
target = node_arc_data.target
flow = node_arc_data.flow
state = spanning_tree.state
forward = spanning_tree.forward
pred = spanning_tree.pred
parent = spanning_tree.parent
u_out = -1 # May not be set, but we need to return something?
# Initialize first and second nodes according to the direction
# of the cycle
if state[in_arc] == ArcState.STATE_LOWER:
first = source[in_arc]
second = target[in_arc]
else:
first = target[in_arc]
second = source[in_arc]
delta = INFINITY
result = 0
# Search the cycle along the path form the first node to the root
u = first
while u != join:
e = pred[u]
if forward[u]:
d = flow[e]
else:
d = INFINITY
if d < delta:
delta = d
u_out = u
result = 1
u = parent[u]
# Search the cycle along the path form the second node to the root
u = second
while u != join:
e = pred[u]
if forward[u]:
d = INFINITY
else:
d = flow[e]
if d <= delta:
delta = d
u_out = u
result = 2
u = parent[u]
if result == 1:
u_in = first
v_in = second
else:
u_in = second
v_in = first
return LeavingArcData(u_in, u_out, v_in, delta, result != 0)
# Change _flow and _state vectors
# locals: val, u
# modifies: _state, _flow
@numba.njit(locals={"u": numba.uint16, "in_arc": numba.uint32, "val": numba.float64})
def update_flow(join, leaving_arc_data, node_arc_data, spanning_tree, in_arc):
source = node_arc_data.source
target = node_arc_data.target
flow = node_arc_data.flow
state = spanning_tree.state
pred = spanning_tree.pred
parent = spanning_tree.parent
forward = spanning_tree.forward
# Augment along the cycle
if leaving_arc_data.delta > 0:
val = state[in_arc] * leaving_arc_data.delta
flow[in_arc] += val
u = source[in_arc]
while u != join:
if forward[u]:
flow[pred[u]] -= val
else:
flow[pred[u]] += val
u = parent[u]
u = target[in_arc]
while u != join:
if forward[u]:
flow[pred[u]] += val
else:
flow[pred[u]] -= val
u = parent[u]
# Update the state of the entering and leaving arcs
if leaving_arc_data.change:
state[in_arc] = ArcState.STATE_TREE
if flow[pred[leaving_arc_data.u_out]] == 0:
state[pred[leaving_arc_data.u_out]] = ArcState.STATE_LOWER
else:
state[pred[leaving_arc_data.u_out]] = ArcState.STATE_UPPER
else:
state[in_arc] = -state[in_arc]
# Update the tree structure
# locals: u, w, old_rev_thread, old_succ_num, old_last_succ, tmp_sc, tmp_ls
# more locals: up_limit_in, up_limit_out, _dirty_revs
# modifies: v_out, _thread, _rev_thread, _parent, _last_succ,
# modifies: _pred, _forward, _succ_num
@numba.njit(
locals={
"u": numba.int32,
"w": numba.int32,
"u_in": numba.uint16,
"u_out": numba.uint16,
"v_in": numba.uint16,
"right": numba.uint16,
"stem": numba.uint16,
"new_stem": numba.uint16,
"par_stem": numba.uint16,
"in_arc": numba.uint32,
}
)
def update_spanning_tree(spanning_tree, leaving_arc_data, join, in_arc, source):
parent = spanning_tree.parent
thread = spanning_tree.thread
rev_thread = spanning_tree.rev_thread
succ_num = spanning_tree.succ_num
last_succ = spanning_tree.last_succ
forward = spanning_tree.forward
pred = spanning_tree.pred
u_out = leaving_arc_data.u_out
u_in = leaving_arc_data.u_in
v_in = leaving_arc_data.v_in
old_rev_thread = rev_thread[u_out]
old_succ_num = succ_num[u_out]
old_last_succ = last_succ[u_out]
v_out = parent[u_out]
u = last_succ[u_in] # the last successor of u_in
right = thread[u] # the node after it
# Handle the case when old_rev_thread equals to v_in
# (it also means that join and v_out coincide)
if old_rev_thread == v_in:
last = thread[last_succ[u_out]]
else:
last = thread[v_in]
# Update _thread and _parent along the stem nodes (i.e. the nodes
# between u_in and u_out, whose parent have to be changed)
thread[v_in] = stem = u_in
dirty_revs = []
dirty_revs.append(v_in)
par_stem = v_in
while stem != u_out:
# Insert the next stem node into the thread list
new_stem = parent[stem]
thread[u] = new_stem
dirty_revs.append(u)
# Remove the subtree of stem from the thread list
w = rev_thread[stem]
thread[w] = right
rev_thread[right] = w
# Change the parent node and shift stem nodes
parent[stem] = par_stem
par_stem = stem
stem = new_stem
# Update u and right
if last_succ[stem] == last_succ[par_stem]:
u = rev_thread[par_stem]
else:
u = last_succ[stem]
right = thread[u]
parent[u_out] = par_stem
thread[u] = last
rev_thread[last] = u
last_succ[u_out] = u
# Remove the subtree of u_out from the thread list except for
# the case when old_rev_thread equals to v_in
# (it also means that join and v_out coincide)
if old_rev_thread != v_in:
thread[old_rev_thread] = right
rev_thread[right] = old_rev_thread
# Update _rev_thread using the new _thread values
for i in range(len(dirty_revs)):
u = dirty_revs[i]
rev_thread[thread[u]] = u
# Update _pred, _forward, _last_succ and _succ_num for the
# stem nodes from u_out to u_in
tmp_sc = 0
tmp_ls = last_succ[u_out]
u = u_out
while u != u_in:
w = parent[u]
pred[u] = pred[w]
forward[u] = not forward[w]
tmp_sc += succ_num[u] - succ_num[w]
succ_num[u] = tmp_sc
last_succ[w] = tmp_ls
u = w
pred[u_in] = in_arc
forward[u_in] = u_in == source[in_arc]
succ_num[u_in] = old_succ_num
# Set limits for updating _last_succ form v_in and v_out
# towards the root
up_limit_in = -1
up_limit_out = -1
if last_succ[join] == v_in:
up_limit_out = join
else:
up_limit_in = join
# Update _last_succ from v_in towards the root
u = v_in
while u != up_limit_in and last_succ[u] == v_in:
last_succ[u] = last_succ[u_out]
u = parent[u]
# Update _last_succ from v_out towards the root
if join != old_rev_thread and v_in != old_rev_thread:
u = v_out
while u != up_limit_out and last_succ[u] == old_last_succ:
last_succ[u] = old_rev_thread
u = parent[u]
else:
u = v_out
while u != up_limit_out and last_succ[u] == old_last_succ:
last_succ[u] = last_succ[u_out]
u = parent[u]
# Update _succ_num from v_in to join
u = v_in
while u != join:
succ_num[u] += old_succ_num
u = parent[u]
# Update _succ_num from v_out to join
u = v_out
while u != join:
succ_num[u] -= old_succ_num
u = parent[u]
# Update potentials
# locals: sigma, end
# modifies: _pi
@numba.njit(
fastmath=True,
inline="always",
locals={"u": numba.uint16, "u_in": numba.uint16, "v_in": numba.uint16},
)
def update_potential(leaving_arc_data, pi, cost, spanning_tree):
thread = spanning_tree.thread
pred = spanning_tree.pred
forward = spanning_tree.forward
last_succ = spanning_tree.last_succ
u_in = leaving_arc_data.u_in
v_in = leaving_arc_data.v_in
if forward[u_in]:
sigma = pi[v_in] - pi[u_in] - cost[pred[u_in]]
else:
sigma = pi[v_in] - pi[u_in] + cost[pred[u_in]]
# Update potentials in the subtree, which has been moved
end = thread[last_succ[u_in]]
u = u_in
while u != end:
pi[u] += sigma
u = thread[u]
# If we have mixed arcs (for better random access)
# we need a more complicated function to get the ID of a given arc
@numba.njit()
def arc_id(arc, graph):
k = graph.n_arcs - arc - 1
if graph.use_arc_mixing:
smallv = (k > graph.num_total_big_subsequence_numbers) & 1
k -= graph.num_total_big_subsequence_numbers * smallv
subsequence_length2 = graph.subsequence_length - smallv
subsequence_num = (
k // subsequence_length2
) + graph.num_big_subsequences * smallv
subsequence_offset = (k % subsequence_length2) * graph.mixing_coeff
return subsequence_offset + subsequence_num
else:
return k
# Heuristic initial pivots
# locals: curr, total, supply_nodes, demand_nodes, u
# modifies:
@numba.njit(locals={"i": numba.uint16})
def construct_initial_pivots(graph, node_arc_data, spanning_tree):
cost = node_arc_data.cost
pi = node_arc_data.pi
source = node_arc_data.source
target = node_arc_data.target
supply = node_arc_data.supply
n1 = graph.n
n2 = graph.m
n_nodes = graph.n_nodes
n_arcs = graph.n_arcs
state = spanning_tree.state
total = 0
supply_nodes = []
demand_nodes = []
for u in range(n_nodes):
curr = supply[n_nodes - u - 1] # _node_id(u)
if curr > 0:
total += curr
supply_nodes.append(u)
elif curr < 0:
demand_nodes.append(u)
arc_vector = []
if len(supply_nodes) == 1 and len(demand_nodes) == 1:
# Perform a reverse graph search from the sink to the source
reached = np.zeros(n_nodes, dtype=np.bool_)
s = supply_nodes[0]
t = demand_nodes[0]
stack = []
reached[t] = True
stack.append(t)
while len(stack) > 0:
u = stack[-1]
v = stack[-1]
stack.pop(-1)
if v == s:
break
first_arc = n_arcs + v - n_nodes if v >= n1 else -1
for a in range(first_arc, -1, -n2):
u = a // n2
if reached[u]:
continue
j = arc_id(a, graph)
if INFINITY >= total:
arc_vector.append(j)
reached[u] = True
stack.append(u)
else:
# Find the min. cost incomming arc for each demand node
for i in range(len(demand_nodes)):
v = demand_nodes[i]
c = MAX
min_cost = MAX
min_arc = INVALID
first_arc = n_arcs + v - n_nodes if v >= n1 else -1
for a in range(first_arc, -1, -n2):
c = cost[arc_id(a, graph)]
if c < min_cost:
min_cost = c
min_arc = a
if min_arc != INVALID:
arc_vector.append(arc_id(min_arc, graph))
# Perform heuristic initial pivots
in_arc = -1
for i in range(len(arc_vector)):
in_arc = arc_vector[i]
# Bad arcs
if (
state[in_arc] * (cost[in_arc] + pi[source[in_arc]] - pi[target[in_arc]])
>= 0
):
continue
join = find_join_node(
source, target, spanning_tree.succ_num, spanning_tree.parent, in_arc
)
leaving_arc_data = find_leaving_arc(join, in_arc, node_arc_data, spanning_tree)
if leaving_arc_data.delta >= MAX:
return False, in_arc
update_flow(join, leaving_arc_data, node_arc_data, spanning_tree, in_arc)
if leaving_arc_data.change:
update_spanning_tree(spanning_tree, leaving_arc_data, join, in_arc, source)
update_potential(leaving_arc_data, pi, cost, spanning_tree)
return True, in_arc
@numba.njit()
def allocate_graph_structures(n, m, use_arc_mixing=True):
# Size bipartite graph
n_nodes = n + m
n_arcs = n * m
# Resize vectors
all_node_num = n_nodes + 1
max_arc_num = n_arcs + 2 * n_nodes
root = n_nodes
source = np.zeros(max_arc_num, dtype=np.uint16)
target = np.zeros(max_arc_num, dtype=np.uint16)
cost = np.ones(max_arc_num, dtype=np.float64)
supply = np.zeros(all_node_num, dtype=np.float64)
flow = np.zeros(max_arc_num, dtype=np.float64)
pi = np.zeros(all_node_num, dtype=np.float64)
parent = np.zeros(all_node_num, dtype=np.int32)
pred = np.zeros(all_node_num, dtype=np.int32)
forward = np.zeros(all_node_num, dtype=np.bool_)
thread = np.zeros(all_node_num, dtype=np.int32)
rev_thread = np.zeros(all_node_num, dtype=np.int32)
succ_num = np.zeros(all_node_num, dtype=np.int32)
last_succ = np.zeros(all_node_num, dtype=np.int32)
state = np.zeros(max_arc_num, dtype=np.int8)
if use_arc_mixing:
# Store the arcs in a mixed order
k = max(np.int32(np.sqrt(n_arcs)), 10)
mixing_coeff = k
subsequence_length = (n_arcs // mixing_coeff) + 1
num_big_subsequences = n_arcs % mixing_coeff
num_total_big_subsequence_numbers = subsequence_length * num_big_subsequences
i = 0
j = 0
for a in range(n_arcs - 1, -1, -1):
source[i] = n_nodes - (a // m) - 1
target[i] = n_nodes - ((a % m) + n) - 1
i += k
if i >= n_arcs:
j += 1
i = j
else:
# dummy values
subsequence_length = 0
mixing_coeff = 0
num_big_subsequences = 0
num_total_big_subsequence_numbers = 0
# Store the arcs in the original order
i = 0
for a in range(n_arcs - 1, -1, -1):
source[i] = n_nodes - (a // m) - 1
target[i] = n_nodes - ((a % m) + n) - 1
i += 1
node_arc_data = NodeArcData(cost, supply, flow, pi, source, target)
spanning_tree = SpanningTree(
parent, pred, thread, rev_thread, succ_num, last_succ, forward, state, root
)
graph = DiGraph(
n_nodes,
n_arcs,
n,
m,
use_arc_mixing,
num_total_big_subsequence_numbers,
subsequence_length,
num_big_subsequences,
mixing_coeff,
)
return node_arc_data, spanning_tree, graph
@numba.njit(locals={"u": numba.uint16, "e": numba.uint32})
def initialize_graph_structures(graph, node_arc_data, spanning_tree):
n_nodes = graph.n_nodes
n_arcs = graph.n_arcs
# unpack arrays
cost = node_arc_data.cost
supply = node_arc_data.supply
flow = node_arc_data.flow
pi = node_arc_data.pi
source = node_arc_data.source
target = node_arc_data.target
parent = spanning_tree.parent
pred = spanning_tree.pred
thread = spanning_tree.thread
rev_thread = spanning_tree.rev_thread
succ_num = spanning_tree.succ_num
last_succ = spanning_tree.last_succ
forward = spanning_tree.forward
state = spanning_tree.state
if n_nodes == 0:
return False
# Check the sum of supply values
net_supply = 0
for i in range(n_nodes):
net_supply += supply[i]
if np.fabs(net_supply) > NET_SUPPLY_ERROR_TOLERANCE:
return False
# Fix using doubles
# Initialize artifical cost
artificial_cost = 0.0
for i in range(n_arcs):
if cost[i] > artificial_cost:
artificial_cost = cost[i]
# reset flow and state vectors
if flow[i] != 0:
flow[i] = 0
state[i] = ArcState.STATE_LOWER
artificial_cost = (artificial_cost + 1) * n_nodes
# Set data for the artificial root node
root = n_nodes
parent[root] = -1
pred[root] = -1
thread[root] = 0
rev_thread[0] = root
succ_num[root] = n_nodes + 1
last_succ[root] = root - 1
supply[root] = -net_supply
pi[root] = 0
# Add artificial arcs and initialize the spanning tree data structure
# EQ supply constraints
e = n_arcs
for u in range(n_nodes):
parent[u] = root
pred[u] = e
thread[u] = u + 1
rev_thread[u + 1] = u
succ_num[u] = 1
last_succ[u] = u
state[e] = ArcState.STATE_TREE
if supply[u] >= 0:
forward[u] = True
pi[u] = 0
source[e] = u
target[e] = root
flow[e] = supply[u]
cost[e] = 0
else:
forward[u] = False
pi[u] = artificial_cost
source[e] = root
target[e] = u
flow[e] = -supply[u]
cost[e] = artificial_cost
e += 1
return True
@numba.njit()
def initialize_supply(left_node_supply, right_node_supply, graph, supply):
for n in range(graph.n_nodes):
if n < graph.n:
supply[graph.n_nodes - n - 1] = left_node_supply[n]
else:
supply[graph.n_nodes - n - 1] = right_node_supply[n - graph.n]
@numba.njit(inline="always")
def set_cost(arc, cost_val, cost, graph):
cost[arc_id(arc, graph)] = cost_val
@numba.njit(locals={"i": numba.uint16, "j": numba.uint16})
def initialize_cost(cost_matrix, graph, cost):
for i in range(cost_matrix.shape[0]):
for j in range(cost_matrix.shape[1]):
set_cost(i * cost_matrix.shape[1] + j, cost_matrix[i, j], cost, graph)
@numba.njit(fastmath=True, locals={"i": numba.uint32})
def total_cost(flow, cost):
c = 0.0
for i in range(flow.shape[0]):
c += flow[i] * cost[i]
return c
@numba.njit(nogil=True)
def network_simplex_core(node_arc_data, spanning_tree, graph, max_iter):
# pivot_block = PivotBlock(
# max(np.int32(np.sqrt(graph.n_arcs)), 10),
# np.zeros(1, dtype=np.int32),
# graph.n_arcs,
# )
pivot_block_size = max(np.int32(np.sqrt(graph.n_arcs)), 10)
search_arc_num = graph.n_arcs
solution_status = ProblemStatus.OPTIMAL
# Perform heuristic initial pivots
bounded, in_arc = construct_initial_pivots(graph, node_arc_data, spanning_tree)
if not bounded:
return ProblemStatus.UNBOUNDED
iter_number = 0
# pivot.setDantzig(true);
# Execute the Network Simplex algorithm
in_arc, pivot_next_arc = find_entering_arc(
pivot_block_size, 0, search_arc_num, spanning_tree.state, node_arc_data, in_arc
)
while in_arc >= 0:
iter_number += 1
if max_iter > 0 and iter_number >= max_iter:
solution_status = ProblemStatus.MAX_ITER_REACHED
break
join = find_join_node(
node_arc_data.source,
node_arc_data.target,
spanning_tree.succ_num,
spanning_tree.parent,
in_arc,
)
leaving_arc_data = find_leaving_arc(join, in_arc, node_arc_data, spanning_tree)
if leaving_arc_data.delta >= MAX:
return ProblemStatus.UNBOUNDED
update_flow(join, leaving_arc_data, node_arc_data, spanning_tree, in_arc)
if leaving_arc_data.change:
update_spanning_tree(
spanning_tree, leaving_arc_data, join, in_arc, node_arc_data.source
)
update_potential(
leaving_arc_data, node_arc_data.pi, node_arc_data.cost, spanning_tree
)
in_arc, pivot_next_arc = find_entering_arc(
pivot_block_size,
pivot_next_arc,
search_arc_num,
spanning_tree.state,
node_arc_data,
in_arc,
)
flow = node_arc_data.flow
pi = node_arc_data.pi
# Check feasibility
if solution_status == ProblemStatus.OPTIMAL:
for e in range(graph.n_arcs, graph.n_arcs + graph.n_nodes):
if flow[e] != 0:
if np.abs(flow[e]) > EPSILON:
return ProblemStatus.INFEASIBLE
else:
flow[e] = 0
# Shift potentials to meet the requirements of the GEQ/LEQ type
# optimality conditions
max_pot = -INFINITY
for i in range(graph.n_nodes):
if pi[i] > max_pot:
max_pot = pi[i]
if max_pot > 0:
for i in range(graph.n_nodes):
pi[i] -= max_pot
return solution_status
#######################################################
# SINKHORN distances in various variations
#######################################################
@numba.njit(
fastmath=True,
parallel=True,
locals={"diff": numba.float32, "result": numba.float32},
cache=False,
)
def right_marginal_error(u, K, v, y):
uK = u @ K
result = 0.0
for i in numba.prange(uK.shape[0]):
diff = y[i] - uK[i] * v[i]
result += diff * diff
return np.sqrt(result)
@numba.njit(
fastmath=True,
parallel=True,
locals={"diff": numba.float32, "result": numba.float32},
cache=False,
)
def right_marginal_error_batch(u, K, v, y):
uK = K.T @ u
result = 0.0
for i in numba.prange(uK.shape[0]):
for j in range(uK.shape[1]):
diff = y[j, i] - uK[i, j] * v[i, j]
result += diff * diff
return np.sqrt(result)
@numba.njit(fastmath=True, parallel=True, cache=False)
def transport_plan(K, u, v):
i_dim = K.shape[0]
j_dim = K.shape[1]
result = np.empty_like(K)
for i in numba.prange(i_dim):
for j in range(j_dim):
result[i, j] = u[i] * K[i, j] * v[j]
return result
@numba.njit(fastmath=True, parallel=True, locals={"result": numba.float32}, cache=False)
def relative_change_in_plan(old_u, old_v, new_u, new_v):
i_dim = old_u.shape[0]
j_dim = old_v.shape[0]
result = 0.0
for i in numba.prange(i_dim):
for j in range(j_dim):
old_uv = old_u[i] * old_v[j]
result += np.float32(np.abs(old_uv - new_u[i] * new_v[j]) / old_uv)
return result / (i_dim * j_dim)
@numba.njit(fastmath=True, parallel=True, cache=False)
def precompute_K_prime(K, x):
i_dim = K.shape[0]
j_dim = K.shape[1]
result = np.empty_like(K)
for i in numba.prange(i_dim):
if x[i] > 0.0:
x_i_inverse = 1.0 / x[i]
else:
x_i_inverse = INFINITY
for j in range(j_dim):
result[i, j] = x_i_inverse * K[i, j]
return result
@numba.njit(fastmath=True, parallel=True, cache=False)
def K_from_cost(cost, regularization):
i_dim = cost.shape[0]
j_dim = cost.shape[1]
result = np.empty_like(cost)
for i in numba.prange(i_dim):
for j in range(j_dim):
scaled_cost = cost[i, j] / regularization
result[i, j] = np.exp(-scaled_cost)
return result
@numba.njit(fastmath=True, cache=True)
def sinkhorn_iterations(
x, y, u, v, K, max_iter=1000, error_tolerance=1e-9, change_tolerance=1e-9
):
K_prime = precompute_K_prime(K, x)
prev_u = u
prev_v = v
for iteration in range(max_iter):
next_v = y / (K.T @ u)
if np.any(~np.isfinite(next_v)):
break
next_u = 1.0 / (K_prime @ next_v)
if np.any(~np.isfinite(next_u)):
break
u = next_u
v = next_v
if iteration % 20 == 0:
# Check if values in plan have changed significantly since last 20 iterations
relative_change = relative_change_in_plan(prev_u, prev_v, next_u, next_v)
if relative_change <= change_tolerance:
break
prev_u = u
prev_v = v
if iteration % 10 == 0:
# Check if right marginal error is less than tolerance every 10 iterations
err = right_marginal_error(u, K, v, y)
if err <= error_tolerance:
break
return u, v
@numba.njit(fastmath=True, cache=True)
def sinkhorn_iterations_batch(x, y, u, v, K, max_iter=1000, error_tolerance=1e-9):
K_prime = precompute_K_prime(K, x)
for iteration in range(max_iter):
next_v = y.T / (K.T @ u)
if np.any(~np.isfinite(next_v)):
break
next_u = 1.0 / (K_prime @ next_v)
if np.any(~np.isfinite(next_u)):
break
u = next_u
v = next_v
if iteration % 10 == 0:
# Check if right marginal error is less than tolerance every 10 iterations
err = right_marginal_error_batch(u, K, v, y)
if err <= error_tolerance:
break
return u, v
@numba.njit(fastmath=True, cache=True)
def sinkhorn_transport_plan(
x,
y,
cost=_dummy_cost,
regularization=1.0,
max_iter=1000,
error_tolerance=1e-9,
change_tolerance=1e-9,
):
dim_x = x.shape[0]
dim_y = y.shape[0]
u = np.full(dim_x, 1.0 / dim_x, dtype=cost.dtype)
v = np.full(dim_y, 1.0 / dim_y, dtype=cost.dtype)
K = K_from_cost(cost, regularization)
u, v = sinkhorn_iterations(
x,
y,
u,
v,
K,
max_iter=max_iter,
error_tolerance=error_tolerance,
change_tolerance=change_tolerance,
)
return transport_plan(K, u, v)
@numba.njit(fastmath=True, cache=True)
def sinkhorn_distance(x, y, cost=_dummy_cost, regularization=1.0):
transport_plan = sinkhorn_transport_plan(
x, y, cost=cost, regularization=regularization
)
dim_i = transport_plan.shape[0]
dim_j = transport_plan.shape[1]
result = 0.0
for i in range(dim_i):
for j in range(dim_j):
result += transport_plan[i, j] * cost[i, j]
return result
@numba.njit(fastmath=True, parallel=True, cache=False)
def sinkhorn_distance_batch(x, y, cost=_dummy_cost, regularization=1.0):
dim_x = x.shape[0]
dim_y = y.shape[0]
batch_size = y.shape[1]
u = np.full((dim_x, batch_size), 1.0 / dim_x, dtype=cost.dtype)
v = np.full((dim_y, batch_size), 1.0 / dim_y, dtype=cost.dtype)
K = K_from_cost(cost, regularization)
u, v = sinkhorn_iterations_batch(
x,
y,
u,
v,
K,
)
i_dim = K.shape[0]
j_dim = K.shape[1]
result = np.zeros(batch_size)
for i in range(i_dim):
for j in range(j_dim):
K_times_cost = K[i, j] * cost[i, j]
for batch in range(batch_size):
result[batch] += u[i, batch] * K_times_cost * v[j, batch]
return result
def make_fixed_cost_sinkhorn_distance(cost, regularization=1.0):
K = K_from_cost(cost, regularization)
dim_x = K.shape[0]
dim_y = K.shape[1]
@numba.njit(fastmath=True)
def closure(x, y):
u = np.full(dim_x, 1.0 / dim_x, dtype=cost.dtype)
v = np.full(dim_y, 1.0 / dim_y, dtype=cost.dtype)
K = K_from_cost(cost, regularization)
u, v = sinkhorn_iterations(
x,
y,
u,
v,
K,
)
current_plan = transport_plan(K, u, v)
result = 0.0
for i in range(dim_x):
for j in range(dim_y):
result += current_plan[i, j] * cost[i, j]
return result
return closure
|