1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
import pytest
import numpy as np
import platform
from numpy.testing import assert_array_equal
from pynndescent.distances import rankdata
machine = platform.machine()
if (machine.startswith('arm') or machine.startswith('aarch')):
pytest.skip("Skip on arm", allow_module_level=True)
def test_empty():
"""rankdata([]) should return an empty array."""
a = np.array([], dtype=int)
r = rankdata(a)
assert_array_equal(r, np.array([], dtype=np.float64))
def test_one():
"""Check rankdata with an array of length 1."""
data = [100]
a = np.array(data, dtype=int)
r = rankdata(a)
assert_array_equal(r, np.array([1.0], dtype=np.float64))
def test_basic():
"""Basic tests of rankdata."""
data = [100, 10, 50]
expected = np.array([3.0, 1.0, 2.0], dtype=np.float64)
a = np.array(data, dtype=int)
r = rankdata(a)
assert_array_equal(r, expected)
data = [40, 10, 30, 10, 50]
expected = np.array([4.0, 1.5, 3.0, 1.5, 5.0], dtype=np.float64)
a = np.array(data, dtype=int)
r = rankdata(a)
assert_array_equal(r, expected)
data = [20, 20, 20, 10, 10, 10]
expected = np.array([5.0, 5.0, 5.0, 2.0, 2.0, 2.0], dtype=np.float64)
a = np.array(data, dtype=int)
r = rankdata(a)
assert_array_equal(r, expected)
# The docstring states explicitly that the argument is flattened.
a2d = a.reshape(2, 3)
r = rankdata(a2d)
assert_array_equal(r, expected)
def test_rankdata_object_string():
min_rank = lambda a: [1 + sum(i < j for i in a) for j in a]
max_rank = lambda a: [sum(i <= j for i in a) for j in a]
ordinal_rank = lambda a: min_rank([(x, i) for i, x in enumerate(a)])
def average_rank(a):
return np.array([(i + j) / 2.0 for i, j in zip(min_rank(a), max_rank(a))])
def dense_rank(a):
b = np.unique(a)
return np.array([1 + sum(i < j for i in b) for j in a])
rankf = dict(
min=min_rank,
max=max_rank,
ordinal=ordinal_rank,
average=average_rank,
dense=dense_rank,
)
def check_ranks(a):
for method in "min", "max", "dense", "ordinal", "average":
out = rankdata(a, method=method)
assert_array_equal(out, rankf[method](a))
check_ranks(np.random.uniform(size=[200]))
def test_large_int():
data = np.array([2**60, 2**60 + 1], dtype=np.uint64)
r = rankdata(data)
assert_array_equal(r, [1.0, 2.0])
data = np.array([2**60, 2**60 + 1], dtype=np.int64)
r = rankdata(data)
assert_array_equal(r, [1.0, 2.0])
data = np.array([2**60, -(2**60) + 1], dtype=np.int64)
r = rankdata(data)
assert_array_equal(r, [2.0, 1.0])
def test_big_tie():
for n in [10000, 100000, 1000000]:
data = np.ones(n, dtype=int)
r = rankdata(data)
expected_rank = 0.5 * (n + 1)
assert_array_equal(r, expected_rank * data, "test failed with n=%d" % n)
@pytest.mark.parametrize(
"values,method,expected",
[ # values, method, expected
(np.array([], np.float64), "average", np.array([], np.float64)),
(np.array([], np.float64), "min", np.array([], np.float64)),
(np.array([], np.float64), "max", np.array([], np.float64)),
(np.array([], np.float64), "dense", np.array([], np.float64)),
(np.array([], np.float64), "ordinal", np.array([], np.float64)),
#
(np.array([100], np.float64), "average", np.array([1.0], np.float64)),
(np.array([100], np.float64), "min", np.array([1.0], np.float64)),
(np.array([100], np.float64), "max", np.array([1.0], np.float64)),
(np.array([100], np.float64), "dense", np.array([1.0], np.float64)),
(np.array([100], np.float64), "ordinal", np.array([1.0], np.float64)),
# #
(
np.array([100, 100, 100], np.float64),
"average",
np.array([2.0, 2.0, 2.0], np.float64),
),
(
np.array([100, 100, 100], np.float64),
"min",
np.array([1.0, 1.0, 1.0], np.float64),
),
(
np.array([100, 100, 100], np.float64),
"max",
np.array([3.0, 3.0, 3.0], np.float64),
),
(
np.array([100, 100, 100], np.float64),
"dense",
np.array([1.0, 1.0, 1.0], np.float64),
),
(
np.array([100, 100, 100], np.float64),
"ordinal",
np.array([1.0, 2.0, 3.0], np.float64),
),
#
(
np.array([100, 300, 200], np.float64),
"average",
np.array([1.0, 3.0, 2.0], np.float64),
),
(
np.array([100, 300, 200], np.float64),
"min",
np.array([1.0, 3.0, 2.0], np.float64),
),
(
np.array([100, 300, 200], np.float64),
"max",
np.array([1.0, 3.0, 2.0], np.float64),
),
(
np.array([100, 300, 200], np.float64),
"dense",
np.array([1.0, 3.0, 2.0], np.float64),
),
(
np.array([100, 300, 200], np.float64),
"ordinal",
np.array([1.0, 3.0, 2.0], np.float64),
),
#
(
np.array([100, 200, 300, 200], np.float64),
"average",
np.array([1.0, 2.5, 4.0, 2.5], np.float64),
),
(
np.array([100, 200, 300, 200], np.float64),
"min",
np.array([1.0, 2.0, 4.0, 2.0], np.float64),
),
(
np.array([100, 200, 300, 200], np.float64),
"max",
np.array([1.0, 3.0, 4.0, 3.0], np.float64),
),
(
np.array([100, 200, 300, 200], np.float64),
"dense",
np.array([1.0, 2.0, 3.0, 2.0], np.float64),
),
(
np.array([100, 200, 300, 200], np.float64),
"ordinal",
np.array([1.0, 2.0, 4.0, 3.0], np.float64),
),
#
(
np.array([100, 200, 300, 200, 100], np.float64),
"average",
np.array([1.5, 3.5, 5.0, 3.5, 1.5], np.float64),
),
(
np.array([100, 200, 300, 200, 100], np.float64),
"min",
np.array([1.0, 3.0, 5.0, 3.0, 1.0], np.float64),
),
(
np.array([100, 200, 300, 200, 100], np.float64),
"max",
np.array([2.0, 4.0, 5.0, 4.0, 2.0], np.float64),
),
(
np.array([100, 200, 300, 200, 100], np.float64),
"dense",
np.array([1.0, 2.0, 3.0, 2.0, 1.0], np.float64),
),
(
np.array([100, 200, 300, 200, 100], np.float64),
"ordinal",
np.array([1.0, 3.0, 5.0, 4.0, 2.0], np.float64),
),
#
(
np.array([10] * 30, np.float64),
"ordinal",
np.arange(1.0, 31.0, dtype=np.float64),
),
],
)
def test_cases(values, method, expected):
r = rankdata(values, method=method)
assert_array_equal(r, expected)
|