File: fourier.py

package info (click to toggle)
python-pyo 1.0.6-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 52,332 kB
  • sloc: python: 135,133; ansic: 127,822; javascript: 16,116; sh: 395; makefile: 388; cpp: 242
file content (1606 lines) | stat: -rw-r--r-- 53,536 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
"""
Fast Fourier Transform.

A Fast Fourier Transform (FFT) is an efficient algorithm to compute
the discrete Fourier transform (DFT) and its inverse (IFFT).

The objects below can be used to perform sound processing in the
spectral domain.

"""

"""
Copyright 2009-2015 Olivier Belanger

This file is part of pyo, a python module to help digital signal
processing script creation.

pyo is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

pyo is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with pyo.  If not, see <http://www.gnu.org/licenses/>.
"""

from ._core import *
from ._maps import *


class FFT(PyoObject):
    """
    Fast Fourier Transform.

    FFT analyses an input signal and converts it into the spectral
    domain. Three audio signals are sent out of the object, the
    `real` part, from bin 0 (DC) to bin size/2 (Nyquist), the
    `imaginary` part, from bin 0 to bin size/2-1, and the bin
    number, an increasing count from 0 to size-1. `real` and
    `imaginary` buffer's left samples  up to size-1 are filled
    with zeros. See notes below for an example of how to retrieve
    each signal component.

    :Parent: :py:class:`PyoObject`

    :Args:

        input: PyoObject
            Input signal to process.
        size: int {pow-of-two > 4}, optional
            FFT size. Must be a power of two greater than 4.
            The FFT size is the number of samples used in each
            analysis frame. Defaults to 1024.
        overlaps: int, optional
            The number of overlaped analysis block. Must be a
            positive integer. More overlaps can greatly improved
            sound quality synthesis but it is also more CPU
            expensive. Defaults to 4.
        wintype: int, optional
            Shape of the envelope used to filter each input frame.
            Possible shapes are :

            0. rectangular (no windowing)
            1. Hamming
            2. Hanning
            3. Bartlett (triangular)
            4. Blackman 3-term
            5. Blackman-Harris 4-term
            6. Blackman-Harris 7-term
            7. Tuckey (alpha = 0.66)
            8. Sine (half-sine window)

    .. note::

        FFT has no `out` method. Signal must be converted back to time domain,
        with IFFT, before being sent to output.

        FFT has no `mul` and `add` attributes.

        Real, imaginary and bin_number parts are three separated set
        of audio streams. The user should call :

        |  FFT['real'] to retrieve the real part.
        |  FFT['imag'] to retrieve the imaginary part.
        |  FFT['bin'] to retrieve the bin number part.

    >>> s = Server().boot()
    >>> s.start()
    >>> a = Noise(.25).mix(2)
    >>> fin = FFT(a, size=1024, overlaps=4, wintype=2)
    >>> t = ExpTable([(0,0),(3,0),(10,1),(20,0),(30,.8),(50,0),(70,.6),(150,0),(512,0)], size=512)
    >>> amp = TableIndex(t, fin["bin"])
    >>> re = fin["real"] * amp
    >>> im = fin["imag"] * amp
    >>> fout = IFFT(re, im, size=1024, overlaps=4, wintype=2).mix(2).out()

    """

    def __init__(self, input, size=1024, overlaps=4, wintype=2):
        pyoArgsAssert(self, "oiIi", input, size, overlaps, wintype)
        PyoObject.__init__(self)
        self._real_dummy = []
        self._imag_dummy = []
        self._bin_dummy = []
        self._input = input
        self._size = size
        self._overlaps = overlaps
        self._wintype = wintype
        self._in_fader = InputFader(input)
        in_fader, size, wintype, lmax = convertArgsToLists(self._in_fader, size, wintype)
        self._base_players = []
        for j in range(overlaps):
            for i in range(lmax):
                hopsize = wrap(size, i) * j // overlaps
                self._base_players.append(FFTMain_base(wrap(in_fader, i), wrap(size, i), hopsize, wrap(wintype, i)))
        self._real_objs = []
        self._imag_objs = []
        self._bin_objs = []
        for j in range(len(self._base_players)):
            self._real_objs.append(FFT_base(wrap(self._base_players, j), 0, self._mul, self._add))
            self._imag_objs.append(FFT_base(wrap(self._base_players, j), 1, self._mul, self._add))
            self._bin_objs.append(FFT_base(wrap(self._base_players, j), 2, self._mul, self._add))
        self._base_objs = [Sig(0)]  # Dummy objs to prevent PyoObjectBase methods to fail.
        self._init_play()

    def __len__(self):
        return len(self._real_objs)

    def __getitem__(self, str):
        if str == "real":
            self._real_dummy.append(Dummy([obj for i, obj in enumerate(self._real_objs)]))
            return self._real_dummy[-1]
        if str == "imag":
            self._imag_dummy.append(Dummy([obj for i, obj in enumerate(self._imag_objs)]))
            return self._imag_dummy[-1]
        if str == "bin":
            self._bin_dummy.append(Dummy([obj for i, obj in enumerate(self._bin_objs)]))
            return self._bin_dummy[-1]

    def get(self, identifier="real", all=False):
        """
        Return the first sample of the current buffer as a float.

        Can be used to convert audio stream to usable Python data.

        "real", "imag" or "bin" must be given to `identifier` to specify
        which stream to get value from.

        :Args:

            identifier: string {"real", "imag", "bin"}
                Address string parameter identifying audio stream.
                Defaults to "real".
            all: boolean, optional
                If True, the first value of each object's stream
                will be returned as a list. Otherwise, only the value
                of the first object's stream will be returned as a float.
                Defaults to False.

        """
        if not all:
            return self.__getitem__(identifier)[0]._getStream().getValue()
        else:
            return [obj._getStream().getValue() for obj in self.__getitem__(identifier).getBaseObjects()]

    def setInput(self, x, fadetime=0.05):
        """
        Replace the `input` attribute.

        :Args:

            x: PyoObject
                New signal to process.
            fadetime: float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        pyoArgsAssert(self, "oN", x, fadetime)
        self._input = x
        self._in_fader.setInput(x, fadetime)

    def play(self, dur=0, delay=0):
        dur, delay, lmax = convertArgsToLists(dur, delay)
        self._autoplay(dur, delay)
        self._in_fader.play(dur, delay)
        self._base_players = [obj.play(wrap(dur, i), wrap(delay, i)) for i, obj in enumerate(self._base_players)]
        self._real_objs = [obj.play(wrap(dur, i), wrap(delay, i)) for i, obj in enumerate(self._real_objs)]
        self._imag_objs = [obj.play(wrap(dur, i), wrap(delay, i)) for i, obj in enumerate(self._imag_objs)]
        self._bin_objs = [obj.play(wrap(dur, i), wrap(delay, i)) for i, obj in enumerate(self._bin_objs)]
        return self

    def stop(self, wait=0):
        self._autostop(wait)
        self._in_fader.stop(wait)
        [obj.stop(wait) for obj in self._base_players]
        [obj.stop(wait) for obj in self._real_objs]
        [obj.stop(wait) for obj in self._imag_objs]
        [obj.stop(wait) for obj in self._bin_objs]
        return self

    def out(self, chnl=0, inc=1, dur=0, delay=0):
        return self.play(dur, delay)

    def setSize(self, x):
        """
        Replace the `size` attribute.

        :Args:

            x: int
                new `size` attribute.

        """
        pyoArgsAssert(self, "i", x)
        self._size = x
        x, lmax = convertArgsToLists(x)
        poly = len(self._base_players) // self._overlaps
        for j in range(self._overlaps):
            for i in range(poly):
                hopsize = wrap(x, i) * j // self._overlaps
                self._base_players[j * poly + i].setSize(wrap(x, i), hopsize)

    def setWinType(self, x):
        """
        Replace the `wintype` attribute.

        :Args:

            x: int
                new `wintype` attribute.

        """
        pyoArgsAssert(self, "i", x)
        self._wintype = x
        x, lmax = convertArgsToLists(x)
        [obj.setWinType(wrap(x, i)) for i, obj in enumerate(self._base_players)]

    @property
    def input(self):
        """PyoObject. Input signal to process."""
        return self._input

    @input.setter
    def input(self, x):
        self.setInput(x)

    @property
    def size(self):
        """int. FFT size."""
        return self._size

    @size.setter
    def size(self, x):
        self.setSize(x)

    @property
    def wintype(self):
        """int. Windowing method."""
        return self._wintype

    @wintype.setter
    def wintype(self, x):
        self.setWinType(x)


class IFFT(PyoObject):
    """
    Inverse Fast Fourier Transform.

    IFFT takes a signal in the spectral domain and converts it to a
    real audio signal using an inverse fast fourier transform.
    IFFT takes two signals in input, the `real` and `imaginary` parts
    of an FFT analysis and returns the corresponding real signal.
    These signals must correspond to `real` and `imaginary` parts
    from an FFT object.

    :Parent: :py:class:`PyoObject`

    :Args:

        inreal: PyoObject
            Input `real` signal.
        inimag: PyoObject
            Input `imaginary` signal.
        size: int {pow-of-two > 4}, optional
            FFT size. Must be a power of two greater than 4.
            The FFT size is the number of samples used in each
            analysis frame. This value must match the `size`
            attribute of the former FFT object. Defaults to 1024.
        overlaps: int, optional
            The number of overlaped analysis block. Must be a
            positive integer. More overlaps can greatly improved
            sound quality synthesis but it is also more CPU
            expensive. This value must match the `overlaps`
            atribute of the former FFT object. Defaults to 4.
        wintype: int, optional
            Shape of the envelope used to filter each output frame.
            Possible shapes are :

            0. rectangular (no windowing)
            1. Hamming
            2. Hanning
            3. Bartlett (triangular)
            4. Blackman 3-term
            5. Blackman-Harris 4-term
            6. Blackman-Harris 7-term
            7. Tuckey (alpha = 0.66)
            8. Sine (half-sine window)

    .. note::

        The number of streams in `inreal` and `inimag` attributes
        must be egal to the output of the former FFT object. In
        most case, it will be `channels of processed sound` * `overlaps`.

        The output of IFFT must be mixed to reconstruct the real
        signal from the overlapped streams. It is left to the user
        to call the mix(channels of the processed sound) method on
        an IFFT object.

    >>> s = Server().boot()
    >>> s.start()
    >>> a = Noise(.25).mix(2)
    >>> fin = FFT(a, size=1024, overlaps=4, wintype=2)
    >>> t = ExpTable([(0,0),(3,0),(10,1),(20,0),(30,.8),(50,0),(70,.6),(150,0),(512,0)], size=512)
    >>> amp = TableIndex(t, fin["bin"])
    >>> re = fin["real"] * amp
    >>> im = fin["imag"] * amp
    >>> fout = IFFT(re, im, size=1024, overlaps=4, wintype=2).mix(2).out()

    """

    def __init__(self, inreal, inimag, size=1024, overlaps=4, wintype=2, mul=1, add=0):
        pyoArgsAssert(self, "ooiIiOO", inreal, inimag, size, overlaps, wintype, mul, add)
        PyoObject.__init__(self, mul, add)
        self._inreal = inreal
        self._inimag = inimag
        self._size = size
        self._overlaps = overlaps
        self._wintype = wintype
        self._in_fader = InputFader(inreal)
        self._in_fader2 = InputFader(inimag)
        in_fader, in_fader2, size, wintype, mul, add, lmax = convertArgsToLists(
            self._in_fader, self._in_fader2, size, wintype, mul, add
        )
        self._base_objs = []
        ratio = lmax // overlaps
        for i in range(lmax):
            hopsize = wrap(size, i) * ((i // ratio) % overlaps) // overlaps
            self._base_objs.append(
                IFFT_base(
                    wrap(in_fader, i),
                    wrap(in_fader2, i),
                    wrap(size, i),
                    hopsize,
                    wrap(wintype, i),
                    wrap(mul, i),
                    wrap(add, i),
                )
            )
        self._init_play()

    def __len__(self):
        return len(self._inreal)

    def setInReal(self, x, fadetime=0.05):
        """
        Replace the `inreal` attribute.

        :Args:

            x: PyoObject
                New input `real` signal.
            fadetime: float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        pyoArgsAssert(self, "oN", x, fadetime)
        self._inreal = x
        self._in_fader.setInput(x, fadetime)

    def setInImag(self, x, fadetime=0.05):
        """
        Replace the `inimag` attribute.

        :Args:

            x: PyoObject
                New input `imag` signal.
            fadetime: float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        pyoArgsAssert(self, "oN", x, fadetime)
        self._inimag = x
        self._in_fader2.setInput(x, fadetime)

    def setSize(self, x):
        """
        Replace the `size` attribute.

        :Args:

            x: int
                new `size` attribute.

        """
        pyoArgsAssert(self, "i", x)
        self._size = x
        x, lmax = convertArgsToLists(x)
        ratio = len(self._base_objs) // self._overlaps
        for i, obj in enumerate(self._base_objs):
            hopsize = wrap(x, i) * ((i // ratio) % self._overlaps) // self._overlaps
            self._base_objs[i].setSize(wrap(x, i), hopsize)

    def setWinType(self, x):
        """
        Replace the `wintype` attribute.

        :Args:

            x: int
                new `wintype` attribute.

        """
        pyoArgsAssert(self, "i", x)
        self._wintype = x
        x, lmax = convertArgsToLists(x)
        [obj.setWinType(wrap(x, i)) for i, obj in enumerate(self._base_objs)]

    def ctrl(self, map_list=None, title=None, wxnoserver=False):
        self._map_list = [SLMapMul(self._mul)]
        PyoObject.ctrl(self, map_list, title, wxnoserver)

    @property
    def inreal(self):
        """PyoObject. Real input signal."""
        return self._inreal

    @inreal.setter
    def inreal(self, x):
        self.setInReal(x)

    @property
    def inimag(self):
        """PyoObject. Imaginary input signal."""
        return self._inimag

    @inimag.setter
    def inimag(self, x):
        self.setInImag(x)

    @property
    def size(self):
        """int. FFT size."""
        return self._size

    @size.setter
    def size(self, x):
        self.setSize(x)

    @property
    def wintype(self):
        """int. Windowing method."""
        return self._wintype

    @wintype.setter
    def wintype(self, x):
        self.setWinType(x)


class CarToPol(PyoObject):
    """
    Performs the cartesian to polar conversion.

    The Cartesian system locates points on a plane by measuring the  horizontal and
    vertical distances from an arbitrary origin to a point.  These are usually denoted
    as a pair of values (X,Y).

    The Polar system locates the point by measuring the straight line distance, usually
    denoted by R, from the origin to the point and the angle of an imaginary line from
    the origin to the point measured counterclockwise from the positive X axis.

    :Parent: :py:class:`PyoObject`

    :Args:

        inreal: PyoObject
            Real input signal.
        inimag: PyoObject
            Imaginary input signal.

    .. note::

        Polar coordinates can be retrieve by calling :

        |  CarToPol['mag'] to retrieve the magnitude part.
        |  CarToPol['ang'] to retrieve the angle part.

        CarToPol has no `out` method. Signal must be converted back to time domain,
        with IFFT, before being sent to output.

    >>> s = Server().boot()
    >>> snd1 = SfPlayer(SNDS_PATH+"/transparent.aif", loop=True, mul=.7).mix(2)
    >>> snd2 = FM(carrier=[75,100,125,150], ratio=[.499,.5,.501,.502], index=20, mul=.1).mix(2)
    >>> fin1 = FFT(snd1, size=1024, overlaps=4)
    >>> fin2 = FFT(snd2, size=1024, overlaps=4)
    >>> # get magnitudes and phases of input sounds
    >>> pol1 = CarToPol(fin1["real"], fin1["imag"])
    >>> pol2 = CarToPol(fin2["real"], fin2["imag"])
    >>> # times magnitudes and adds phases
    >>> mag = pol1["mag"] * pol2["mag"] * 100
    >>> pha = pol1["ang"] + pol2["ang"]
    >>> # converts back to rectangular
    >>> car = PolToCar(mag, pha)
    >>> fout = IFFT(car["real"], car["imag"], size=1024, overlaps=4).mix(2).out()
    >>> s.start()

    """

    def __init__(self, inreal, inimag, mul=1, add=0):
        pyoArgsAssert(self, "ooOO", inreal, inimag, mul, add)
        PyoObject.__init__(self, mul, add)
        self._mag_dummy = []
        self._ang_dummy = []
        self._inreal = inreal
        self._inimag = inimag
        self._in_fader = InputFader(inreal)
        self._in_fader2 = InputFader(inimag)
        in_fader, in_fader2, mul, add, lmax = convertArgsToLists(self._in_fader, self._in_fader2, mul, add)
        self._base_objs = []
        for i in range(lmax):
            self._base_objs.append(CarToPol_base(wrap(in_fader, i), wrap(in_fader2, i), 0, wrap(mul, i), wrap(add, i)))
            self._base_objs.append(CarToPol_base(wrap(in_fader, i), wrap(in_fader2, i), 1, wrap(mul, i), wrap(add, i)))
        self._init_play()

    def __len__(self):
        return len(self._inreal)

    def __getitem__(self, str):
        if str == "mag":
            self._mag_dummy.append(Dummy([obj for i, obj in enumerate(self._base_objs) if i % 2 == 0]))
            return self._mag_dummy[-1]
        if str == "ang":
            self._ang_dummy.append(Dummy([obj for i, obj in enumerate(self._base_objs) if i % 2 == 1]))
            return self._ang_dummy[-1]

    def get(self, identifier="mag", all=False):
        """
        Return the first sample of the current buffer as a float.

        Can be used to convert audio stream to usable Python data.

        "mag" or "ang" must be given to `identifier` to specify
        which stream to get value from.

        :Args:

            identifier: string {"mag", "ang"}
                Address string parameter identifying audio stream.
                Defaults to "mag".
            all: boolean, optional
                If True, the first value of each object's stream
                will be returned as a list. Otherwise, only the value
                of the first object's stream will be returned as a float.
                Defaults to False.

        """
        if not all:
            return self.__getitem__(identifier)[0]._getStream().getValue()
        else:
            return [obj._getStream().getValue() for obj in self.__getitem__(identifier).getBaseObjects()]

    def setInReal(self, x, fadetime=0.05):
        """
        Replace the `inreal` attribute.

        :Args:

            x: PyoObject
                New signal to process.
            fadetime: float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        pyoArgsAssert(self, "oN", x, fadetime)
        self._inreal = x
        self._in_fader.setInput(x, fadetime)

    def setInImag(self, x, fadetime=0.05):
        """
        Replace the `inimag` attribute.

        :Args:

            x: PyoObject
                New signal to process.
            fadetime: float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        pyoArgsAssert(self, "oN", x, fadetime)
        self._inimag = x
        self._in_fader2.setInput(x, fadetime)

    @property
    def inreal(self):
        """PyoObject. Real input signal."""
        return self._inreal

    @inreal.setter
    def inreal(self, x):
        self.setInReal(x)

    @property
    def inimag(self):
        """PyoObject. Imaginary input signal."""
        return self._inimag

    @inimag.setter
    def inimag(self, x):
        self.setInImag(x)


class PolToCar(PyoObject):
    """
    Performs the polar to cartesian conversion.

    The Polar system locates the point by measuring the straight line distance, usually
    denoted by R, from the origin to the point and the angle of an imaginary line from
    the origin to the point measured counterclockwise from the positive X axis.

    The Cartesian system locates points on a plane by measuring the  horizontal and
    vertical distances from an arbitrary origin to a point.  These are usually denoted
    as a pair of values (X,Y).

    :Parent: :py:class:`PyoObject`

    :Args:

        inmag: PyoObject
            Magintude input signal.
        inang: PyoObject
            Angle input signal.

    .. note::

        Cartesians coordinates can be retrieve by calling :

        |  PolToCar['real'] to retrieve the real part.
        |  CarToPol['imag'] to retrieve the imaginary part.

        PolToCar has no `out` method. Signal must be converted back to time domain,
        with IFFT, before being sent to output.

    >>> s = Server().boot()
    >>> snd1 = SfPlayer(SNDS_PATH+"/transparent.aif", loop=True, mul=.7).mix(2)
    >>> snd2 = FM(carrier=[75,100,125,150], ratio=[.499,.5,.501,.502], index=20, mul=.1).mix(2)
    >>> fin1 = FFT(snd1, size=1024, overlaps=4)
    >>> fin2 = FFT(snd2, size=1024, overlaps=4)
    >>> # get magnitudes and phases of input sounds
    >>> pol1 = CarToPol(fin1["real"], fin1["imag"])
    >>> pol2 = CarToPol(fin2["real"], fin2["imag"])
    >>> # times magnitudes and adds phases
    >>> mag = pol1["mag"] * pol2["mag"] * 100
    >>> pha = pol1["ang"] + pol2["ang"]
    >>> # converts back to rectangular
    >>> car = PolToCar(mag, pha)
    >>> fout = IFFT(car["real"], car["imag"], size=1024, overlaps=4).mix(2).out()
    >>> s.start()

    """

    def __init__(self, inmag, inang, mul=1, add=0):
        pyoArgsAssert(self, "ooOO", inmag, inang, mul, add)
        PyoObject.__init__(self, mul, add)
        self._real_dummy = []
        self._imag_dummy = []
        self._inmag = inmag
        self._inang = inang
        self._in_fader = InputFader(inmag)
        self._in_fader2 = InputFader(inang)
        in_fader, in_fader2, mul, add, lmax = convertArgsToLists(self._in_fader, self._in_fader2, mul, add)
        self._base_objs = []
        for i in range(lmax):
            self._base_objs.append(PolToCar_base(wrap(in_fader, i), wrap(in_fader2, i), 0, wrap(mul, i), wrap(add, i)))
            self._base_objs.append(PolToCar_base(wrap(in_fader, i), wrap(in_fader2, i), 1, wrap(mul, i), wrap(add, i)))
        self._init_play()

    def __len__(self):
        return len(self._inmag)

    def __getitem__(self, str):
        if str == "real":
            self._real_dummy.append(Dummy([obj for i, obj in enumerate(self._base_objs) if i % 2 == 0]))
            return self._real_dummy[-1]
        if str == "imag":
            self._imag_dummy.append(Dummy([obj for i, obj in enumerate(self._base_objs) if i % 2 == 1]))
            return self._imag_dummy[-1]

    def get(self, identifier="real", all=False):
        """
        Return the first sample of the current buffer as a float.

        Can be used to convert audio stream to usable Python data.

        "real" or "imag" must be given to `identifier` to specify
        which stream to get value from.

        :Args:

            identifier: string {"real", "imag"}
                Address string parameter identifying audio stream.
                Defaults to "mag".
            all: boolean, optional
                If True, the first value of each object's stream
                will be returned as a list. Otherwise, only the value
                of the first object's stream will be returned as a float.
                Defaults to False.

        """
        if not all:
            return self.__getitem__(identifier)[0]._getStream().getValue()
        else:
            return [obj._getStream().getValue() for obj in self.__getitem__(identifier).getBaseObjects()]

    def setInMag(self, x, fadetime=0.05):
        """
        Replace the `inmag` attribute.

        :Args:

            x: PyoObject
                New signal to process.
            fadetime: float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        pyoArgsAssert(self, "oN", x, fadetime)
        self._inmag = x
        self._in_fader.setInput(x, fadetime)

    def setInAng(self, x, fadetime=0.05):
        """
        Replace the `inang` attribute.

        :Args:

            x: PyoObject
                New signal to process.
            fadetime: float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        pyoArgsAssert(self, "oN", x, fadetime)
        self._inang = x
        self._in_fader2.setInput(x, fadetime)

    @property
    def inmag(self):
        """PyoObject. Magnitude input signal."""
        return self._inmag

    @inmag.setter
    def inmag(self, x):
        self.setInMag(x)

    @property
    def inang(self):
        """PyoObject. Angle input signal."""
        return self._inang

    @inang.setter
    def inang(self, x):
        self.setInAng(x)


class FrameDelta(PyoObject):
    """
    Computes the phase differences between successive frames.

    The difference between the phase values of successive FFT frames for a given bin
    determines the exact frequency of the energy centered in that bin. This is often
    known as the phase difference (and sometimes also referred to as phase derivative
    or instantaneous frequency if it's been subjected to a few additional calculations).

    In order to reconstruct a plausible playback of re-ordered FFT frames, we need to
    calculate the phase difference between successive frames and use it to construct a
    `running phase` (by simply summing the successive differences with FrameAccum) for
    the output FFT frames.

    :Parent: :py:class:`PyoObject`

    :Args:

        input: PyoObject
            Phase input signal, usually from an FFT analysis.
        framesize: int, optional
            Frame size in samples. Usually the same as the FFT size.
            Defaults to 1024.
        overlaps: int, optional
            Number of overlaps in incomming signal. Usually the same
            as the FFT overlaps. Defaults to 4.

    .. note::

        FrameDelta has no `out` method. Signal must be converted back to time domain,
        with IFFT, before being sent to output.

    >>> s = Server().boot()
    >>> s.start()
    >>> snd = SNDS_PATH + '/transparent.aif'
    >>> size, hop = 1024, 256
    >>> nframes = int(sndinfo(snd)[0] / size) + 1
    >>> a = SfPlayer(snd, mul=.3)
    >>> m_mag = [NewMatrix(width=size, height=nframes) for i in range(4)]
    >>> m_pha = [NewMatrix(width=size, height=nframes) for i in range(4)]
    >>> fin = FFT(a, size=size, overlaps=4)
    >>> pol = CarToPol(fin["real"], fin["imag"])
    >>> delta = FrameDelta(pol["ang"], framesize=size, overlaps=4)
    >>> m_mag_rec = MatrixRec(pol["mag"], m_mag, 0, [i*hop for i in range(4)]).play()
    >>> m_pha_rec = MatrixRec(delta, m_pha, 0, [i*hop for i in range(4)]).play()
    >>> m_mag_read = MatrixPointer(m_mag, fin["bin"]/size, Sine(freq=0.25, mul=.5, add=.5))
    >>> m_pha_read = MatrixPointer(m_pha, fin["bin"]/size, Sine(freq=0.25, mul=.5, add=.5))
    >>> accum = FrameAccum(m_pha_read, framesize=size, overlaps=4)
    >>> car = PolToCar(m_mag_read, accum)
    >>> fout = IFFT(car["real"], car["imag"], size=size, overlaps=4).mix(1).out()
    >>> right = Delay(fout, delay=0.013).out(1)

    """

    def __init__(self, input, framesize=1024, overlaps=4, mul=1, add=0):
        pyoArgsAssert(self, "oiiOO", input, framesize, overlaps, mul, add)
        PyoObject.__init__(self, mul, add)
        self._input = input
        self._framesize = framesize
        self._overlaps = overlaps
        self._in_fader = InputFader(input)
        in_fader, framesize, overlaps, mul, add, lmax = convertArgsToLists(
            self._in_fader, framesize, overlaps, mul, add
        )
        num_of_mains = len(self._in_fader) // self._overlaps
        self._base_players = []
        for j in range(num_of_mains):
            objs_list = []
            for i in range(len(self._in_fader)):
                if (i % num_of_mains) == j:
                    objs_list.append(self._in_fader[i])
            self._base_players.append(FrameDeltaMain_base(objs_list, wrap(framesize, j), wrap(overlaps, j)))
        self._base_objs = []
        for i in range(lmax):
            base_player = i % num_of_mains
            overlap = i // num_of_mains
            self._base_objs.append(
                FrameDelta_base(self._base_players[base_player], overlap, wrap(mul, i), wrap(add, i))
            )
        self._init_play()

    def out(self, chnl=0, inc=1, dur=0, delay=0):
        return self.play(dur, delay)

    def setInput(self, x, fadetime=0.05):
        """
        Replace the `input` attribute.

        :Args:

            x: PyoObject
                New signal to process.
            fadetime: float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        pyoArgsAssert(self, "oN", x, fadetime)
        self._input = x
        self._in_fader.setInput(x, fadetime)

    def setFrameSize(self, x):
        """
        Replace the `framesize` attribute.

        :Args:

            x: int
                new `framesize` attribute.

        """
        pyoArgsAssert(self, "i", x)
        self._framesize = x
        x, lmax = convertArgsToLists(x)
        [obj.setFrameSize(wrap(x, i)) for i, obj in enumerate(self._base_players)]

    @property
    def input(self):
        """PyoObject. Phase input signal."""
        return self._input

    @input.setter
    def input(self, x):
        self.setInput(x)

    @property
    def framesize(self):
        """PyoObject. Frame size in samples."""
        return self._framesize

    @framesize.setter
    def framesize(self, x):
        self.setFrameSize(x)


class FrameAccum(PyoObject):
    """
    Accumulates the phase differences between successive frames.

    The difference between the phase values of successive FFT frames for a given bin
    determines the exact frequency of the energy centered in that bin. This is often
    known as the phase difference (and sometimes also referred to as phase derivative
    or instantaneous frequency if it's been subjected to a few additional calculations).

    In order to reconstruct a plausible playback of re-ordered FFT frames, we need to
    calculate the phase difference between successive frames, with FrameDelta, and use
    it to construct a `running phase` (by simply summing the successive differences) for
    the output FFT frames.

    :Parent: :py:class:`PyoObject`

    :Args:

        input: PyoObject
            Phase input signal.
        framesize: int, optional
            Frame size in samples. Usually same as the FFT size.
            Defaults to 1024.
        overlaps: int, optional
            Number of overlaps in incomming signal. Usually the same
            as the FFT overlaps. Defaults to 4.

    .. note::

        FrameAccum has no `out` method. Signal must be converted back to time domain,
        with IFFT, before being sent to output.

    >>> s = Server().boot()
    >>> s.start()
    >>> snd = SNDS_PATH + '/transparent.aif'
    >>> size, hop = 1024, 256
    >>> nframes = int(sndinfo(snd)[0] / size) + 1
    >>> a = SfPlayer(snd, mul=.3)
    >>> m_mag = [NewMatrix(width=size, height=nframes) for i in range(4)]
    >>> m_pha = [NewMatrix(width=size, height=nframes) for i in range(4)]
    >>> fin = FFT(a, size=size, overlaps=4)
    >>> pol = CarToPol(fin["real"], fin["imag"])
    >>> delta = FrameDelta(pol["ang"], framesize=size, overlaps=4)
    >>> m_mag_rec = MatrixRec(pol["mag"], m_mag, 0, [i*hop for i in range(4)]).play()
    >>> m_pha_rec = MatrixRec(delta, m_pha, 0, [i*hop for i in range(4)]).play()
    >>> m_mag_read = MatrixPointer(m_mag, fin["bin"]/size, Sine(freq=0.25, mul=.5, add=.5))
    >>> m_pha_read = MatrixPointer(m_pha, fin["bin"]/size, Sine(freq=0.25, mul=.5, add=.5))
    >>> accum = FrameAccum(m_pha_read, framesize=size, overlaps=4)
    >>> car = PolToCar(m_mag_read, accum)
    >>> fout = IFFT(car["real"], car["imag"], size=size, overlaps=4).mix(1).out()
    >>> right = Delay(fout, delay=0.013).out(1)

    """

    def __init__(self, input, framesize=1024, overlaps=4, mul=1, add=0):
        pyoArgsAssert(self, "oiiOO", input, framesize, overlaps, mul, add)
        PyoObject.__init__(self, mul, add)
        self._input = input
        self._framesize = framesize
        self._overlaps = overlaps
        self._in_fader = InputFader(input)
        in_fader, framesize, overlaps, mul, add, lmax = convertArgsToLists(
            self._in_fader, framesize, overlaps, mul, add
        )
        num_of_mains = len(self._in_fader) // self._overlaps
        self._base_players = []
        for j in range(num_of_mains):
            objs_list = []
            for i in range(len(self._in_fader)):
                if (i % num_of_mains) == j:
                    objs_list.append(self._in_fader[i])
            self._base_players.append(FrameAccumMain_base(objs_list, wrap(framesize, j), wrap(overlaps, j)))
        self._base_objs = []
        for i in range(lmax):
            base_player = i % num_of_mains
            overlap = i // num_of_mains
            self._base_objs.append(
                FrameAccum_base(self._base_players[base_player], overlap, wrap(mul, i), wrap(add, i))
            )
        self._init_play()

    def out(self, chnl=0, inc=1, dur=0, delay=0):
        return self.play(dur, delay)

    def setInput(self, x, fadetime=0.05):
        """
        Replace the `input` attribute.

        :Args:

            x: PyoObject
                New signal to process.
            fadetime: float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        pyoArgsAssert(self, "oN", x, fadetime)
        self._input = x
        self._in_fader.setInput(x, fadetime)

    def setFrameSize(self, x):
        """
        Replace the `framesize` attribute.

        :Args:

            x: int
                new `framesize` attribute.

        """
        pyoArgsAssert(self, "i", x)
        self._framesize = x
        x, lmax = convertArgsToLists(x)
        [obj.setFrameSize(wrap(x, i)) for i, obj in enumerate(self._base_players)]

    @property
    def input(self):
        """PyoObject. Phase input signal."""
        return self._input

    @input.setter
    def input(self, x):
        self.setInput(x)

    @property
    def framesize(self):
        """PyoObject. Frame size in samples."""
        return self._framesize

    @framesize.setter
    def framesize(self, x):
        self.setFrameSize(x)


class Vectral(PyoObject):
    """
    Performs magnitude smoothing between successive frames.

    Vectral applies filter with different coefficients for increasing
    and decreasing magnitude vectors, bin by bin.

    :Parent: :py:class:`PyoObject`

    :Args:

        input: PyoObject
            Magnitude input signal, usually from an FFT analysis.
        framesize: int, optional
            Frame size in samples. Usually the same as the FFT size.
            Defaults to 1024.
        overlaps: int, optional
            Number of overlaps in incomming signal. Usually the same
            as the FFT overlaps. Defaults to 4.
        up: float or PyoObject, optional
            Filter coefficient for increasing bins, between 0 and 1.
            Lower values results in a longer ramp time for bin magnitude.
            Defaults to 1.
        down: float or PyoObject, optional
            Filter coefficient for decreasing bins, between 0 and 1.
            Lower values results in a longer decay time for bin magnitude.
            Defaults to 0.7
        damp: float or PyoObject, optional
            High frequencies damping factor, between 0 and 1. Lower values
            mean more damping. Defaults to 0.9.

    .. note::

        Vectral has no `out` method. Signal must be converted back to time domain,
        with IFFT, before being sent to output.

    >>> s = Server().boot()
    >>> snd = SNDS_PATH + '/accord.aif'
    >>> size, olaps = 1024, 4
    >>> snd = SfPlayer(snd, speed=[.75,.8], loop=True, mul=.3)
    >>> fin = FFT(snd, size=size, overlaps=olaps)
    >>> pol = CarToPol(fin["real"], fin["imag"])
    >>> vec = Vectral(pol["mag"], framesize=size, overlaps=olaps, down=.2, damp=.6)
    >>> car = PolToCar(vec, pol["ang"])
    >>> fout = IFFT(car["real"], car["imag"], size=size, overlaps=olaps).mix(2).out()
    >>> s.start()

    """

    def __init__(self, input, framesize=1024, overlaps=4, up=1.0, down=0.7, damp=0.9, mul=1, add=0):
        pyoArgsAssert(self, "oiiOOOOO", input, framesize, overlaps, up, down, damp, mul, add)
        PyoObject.__init__(self, mul, add)
        self._input = input
        self._framesize = framesize
        self._overlaps = overlaps
        self._up = up
        self._down = down
        self._damp = damp
        self._in_fader = InputFader(input)
        in_fader, framesize, overlaps, up, down, damp, mul, add, lmax = convertArgsToLists(
            self._in_fader, framesize, overlaps, up, down, damp, mul, add
        )
        num_of_mains = len(self._in_fader) // self._overlaps
        self._base_players = []
        for j in range(num_of_mains):
            objs_list = []
            for i in range(len(self._in_fader)):
                if (i % num_of_mains) == j:
                    objs_list.append(self._in_fader[i])
            self._base_players.append(
                VectralMain_base(
                    objs_list, wrap(framesize, j), wrap(overlaps, j), wrap(up, j), wrap(down, j), wrap(damp, j)
                )
            )
        self._base_objs = []
        for i in range(lmax):
            base_player = i % num_of_mains
            overlap = i // num_of_mains
            self._base_objs.append(Vectral_base(self._base_players[base_player], overlap, wrap(mul, i), wrap(add, i)))
        self._init_play()

    def out(self, chnl=0, inc=1, dur=0, delay=0):
        return self.play(dur, delay)

    def setInput(self, x, fadetime=0.05):
        """
        Replace the `input` attribute.

        :Args:

            x: PyoObject
                New signal to process.
            fadetime: float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        pyoArgsAssert(self, "oN", x, fadetime)
        self._input = x
        self._in_fader.setInput(x, fadetime)

    def setFrameSize(self, x):
        """
        Replace the `framesize` attribute.

        :Args:

            x: int
                new `framesize` attribute.

        """
        pyoArgsAssert(self, "i", x)
        self._framesize = x
        x, lmax = convertArgsToLists(x)
        [obj.setFrameSize(wrap(x, i)) for i, obj in enumerate(self._base_players)]

    def setUp(self, x):
        """
        Replace the `up` attribute.

        :Args:

            x: float or PyoObject
                new `up` attribute.

        """
        pyoArgsAssert(self, "O", x)
        self._up = x
        x, lmax = convertArgsToLists(x)
        [obj.setUp(wrap(x, i)) for i, obj in enumerate(self._base_players)]

    def setDown(self, x):
        """
        Replace the `down` attribute.

        :Args:

            x: float or PyoObject
                new `down` attribute.

        """
        pyoArgsAssert(self, "O", x)
        self._down = x
        x, lmax = convertArgsToLists(x)
        [obj.setDown(wrap(x, i)) for i, obj in enumerate(self._base_players)]

    def setDamp(self, x):
        """
        Replace the `damp` attribute.

        :Args:

            x: float or PyoObject
                new `damp` attribute.

        """
        pyoArgsAssert(self, "O", x)
        self._damp = x
        x, lmax = convertArgsToLists(x)
        [obj.setDamp(wrap(x, i)) for i, obj in enumerate(self._base_players)]

    def ctrl(self, map_list=None, title=None, wxnoserver=False):
        self._map_list = [
            SLMap(0.0, 1.0, "lin", "up", self._up),
            SLMap(0.0, 1.0, "lin", "down", self._down),
            SLMap(0.0, 1.0, "lin", "damp", self._damp),
            SLMapMul(self._mul),
        ]
        PyoObject.ctrl(self, map_list, title, wxnoserver)

    @property
    def input(self):
        """PyoObject. Magnitude input signal."""
        return self._input

    @input.setter
    def input(self, x):
        self.setInput(x)

    @property
    def framesize(self):
        """int. Frame size in samples."""
        return self._framesize

    @framesize.setter
    def framesize(self, x):
        self.setFrameSize(x)

    @property
    def up(self):
        """float or PyoObject. Filter coefficient for increasing bins."""
        return self._up

    @up.setter
    def up(self, x):
        self.setUp(x)

    @property
    def down(self):
        """float or PyoObject. Filter coefficient for decreasing bins."""
        return self._down

    @down.setter
    def down(self, x):
        self.setDown(x)

    @property
    def damp(self):
        """float or PyoObject. High frequencies damping factor."""
        return self._damp

    @damp.setter
    def damp(self, x):
        self.setDamp(x)


class CvlVerb(PyoObject):
    """
    Convolution based reverb.

    CvlVerb implements convolution based on a uniformly partitioned overlap-save
    algorithm. This object can be used to convolve an input signal with an
    impulse response soundfile to simulate real acoustic spaces.

    :Parent: :py:class:`PyoObject`

    :Args:

        input: PyoObject
            Input signal to process.
        impulse: string, optional
            Path to the impulse response soundfile. The file must have the same
            sampling rate as the server to get the proper convolution. Available at
            initialization time only. Defaults to 'IRMediumHallStereo.wav', located
            in pyo SNDS_PATH folder.
        size: int {pow-of-two}, optional
            The size in samples of each partition of the impulse file. Small size means
            smaller latency but more computation time. If not a power-of-2, the object
            will find the next power-of-2 greater and use that as the actual partition size.
            This value must also be greater or equal than the server's buffer size.
            Available at initialization time only. Defaults to 1024.
        bal: float or PyoObject, optional
            Balance between wet and dry signal, between 0 and 1. 0 means no
            reverb. Defaults to 0.25.

    .. seealso::

        :py:class:`WGVerb`, :py:class:`STRev`, :py:class:`Freeverb`

    >>> s = Server().boot()
    >>> s.start()
    >>> sf = SfPlayer(SNDS_PATH+"/transparent.aif", loop=True, mul=0.5)
    >>> cv = CvlVerb(sf, SNDS_PATH+"/IRMediumHallStereo.wav", size=1024, bal=0.4).out()

    """

    def __init__(self, input, impulse=SNDS_PATH + "/IRMediumHallStereo.wav", bal=0.25, size=1024, mul=1, add=0):
        pyoArgsAssert(self, "osOiOO", input, impulse, bal, size, mul, add)
        PyoObject.__init__(self, mul, add)
        self._input = input
        self._impulse = impulse
        self._bal = bal
        self._size = size
        self._in_fader = InputFader(input)
        in_fader, bal, size, mul, add, lmax = convertArgsToLists(self._in_fader, bal, size, mul, add)
        impulse, lmax2 = convertArgsToLists(impulse)
        self._base_objs = []
        for file in impulse:
            _size, _dur, _snd_sr, _snd_chnls, _format, _type = sndinfo(file, raise_on_failure=True)
            lmax3 = max(lmax, _snd_chnls)
            self._base_objs.extend(
                [
                    CvlVerb_base(
                        wrap(in_fader, i),
                        stringencode(file),
                        wrap(bal, i),
                        wrap(size, i),
                        i % _snd_chnls,
                        wrap(mul, i),
                        wrap(add, i),
                    )
                    for i in range(lmax3)
                ]
            )
        self._init_play()

    def setInput(self, x, fadetime=0.05):
        """
        Replace the `input` attribute.

        :Args:

            x: PyoObject
                New signal to process.
            fadetime: float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        pyoArgsAssert(self, "oN", x, fadetime)
        self._input = x
        self._in_fader.setInput(x, fadetime)

    def setBal(self, x):
        """
        Replace the `bal` attribute.

        :Args:

            x: float or PyoObject
                new `bal` attribute.

        """
        pyoArgsAssert(self, "O", x)
        self._bal = x
        x, lmax = convertArgsToLists(x)
        [obj.setBal(wrap(x, i)) for i, obj in enumerate(self._base_objs)]

    def ctrl(self, map_list=None, title=None, wxnoserver=False):
        self._map_list = [SLMap(0.0, 1.0, "lin", "bal", self._bal), SLMapMul(self._mul)]
        PyoObject.ctrl(self, map_list, title, wxnoserver)

    @property
    def input(self):
        """PyoObject. Input signal to process."""
        return self._input

    @input.setter
    def input(self, x):
        self.setInput(x)

    @property
    def bal(self):
        """float or PyoObject. Wet / dry balance."""
        return self._bal

    @bal.setter
    def bal(self, x):
        self.setBal(x)


class IFFTMatrix(PyoObject):
    """
    Inverse Fast Fourier Transform with a PyoMatrixObject as input.

    IFFTMatrix takes a matrix as input and read it as it is a sonogram.
    On the current column, given by the `index` argument, the cells
    at the bottom represent the lower frequencies of the spectrum and
    the cells at the top, the higher frequencies of the spectrum.

    Because a matrix is usually used to store bipolar signals (with the
    amplitude between -1 and 1), a cell value of -1 represent a frequency
    bin with no amplitude and a cell value of 1 represents the maximum
    amplitude for the given frequency bin.

    The instantaneous angle value (in polar coordinates) of each frequency
    bin is given by the current sample in the audio signal given to the
    `phase` argument. Generally speaking, the more noisy this signal is,
    the more energy a bin with a positive amplitude value will have.

    :Parent: :py:class:`PyoObject`

    :Args:

        matrix: PyoMatrixObject
            The matrix used like a sonogram.
        index: PyoObject
            Normalized horizontal position in the matrix. 0 is the
            first column and 1 is the last. Positions between two
            columns are interpolated. If this signal is a Phasor,
            the matrix is read from left to right.
        phase: PyoObject
            Instantaneous angle value used to compute the inverse
            FFT. Try different signals like white noise or an oscillator
            with a frequency slightly detuned in relation to the
            frequency of the FFT (sr / fftsize).
        size: int {pow-of-two > 4}, optional
            FFT size. Must be a power of two greater than 4.
            The FFT size is the number of samples used in each
            analysis frame. This value must match the `size`
            attribute of the former FFT object. Defaults to 1024.
        overlaps: int, optional
            The number of overlaped analysis block. Must be a
            positive integer. More overlaps can greatly improved
            sound quality synthesis but it is also more CPU
            expensive. This value must match the `overlaps`
            atribute of the former FFT object. Defaults to 4.
        wintype: int, optional
            Shape of the envelope used to filter each output frame.
            Possible shapes are :

            0. rectangular (no windowing)
            1. Hamming
            2. Hanning
            3. Bartlett (triangular)
            4. Blackman 3-term
            5. Blackman-Harris 4-term
            6. Blackman-Harris 7-term
            7. Tuckey (alpha = 0.66)
            8. Sine (half-sine window)

    .. note::

        The output of IFFTMatrix must be mixed to reconstruct the real
        signal from the overlapped streams. It is left to the user
        to call the mix(number of channels) method on an IFFTMatrix object.

    >>> s = Server().boot()
    >>> s.start()
    >>> m = NewMatrix(512, 512)
    >>> m.genSineTerrain(1, 0.15)
    >>> index = Phasor([0.4, 0.5])
    >>> phase = Noise(0.7)
    >>> fout = IFFTMatrix(m, index, phase, size=2048, overlaps=16, wintype=2).mix(2).out()

    """

    def __init__(self, matrix, index, phase, size=1024, overlaps=4, wintype=2, mul=1, add=0):
        pyoArgsAssert(self, "mooiIiOO", matrix, index, phase, size, overlaps, wintype, mul, add)
        PyoObject.__init__(self, mul, add)
        self._matrix = matrix
        self._index = index
        self._phase = phase
        self._size = size
        self._overlaps = overlaps
        self._wintype = wintype
        matrix, index, phase, size, wintype, mul, add, self._lmax = convertArgsToLists(
            matrix, index, phase, size, wintype, mul, add
        )
        self._base_objs = []
        for j in range(overlaps):
            for i in range(self._lmax):
                hopsize = int(wrap(size, i) / overlaps) * j
                self._base_objs.append(
                    IFFTMatrix_base(
                        wrap(matrix, i),
                        wrap(index, i),
                        wrap(phase, i),
                        wrap(size, i),
                        hopsize,
                        wrap(wintype, i),
                        wrap(mul, i),
                        wrap(add, i),
                    )
                )
        self._init_play()

    def __len__(self):
        return int(len(self._base_objs) / self._overlaps)

    def setIndex(self, x):
        """
        Replace the `index` attribute.

        :Args:

            x: PyoObject
                new `index` attribute.

        """
        pyoArgsAssert(self, "o", x)
        self._index = x
        x, lmax = convertArgsToLists(x)
        for j in range(overlaps):
            for i in range(self._lmax):
                self._base_objs[j * self._overlaps + i].setIndex(wrap(x, i))

    def setPhase(self, x):
        """
        Replace the `phase` attribute.

        :Args:

            x: PyoObject
                new `phase` attribute.

        """
        pyoArgsAssert(self, "o", x)
        self._phase = x
        x, lmax = convertArgsToLists(x)
        for j in range(overlaps):
            for i in range(self._lmax):
                self._base_objs[j * self._overlaps + i].setPhase(wrap(x, i))

    def setSize(self, x):
        """
        Replace the `size` attribute.

        :Args:

            x: int
                new `size` attribute.

        """
        pyoArgsAssert(self, "i", x)
        self._size = x
        x, lmax = convertArgsToLists(x)
        for j in range(overlaps):
            for i in range(self._lmax):
                hopsize = int(wrap(x, i) / self._overlaps) * j
                self._base_objs[j * self._overlaps + i].setSize(wrap(x, i), hopsize)

    def setWinType(self, x):
        """
        Replace the `wintype` attribute.

        :Args:

            x: int
                new `wintype` attribute.

        """
        pyoArgsAssert(self, "i", x)
        self._wintype = x
        x, lmax = convertArgsToLists(x)
        for j in range(overlaps):
            for i in range(self._lmax):
                self._base_objs[j * self._overlaps + i].setWinType(wrap(x, i))

    def ctrl(self, map_list=None, title=None, wxnoserver=False):
        self._map_list = [SLMapMul(self._mul)]
        PyoObject.ctrl(self, map_list, title, wxnoserver)

    @property
    def index(self):
        """PyoObject. Normalized horizontal position."""
        return self._index

    @index.setter
    def index(self, x):
        self.setIndex(x)

    @property
    def phase(self):
        """PyoObject. Instantaneous bin angle value."""
        return self._phase

    @phase.setter
    def phase(self, x):
        self.setPhase(x)

    @property
    def size(self):
        """int. FFT size."""
        return self._size

    @size.setter
    def size(self, x):
        self.setSize(x)

    @property
    def wintype(self):
        """int. Windowing method."""
        return self._wintype

    @wintype.setter
    def wintype(self, x):
        self.setWinType(x)