File: README.md

package info (click to toggle)
python-pyocr 0.8.5-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 548 kB
  • sloc: python: 4,921; makefile: 90; sh: 3
file content (336 lines) | stat: -rw-r--r-- 8,765 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
# PyOCR

PyOCR is an optical character recognition (OCR) tool wrapper for python.
That is, it helps using various OCR tools from a Python program.

It has been tested only on GNU/Linux systems. It should also work on similar
systems (*BSD, etc). It may or may not work on Windows, MacOSX, etc.


## Supported OCR tools

* Libtesseract (Python bindings for the C API)
* Tesseract (wrapper: fork + exec)
* Cuneiform (wrapper: fork + exec)

## Features

* Supports all the image formats supported by [Pillow](https://github.com/python-imaging/Pillow),
  including jpeg, png, gif, bmp, tiff and others
* Various output types: text only, bounding boxes, etc.
* Orientation detection (Tesseract and libtesseract only)
* Can focus on digits only (Tesseract and libtesseract only)
* Can save and reload boxes in hOCR format
* PDF generation (libtesseract only)


## Limitations

* hOCR: Only a subset of the specification is supported. For instance, pages and
  paragraph positions are not stored.


## Installation

```sh
sudo pip3 install pyocr  # Python 3.X
```

or the manual way:
```sh
mkdir -p ~/git ; cd git
git clone https://gitlab.gnome.org/World/OpenPaperwork/pyocr.git
cd pyocr
make install  # will run 'python ./setup.py install'
```


## Usage

### Initialization

```Python
from PIL import Image
import sys

import pyocr
import pyocr.builders

tools = pyocr.get_available_tools()
if len(tools) == 0:
    print("No OCR tool found")
    sys.exit(1)
# The tools are returned in the recommended order of usage
tool = tools[0]
print("Will use tool '%s'" % (tool.get_name()))
# Ex: Will use tool 'libtesseract'

langs = tool.get_available_languages()
print("Available languages: %s" % ", ".join(langs))
lang = langs[0]
print("Will use lang '%s'" % (lang))
# Ex: Will use lang 'fra'
# Note that languages are NOT sorted in any way. Please refer
# to the system locale settings for the default language
# to use.
```

### Image to text

```Python
txt = tool.image_to_string(
    Image.open('test.png'),
    lang=lang,
    builder=pyocr.builders.TextBuilder()
)
# txt is a Python string

word_boxes = tool.image_to_string(
    Image.open('test.png'),
    lang="eng",
    builder=pyocr.builders.WordBoxBuilder()
)
# list of box objects. For each box object:
#   box.content is the word in the box
#   box.position is its position on the page (in pixels)
#
# Beware that some OCR tools (Tesseract for instance)
# may return empty boxes

line_and_word_boxes = tool.image_to_string(
    Image.open('test.png'), lang="fra",
    builder=pyocr.builders.LineBoxBuilder()
)
# list of line objects. For each line object:
#   line.word_boxes is a list of word boxes (the individual words in the line)
#   line.content is the whole text of the line
#   line.position is the position of the whole line on the page (in pixels)
#
# Each word box object has an attribute 'confidence' giving the confidence
# score provided by the OCR tool. Confidence score depends entirely on
# the OCR tool. Only supported with Tesseract and Libtesseract (always 0
# with Cuneiform).
#
# Beware that some OCR tools (Tesseract for instance) may return boxes
# with an empty content.

# Digits - Only Tesseract (not 'libtesseract' yet !)
digits = tool.image_to_string(
    Image.open('test-digits.png'),
    lang=lang,
    builder=pyocr.tesseract.DigitBuilder()
)
# digits is a python string
```

Argument 'lang' is optional. The default value depends of
the tool used.

Argument 'builder' is optional. Default value is
builders.TextBuilder().

If the OCR fails, an exception ```pyocr.PyocrException```
will be raised.

An exception MAY be raised if the input image contains no
text at all (depends on the OCR tool behavior).


### Orientation detection

Currently only available with Tesseract or Libtesseract.

```Python
if tool.can_detect_orientation():
    try:
        orientation = tool.detect_orientation(
            Image.open('test.png'),
            lang='fra'
        )
    except pyocr.PyocrException as exc:
        print("Orientation detection failed: {}".format(exc))
        return
    print("Orientation: {}".format(orientation))
# Ex: Orientation: {
#   'angle': 90,
#   'confidence': 123.4,
# }
```

Angles are given in degrees (range: [0-360[). Exact possible
values depend of the tool used. Tesseract only returns angles =
0, 90, 180, 270.

Confidence is a score arbitrarily defined by the tool. It MAY not
be returned.

detect_orientation() MAY raise an exception if there is no text
detected in the image.


### Writing and reading text files

Writing:

```Python
import codecs
import pyocr
import pyocr.builders

tool = pyocr.get_available_tools()[0]
builder = pyocr.builders.TextBuilder()

txt = tool.image_to_string(
    Image.open('test.png'),
    lang=lang,
    builder=builder
)
# txt is a Python string

with codecs.open("toto.txt", 'w', encoding='utf-8') as file_descriptor:
    builder.write_file(file_descriptor, txt)
# toto.txt is a simple text file, encoded in utf-8
```

Reading:

```Python
import codecs
import pyocr.builders

builder = pyocr.builders.TextBuilder()
with codecs.open("toto.txt", 'r', encoding='utf-8') as file_descriptor:
    txt = builder.read_file(file_descriptor)
# txt is a Python string
```

### Writing and reading hOCR files

Writing:

```Python
import codecs
import pyocr
import pyocr.builders

tool = pyocr.get_available_tools()[0]
builder = pyocr.builders.LineBoxBuilder()

line_boxes = tool.image_to_string(
    Image.open('test.png'),
    lang=lang,
    builder=builder
)
# list of LineBox (each box points to a list of word boxes)

with codecs.open("toto.html", 'w', encoding='utf-8') as file_descriptor:
    builder.write_file(file_descriptor, line_boxes)
# toto.html is a valid XHTML file
```

Reading:

```Python
import codecs
import pyocr.builders

builder = pyocr.builders.LineBoxBuilder()
with codecs.open("toto.html", 'r', encoding='utf-8') as file_descriptor:
    line_boxes = builder.read_file(file_descriptor)
# list of LineBox (each box points to a list of word boxes)
```


### Generating PDF file from an image

With libtesseract >= 4, it's possible to generate a PDF from an image:

```Python
import PIL.Image
import pyocr

image = PIL.Image.open("image.jpg")

builder = pyocr.libtesseract.LibtesseractPdfBuilder()
builder.add_image(image)    # multiple images are added as separate pages
builder.set_lang("deu")     # optional
builder.set_output_file("output_filename") # .pdf will be appended
builder.build()
```

#### Add text layer to PDF

```Python
import pyocr
import pdf2image

images = pdf2image.convert_from_path("file.pdf", dpi=200, fmt='jpg')

builder = pyocr.libtesseract.LibtesseractPdfBuilder()
for image in images:
    builder.add_image(image)
builder.set_output_file("output") # .pdf will be appended
builder.build()
```

Beware this code hasn't been adapted to libtesseract 3 yet.


## Dependencies

* PyOCR requires Python 3.4 or later.
* You will need [Pillow](https://github.com/python-imaging/Pillow)
  or Python Imaging Library (PIL). Under Debian/Ubuntu, Pillow is in
  the package ```python-pil``` (```python3-pil``` for the Python 3
  version).
* Install an OCR:
  * [libtesseract](http://code.google.com/p/tesseract-ocr/)
    ('libtesseract3' + 'tesseract-ocr-<lang>' in Debian).
  * or [tesseract-ocr](http://code.google.com/p/tesseract-ocr/)
    ('tesseract-ocr' + 'tesseract-ocr-<lang>' in Debian).
    You must be able to invoke the tesseract command as "tesseract".
    PyOCR is tested with Tesseract >= 3.01 only.
  * or Cuneiform


## Tests

```sh
make check  # requires pyflake8
make test  # requires tox, pytest and python3
```

Tests are made to be run without external dependencies (no Tesseract or Cuneiform needed).


## OCR on natural scenes

If you want to run OCR on natural scenes (photos, etc), you will have to filter
the image first. There are many algorithms possible to do that. One of those
who gives the best results is [Stroke Width
Transform](https://gitlab.gnome.org/World/OpenPaperwork/libpillowfight#stroke-width-transformation).


## Contact

* [Forum](https://forum.openpaper.work/)
* [Bug tracker](https://gitlab.gnome.org/World/OpenPaperwork/pyocr/issues)


## Applications that use PyOCR

* [Mayan EDMS](http://mayan-edms.com/)
* [Paperless](https://github.com/danielquinn/paperless#readme)
* [Paperwork](https://gitlab.gnome.org/World/OpenPaperwork/paperwork#readme)

If you know of any other applications that use Pyocr, please
[tell us](https://forum.openpaper.work/) :-)

## Copyright

PyOCR is released under the GPL v3+.
Copyright belongs to the authors of each piece of code
(see the file AUTHORS for the contributors list, and
```git blame``` to know which lines belong to which author).

https://gitlab.gnome.org/World/OpenPaperwork/pyocr