File: README.md

package info (click to toggle)
python-pyomop 4.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 532 kB
  • sloc: python: 1,374; sh: 37; makefile: 26
file content (171 lines) | stat: -rw-r--r-- 5,046 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# pyomop

* *Inspired by [@jbadger3's](https://github.com/jbadger3) [inspectomop](https://github.com/jbadger3/inspectomop)*

### [Documentation](https://dermatologist.github.io/pyomop/)

## UPDATE
Recently added support for **LLM based natural language queries** of OMOP CDM databases using [llama-index](examples/llm_example.py). Please install the llm extras as follows. Please be cognizant of the privacy issues with publically hosted LLMs. Any feedback will be highly appreciated. [See usage](examples/llm_example.py)!

```
git clone https://github.com/dermatologist/pyomop.git@develop
cd pyomop
pip install pyomop[llm]
```
[See usage](examples/llm_example.py).

## Description

The [OHSDI](https://www.ohdsi.org/) OMOP Common Data Model allows for the systematic analysis of healthcare observational databases. This is a python library to use the CDM v6 compliant databases using SQLAlchemy as the ORM. **pyomop** also supports converting query results to a pandas dataframe (see below) for use in machine learning pipelines. See some useful [SQL Queries here.](https://github.com/OHDSI/QueryLibrary)

## Installation (stable)

```
pip install pyomop

```

## Installation (current)

* git clone this repository and:
```
pip install -e .
```

## Usage >= 4.0.0 (Async) Example
```
from pyomop import CdmEngineFactory, CdmVocabulary, CdmVector, Cohort, Vocabulary, metadata
from sqlalchemy.future import select
import datetime
import asyncio

async def main():
    cdm = CdmEngineFactory()  # Creates SQLite database by default
    # Postgres example (db='mysql' also supported)
    # cdm = CdmEngineFactory(db='pgsql', host='', port=5432,
    #                       user='', pw='',
    #                       name='', schema='cdm6')

    engine = cdm.engine
    # Create Tables if required
    await cdm.init_models(metadata)
    # Create vocabulary if required
    vocab = CdmVocabulary(cdm)
    # vocab.create_vocab('/path/to/csv/files')  # Uncomment to load vocabulary csv files

    # Add a cohort
    async with cdm.session() as session:
        async with session.begin():
            session.add(Cohort(cohort_definition_id=2, subject_id=100,
                cohort_end_date=datetime.datetime.now(),
                cohort_start_date=datetime.datetime.now()))
        await session.commit()

    # Query the cohort
    stmt = select(Cohort).where(Cohort.subject_id == 100)
    result = await session.execute(stmt)
    for row in result.scalars():
        print(row)
        assert row.subject_id == 100

    # Query the cohort pattern 2
    cohort = await session.get(Cohort, 1)
    print(cohort)
    assert cohort.subject_id == 100

    # Convert result to a pandas dataframe
    vec = CdmVector()
    vec.result = result
    print(vec.df.dtypes)

    result = await vec.sql_df(cdm, 'TEST') # TEST is defined in sqldict.py
    for row in result:
        print(row)

    result = await vec.sql_df(cdm, query='SELECT * from cohort')
    for row in result:
        print(row)


    # Close session
    await session.close()
    await engine.dispose()

# Run the main function
asyncio.run(main())
```

## Usage <=3.2.0

```

from pyomop import CdmEngineFactory, CdmVocabulary, CdmVector, Cohort, Vocabulary, metadata
from sqlalchemy.sql import select
import datetime

cdm = CdmEngineFactory()  # Creates SQLite database by default

# Postgres example (db='mysql' also supported)
# cdm = CdmEngineFactory(db='pgsql', host='', port=5432,
#                       user='', pw='',
#                       name='', schema='cdm6')


engine = cdm.engine
# Create Tables if required
metadata.create_all(engine)
# Create vocabulary if required
vocab = CdmVocabulary(cdm)
# vocab.create_vocab('/path/to/csv/files')  # Uncomment to load vocabulary csv files

# Create a Cohort (SQLAlchemy as ORM)
session =  cdm.session
session.add(Cohort(cohort_definition_id=2, subject_id=100,
            cohort_end_date=datetime.datetime.now(),
            cohort_start_date=datetime.datetime.now()))
session.commit()

result = session.query(Cohort).all()
for row in result:
    print(row)

# Convert result to a pandas dataframe
vec = CdmVector()
vec.result = result
print(vec.df.dtypes)

# Execute a query and convert it to dataframe
vec.sql_df(cdm, 'TEST') # TEST is defined in sqldict.py
print(vec.df.dtypes) # vec.df is a pandas dataframe
# OR
vec.sql_df(cdm, query='SELECT * from cohort')
print(vec.df.dtypes) # vec.df is a pandas dataframe


```

## command-line usage

```
pyomop -help
```

## Other utils

**Want to convert FHIR to pandas data frame? Try [fhiry](https://github.com/dermatologist/fhiry)**

**Use the same functions in [.NET](https://github.com/dermatologist/omopcdm-dot-net) and [Golang](https://github.com/E-Health/gocdm)!**

### Support
* Postgres
* MySQL
* SqLite
* More to follow..

## Give us a star ⭐️
If you find this project useful, give us a star. It helps others discover the project.

## Contributors

* [Bell Eapen](https://nuchange.ca) | [Twitter Follow](https://twitter.com/beapen)
* PRs welcome. See CONTRIBUTING.md