1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
|
import os
import io
import re
import pathlib
import pytest
from contextlib import redirect_stdout
import numpy as np
from sklearn.neighbors import KDTree
from sklearn.neighbors import NearestNeighbors
from sklearn.preprocessing import normalize
import pickle
import joblib
import scipy
import platform
from pynndescent import NNDescent, PyNNDescentTransformer
machine = platform.machine()
if (machine.startswith('arm') or machine.startswith('aarch')):
pytest.skip("Skip on arm", allow_module_level=True)
def test_nn_descent_neighbor_accuracy(nn_data, seed):
knn_indices, _ = NNDescent(
nn_data, "euclidean", {}, 10, random_state=np.random.RandomState(seed)
)._neighbor_graph
tree = KDTree(nn_data)
true_indices = tree.query(nn_data, 10, return_distance=False)
num_correct = 0.0
for i in range(nn_data.shape[0]):
num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))
percent_correct = num_correct / (nn_data.shape[0] * 10)
assert (
percent_correct >= 0.98
), "NN-descent did not get 99% accuracy on nearest neighbors"
def test_angular_nn_descent_neighbor_accuracy(nn_data, seed):
knn_indices, _ = NNDescent(
nn_data, "cosine", {}, 10, random_state=np.random.RandomState(seed)
)._neighbor_graph
angular_data = normalize(nn_data, norm="l2")
tree = KDTree(angular_data)
true_indices = tree.query(angular_data, 10, return_distance=False)
num_correct = 0.0
for i in range(nn_data.shape[0]):
num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))
percent_correct = num_correct / (nn_data.shape[0] * 10)
assert (
percent_correct >= 0.98
), "NN-descent did not get 99% accuracy on nearest neighbors"
@pytest.mark.skipif(
list(map(int, scipy.version.version.split("."))) < [1, 3, 0],
reason="requires scipy >= 1.3.0",
)
def test_sparse_nn_descent_neighbor_accuracy(sparse_nn_data, seed):
knn_indices, _ = NNDescent(
sparse_nn_data, "euclidean", n_neighbors=20, random_state=None
)._neighbor_graph
tree = KDTree(sparse_nn_data.toarray())
true_indices = tree.query(sparse_nn_data.toarray(), 10, return_distance=False)
num_correct = 0.0
for i in range(sparse_nn_data.shape[0]):
num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))
percent_correct = num_correct / (sparse_nn_data.shape[0] * 10)
assert (
percent_correct >= 0.85
), "Sparse NN-descent did not get 95% accuracy on nearest neighbors"
@pytest.mark.skipif(
list(map(int, scipy.version.version.split("."))) < [1, 3, 0],
reason="requires scipy >= 1.3.0",
)
def test_sparse_angular_nn_descent_neighbor_accuracy(sparse_nn_data):
knn_indices, _ = NNDescent(
sparse_nn_data, "cosine", {}, 20, random_state=None
)._neighbor_graph
angular_data = normalize(sparse_nn_data, norm="l2").toarray()
tree = KDTree(angular_data)
true_indices = tree.query(angular_data, 10, return_distance=False)
num_correct = 0.0
for i in range(sparse_nn_data.shape[0]):
num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))
percent_correct = num_correct / (sparse_nn_data.shape[0] * 10)
assert (
percent_correct >= 0.85
), "Sparse angular NN-descent did not get 98% accuracy on nearest neighbors"
def test_nn_descent_query_accuracy(nn_data):
nnd = NNDescent(nn_data[200:], "euclidean", n_neighbors=10, random_state=None)
knn_indices, _ = nnd.query(nn_data[:200], k=10, epsilon=0.2)
tree = KDTree(nn_data[200:])
true_indices = tree.query(nn_data[:200], 10, return_distance=False)
num_correct = 0.0
for i in range(true_indices.shape[0]):
num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))
percent_correct = num_correct / (true_indices.shape[0] * 10)
assert (
percent_correct >= 0.95
), "NN-descent query did not get 95% accuracy on nearest neighbors"
def test_nn_descent_query_accuracy_angular(nn_data):
nnd = NNDescent(nn_data[200:], "cosine", n_neighbors=30, random_state=None)
knn_indices, _ = nnd.query(nn_data[:200], k=10, epsilon=0.32)
nn = NearestNeighbors(metric="cosine").fit(nn_data[200:])
true_indices = nn.kneighbors(nn_data[:200], n_neighbors=10, return_distance=False)
num_correct = 0.0
for i in range(true_indices.shape[0]):
num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))
percent_correct = num_correct / (true_indices.shape[0] * 10)
assert (
percent_correct >= 0.95
), "NN-descent query did not get 95% accuracy on nearest neighbors"
def test_sparse_nn_descent_query_accuracy(sparse_nn_data):
nnd = NNDescent(
sparse_nn_data[200:], "euclidean", n_neighbors=15, random_state=None
)
knn_indices, _ = nnd.query(sparse_nn_data[:200], k=10, epsilon=0.24)
tree = KDTree(sparse_nn_data[200:].toarray())
true_indices = tree.query(sparse_nn_data[:200].toarray(), 10, return_distance=False)
num_correct = 0.0
for i in range(true_indices.shape[0]):
num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))
percent_correct = num_correct / (true_indices.shape[0] * 10)
assert (
percent_correct >= 0.95
), "Sparse NN-descent query did not get 95% accuracy on nearest neighbors"
def test_sparse_nn_descent_query_accuracy_angular(sparse_nn_data):
nnd = NNDescent(sparse_nn_data[200:], "cosine", n_neighbors=50, random_state=None)
knn_indices, _ = nnd.query(sparse_nn_data[:200], k=10, epsilon=0.36)
nn = NearestNeighbors(metric="cosine").fit(sparse_nn_data[200:].toarray())
true_indices = nn.kneighbors(
sparse_nn_data[:200].toarray(), n_neighbors=10, return_distance=False
)
num_correct = 0.0
for i in range(true_indices.shape[0]):
num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))
percent_correct = num_correct / (true_indices.shape[0] * 10)
assert (
percent_correct >= 0.95
), "Sparse NN-descent query did not get 95% accuracy on nearest neighbors"
def test_transformer_equivalence(nn_data):
N_NEIGHBORS = 15
EPSILON = 0.15
train = nn_data[:400]
test = nn_data[:200]
# Note we shift N_NEIGHBORS to conform to sklearn's KNeighborTransformer defn
nnd = NNDescent(
data=train, n_neighbors=N_NEIGHBORS + 1, random_state=42, compressed=False
)
indices, dists = nnd.query(test, k=N_NEIGHBORS, epsilon=EPSILON)
sort_idx = np.argsort(indices, axis=1)
indices_sorted = np.vstack(
[indices[i, sort_idx[i]] for i in range(sort_idx.shape[0])]
)
dists_sorted = np.vstack([dists[i, sort_idx[i]] for i in range(sort_idx.shape[0])])
# Note we shift N_NEIGHBORS to conform to sklearn' KNeighborTransformer defn
transformer = PyNNDescentTransformer(
n_neighbors=N_NEIGHBORS, search_epsilon=EPSILON, random_state=42
).fit(train, compress_index=False)
Xt = transformer.transform(test).sorted_indices()
assert np.all(Xt.indices == indices_sorted.flatten())
assert np.allclose(Xt.data, dists_sorted.flat)
def test_random_state_none(nn_data, spatial_data):
knn_indices, _ = NNDescent(
nn_data, "euclidean", {}, 10, random_state=None
)._neighbor_graph
tree = KDTree(nn_data)
true_indices = tree.query(nn_data, 10, return_distance=False)
num_correct = 0.0
for i in range(nn_data.shape[0]):
num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))
percent_correct = num_correct / (spatial_data.shape[0] * 10)
assert (
percent_correct >= 0.99
), "NN-descent did not get 99% accuracy on nearest neighbors"
def test_deterministic():
seed = np.random.RandomState(42)
x1 = seed.normal(0, 100, (1000, 50))
x2 = seed.normal(0, 100, (1000, 50))
index1 = NNDescent(x1, random_state=np.random.RandomState(42))
neighbors1, distances1 = index1.query(x2)
index2 = NNDescent(x1, random_state=np.random.RandomState(42))
neighbors2, distances2 = index2.query(x2)
np.testing.assert_equal(neighbors1, neighbors2)
np.testing.assert_equal(distances1, distances2)
# This tests a recursion error on cosine metric reported at:
# https://github.com/lmcinnes/umap/issues/99
# graph_data used is a cut-down version of that provided by @scharron
# It contains lots of all-zero vectors and some other duplicates
def test_rp_trees_should_not_stack_overflow_with_duplicate_data(seed, cosine_hang_data):
n_neighbors = 10
knn_indices, _ = NNDescent(
cosine_hang_data,
"cosine",
{},
n_neighbors,
random_state=np.random.RandomState(seed),
n_trees=20,
)._neighbor_graph
for i in range(cosine_hang_data.shape[0]):
assert len(knn_indices[i]) == len(
np.unique(knn_indices[i])
), "Duplicate graph_indices in knn graph"
def test_deduplicated_data_behaves_normally(seed, cosine_hang_data):
data = np.unique(cosine_hang_data, axis=0)
data = data[~np.all(data == 0, axis=1)]
data = data[:1000]
n_neighbors = 10
knn_indices, _ = NNDescent(
data,
"cosine",
{},
n_neighbors,
random_state=np.random.RandomState(seed),
n_trees=20,
)._neighbor_graph
for i in range(data.shape[0]):
assert len(knn_indices[i]) == len(
np.unique(knn_indices[i])
), "Duplicate graph_indices in knn graph"
angular_data = normalize(data, norm="l2")
tree = KDTree(angular_data)
true_indices = tree.query(angular_data, n_neighbors, return_distance=False)
num_correct = 0
for i in range(data.shape[0]):
num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))
proportion_correct = num_correct / (data.shape[0] * n_neighbors)
assert (
proportion_correct >= 0.95
), "NN-descent did not get 95% accuracy on nearest neighbors"
def test_rp_trees_should_not_stack_overflow_with_near_duplicate_data(seed, cosine_near_duplicates_data):
n_neighbors = 10
knn_indices, _ = NNDescent(
cosine_near_duplicates_data,
"cosine",
{},
n_neighbors,
random_state=np.random.RandomState(seed),
n_trees=20,
)._neighbor_graph
for i in range(cosine_near_duplicates_data.shape[0]):
assert len(knn_indices[i]) == len(
np.unique(knn_indices[i])
), "Duplicate graph_indices in knn graph"
def test_output_when_verbose_is_true(spatial_data, seed):
out = io.StringIO()
with redirect_stdout(out):
_ = NNDescent(
data=spatial_data,
metric="euclidean",
metric_kwds={},
n_neighbors=4,
random_state=np.random.RandomState(seed),
n_trees=5,
n_iters=2,
verbose=True,
)
output = out.getvalue()
assert re.match("^.*5 trees", output, re.DOTALL)
assert re.match("^.*2 iterations", output, re.DOTALL)
def test_no_output_when_verbose_is_false(spatial_data, seed):
out = io.StringIO()
with redirect_stdout(out):
_ = NNDescent(
data=spatial_data,
metric="euclidean",
metric_kwds={},
n_neighbors=4,
random_state=np.random.RandomState(seed),
n_trees=5,
n_iters=2,
verbose=False,
)
output = out.getvalue().strip()
assert len(output) == 0
# same as the previous two test, but this time using the PyNNDescentTransformer
# interface
def test_transformer_output_when_verbose_is_true(spatial_data, seed):
out = io.StringIO()
with redirect_stdout(out):
_ = PyNNDescentTransformer(
n_neighbors=4,
metric="euclidean",
metric_kwds={},
random_state=np.random.RandomState(seed),
n_trees=5,
n_iters=2,
verbose=True,
).fit_transform(spatial_data)
output = out.getvalue()
assert re.match("^.*5 trees", output, re.DOTALL)
assert re.match("^.*2 iterations", output, re.DOTALL)
def test_transformer_output_when_verbose_is_false(spatial_data, seed):
out = io.StringIO()
with redirect_stdout(out):
_ = PyNNDescentTransformer(
n_neighbors=4,
metric="standardised_euclidean",
metric_kwds={"sigma": np.ones(spatial_data.shape[1])},
random_state=np.random.RandomState(seed),
n_trees=5,
n_iters=2,
verbose=False,
).fit_transform(spatial_data)
output = out.getvalue().strip()
assert len(output) == 0
def test_pickle_unpickle():
seed = np.random.RandomState(42)
x1 = seed.normal(0, 100, (1000, 50))
x2 = seed.normal(0, 100, (1000, 50))
index1 = NNDescent(x1, "euclidean", {}, 10, random_state=None)
neighbors1, distances1 = index1.query(x2)
mem_temp = io.BytesIO()
pickle.dump(index1, mem_temp)
mem_temp.seek(0)
index2 = pickle.load(mem_temp)
neighbors2, distances2 = index2.query(x2)
np.testing.assert_equal(neighbors1, neighbors2)
np.testing.assert_equal(distances1, distances2)
def test_compressed_pickle_unpickle():
seed = np.random.RandomState(42)
x1 = seed.normal(0, 100, (1000, 50))
x2 = seed.normal(0, 100, (1000, 50))
index1 = NNDescent(x1, "euclidean", {}, 10, random_state=None, compressed=True)
neighbors1, distances1 = index1.query(x2)
mem_temp = io.BytesIO()
pickle.dump(index1, mem_temp)
mem_temp.seek(0)
index2 = pickle.load(mem_temp)
neighbors2, distances2 = index2.query(x2)
np.testing.assert_equal(neighbors1, neighbors2)
np.testing.assert_equal(distances1, distances2)
def test_transformer_pickle_unpickle():
seed = np.random.RandomState(42)
x1 = seed.normal(0, 100, (1000, 50))
x2 = seed.normal(0, 100, (1000, 50))
index1 = PyNNDescentTransformer(n_neighbors=10).fit(x1)
result1 = index1.transform(x2)
mem_temp = io.BytesIO()
pickle.dump(index1, mem_temp)
mem_temp.seek(0)
index2 = pickle.load(mem_temp)
result2 = index2.transform(x2)
np.testing.assert_equal(result1.indices, result2.indices)
np.testing.assert_equal(result1.data, result2.data)
def test_joblib_dump():
seed = np.random.RandomState(42)
x1 = seed.normal(0, 100, (1000, 50))
x2 = seed.normal(0, 100, (1000, 50))
index1 = NNDescent(x1, "euclidean", {}, 10, random_state=None)
neighbors1, distances1 = index1.query(x2)
mem_temp = io.BytesIO()
joblib.dump(index1, mem_temp)
mem_temp.seek(0)
index2 = joblib.load(mem_temp)
neighbors2, distances2 = index2.query(x2)
np.testing.assert_equal(neighbors1, neighbors2)
np.testing.assert_equal(distances1, distances2)
@pytest.mark.parametrize("metric", ["euclidean", "cosine"])
def test_update_no_prepare_query_accuracy(nn_data, metric):
nnd = NNDescent(nn_data[200:800], metric=metric, n_neighbors=10, random_state=None)
nnd.update(xs_fresh=nn_data[800:])
knn_indices, _ = nnd.query(nn_data[:200], k=10, epsilon=0.2)
true_nnd = NearestNeighbors(metric=metric).fit(nn_data[200:])
true_indices = true_nnd.kneighbors(nn_data[:200], 10, return_distance=False)
num_correct = 0.0
for i in range(true_indices.shape[0]):
num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))
percent_correct = num_correct / (true_indices.shape[0] * 10)
assert percent_correct >= 0.95, (
"NN-descent query did not get 95% " "accuracy on nearest neighbors"
)
@pytest.mark.parametrize("metric", ["euclidean", "cosine"])
def test_update_w_prepare_query_accuracy(nn_data, metric):
nnd = NNDescent(
nn_data[200:800],
metric=metric,
n_neighbors=10,
random_state=None,
compressed=False,
)
nnd.prepare()
nnd.update(xs_fresh=nn_data[800:])
nnd.prepare()
knn_indices, _ = nnd.query(nn_data[:200], k=10, epsilon=0.2)
true_nnd = NearestNeighbors(metric=metric).fit(nn_data[200:])
true_indices = true_nnd.kneighbors(nn_data[:200], 10, return_distance=False)
num_correct = 0.0
for i in range(true_indices.shape[0]):
num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))
percent_correct = num_correct / (true_indices.shape[0] * 10)
assert percent_correct >= 0.95, (
"NN-descent query did not get 95% " "accuracy on nearest neighbors"
)
@pytest.mark.parametrize("metric", ["euclidean", "cosine"])
def test_update_w_prepare_query_accuracy(nn_data, metric):
nnd = NNDescent(
nn_data[200:800],
metric=metric,
n_neighbors=10,
random_state=None,
compressed=False,
)
nnd.prepare()
nnd.update(xs_fresh=nn_data[800:])
nnd.prepare()
knn_indices, _ = nnd.query(nn_data[:200], k=10, epsilon=0.2)
true_nnd = NearestNeighbors(metric=metric).fit(nn_data[200:])
true_indices = true_nnd.kneighbors(nn_data[:200], 10, return_distance=False)
num_correct = 0.0
for i in range(true_indices.shape[0]):
num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))
percent_correct = num_correct / (true_indices.shape[0] * 10)
assert percent_correct >= 0.95, (
"NN-descent query did not get 95% " "accuracy on nearest neighbors"
)
def evaluate_predictions(neighbors_true, neigbhors_computed, n_neighbors):
n_correct = 0
n_all = neighbors_true.shape[0] * n_neighbors
for i in range(neighbors_true.shape[0]):
n_correct += np.sum(np.in1d(neighbors_true[i], neigbhors_computed[i]))
return n_correct / n_all
@pytest.mark.parametrize("metric", ["manhattan", "euclidean", "cosine"])
@pytest.mark.parametrize("case", list(range(8))) # the number of cases in update_data
def test_update_with_changed_data(update_data, case, metric):
def evaluate(nn_descent, xs_to_fit, xs_to_query):
true_nn = NearestNeighbors(metric=metric, n_neighbors=k).fit(xs_to_fit)
neighbors, _ = nn_descent.query(xs_to_query, k=k)
neighbors_expected = true_nn.kneighbors(xs_to_query, k, return_distance=False)
p_correct = evaluate_predictions(neighbors_expected, neighbors, k)
assert p_correct >= 0.95, (
"NN-descent query did not get 95% " "accuracy on nearest neighbors"
)
k = 10
xs_orig, xs_fresh, xs_updated, indices_updated = update_data[case]
queries1 = xs_orig
# original
index = NNDescent(xs_orig, metric=metric, n_neighbors=40, random_state=1234)
index.prepare()
evaluate(index, xs_orig, queries1)
# updated
index.update(
xs_fresh=xs_fresh, xs_updated=xs_updated, updated_indices=indices_updated
)
if xs_fresh is not None:
xs = np.vstack((xs_orig, xs_fresh))
queries2 = np.vstack((queries1, xs_fresh))
else:
xs = xs_orig
queries2 = queries1
if indices_updated is not None:
xs[indices_updated] = xs_updated
evaluate(index, xs, queries2)
if indices_updated is not None:
evaluate(index, xs, xs_updated)
@pytest.mark.parametrize("n_trees", [1, 2, 3, 10])
def test_tree_numbers_after_multiple_updates(n_trees):
trees_after_update = max(1, int(np.round(n_trees / 3)))
nnd = NNDescent(np.array([[1.0]]), n_neighbors=1, n_trees=n_trees)
assert nnd.n_trees == n_trees, "NN-descent update changed the number of trees"
assert (
nnd.n_trees_after_update == trees_after_update
), "The value of the n_trees_after_update in NN-descent after update(s) is wrong"
for i in range(5):
nnd.update(xs_fresh=np.array([[i]], dtype=np.float64))
assert (
nnd.n_trees == trees_after_update
), "The value of the n_trees in NN-descent after update(s) is wrong"
assert (
nnd.n_trees_after_update == trees_after_update
), "The value of the n_trees_after_update in NN-descent after update(s) is wrong"
@pytest.mark.parametrize("metric", ["euclidean", "cosine"])
def test_tree_init_false(nn_data, metric):
nnd = NNDescent(
nn_data[200:], metric=metric, n_neighbors=10, random_state=None, tree_init=False
)
nnd.prepare()
knn_indices, _ = nnd.query(nn_data[:200], k=10, epsilon=0.2)
true_nnd = NearestNeighbors(metric=metric).fit(nn_data[200:])
true_indices = true_nnd.kneighbors(nn_data[:200], 10, return_distance=False)
num_correct = 0.0
for i in range(true_indices.shape[0]):
num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))
percent_correct = num_correct / (true_indices.shape[0] * 10)
assert percent_correct >= 0.95, (
"NN-descent query did not get 95% " "accuracy on nearest neighbors"
)
@pytest.mark.parametrize(
"metric", ["euclidean", "manhattan"]
) # cosine makes no sense for 1D
def test_one_dimensional_data(nn_data, metric):
nnd = NNDescent(
nn_data[200:, :1],
metric=metric,
n_neighbors=20,
random_state=None,
tree_init=False,
)
nnd.prepare()
knn_indices, _ = nnd.query(nn_data[:200, :1], k=10, epsilon=0.2)
true_nnd = NearestNeighbors(metric=metric).fit(nn_data[200:, :1])
true_indices = true_nnd.kneighbors(nn_data[:200, :1], 10, return_distance=False)
num_correct = 0.0
for i in range(true_indices.shape[0]):
num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))
percent_correct = num_correct / (true_indices.shape[0] * 10)
assert percent_correct >= 0.95, (
"NN-descent query did not get 95% " "accuracy on nearest neighbors"
)
@pytest.mark.parametrize("metric", ["euclidean", "cosine"])
def test_tree_no_split(small_data, sparse_small_data, metric):
k = 10
for data, data_type in zip([small_data, sparse_small_data], ["dense", "sparse"]):
n_instances = data.shape[0]
leaf_size = n_instances + 1 # just to be safe
data_train = data[n_instances // 2 :]
data_test = data[: n_instances // 2]
nnd = NNDescent(
data_train,
metric=metric,
n_neighbors=data_train.shape[0] - 1,
random_state=None,
tree_init=True,
leaf_size=leaf_size,
)
nnd.prepare()
knn_indices, _ = nnd.query(data_test, k=k, epsilon=0.2)
true_nnd = NearestNeighbors(metric=metric).fit(data_train)
true_indices = true_nnd.kneighbors(data_test, k, return_distance=False)
num_correct = 0.0
for i in range(true_indices.shape[0]):
num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))
percent_correct = num_correct / (true_indices.shape[0] * k)
assert (
percent_correct >= 0.95
), "NN-descent query did not get 95% for accuracy on nearest neighbors on {} data".format(
data_type
)
@pytest.mark.skipif('NUMBA_DISABLE_JIT' in os.environ, reason="Too expensive for disabled Numba")
def test_bad_data():
test_data_dir = pathlib.Path(__file__).parent / "test_data"
data = np.sqrt(np.load(test_data_dir / "pynndescent_bug_np.npz")['arr_0'])
index = NNDescent(data, metric="cosine")
|