File: examples.rst

package info (click to toggle)
python-pyproj 3.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,720 kB
  • sloc: python: 13,468; sh: 273; makefile: 90
file content (478 lines) | stat: -rw-r--r-- 15,702 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
.. _examples:

Getting Started
===============

There are examples of usage within the API documentation and tests. This
section is to demonstrate recommended usage.

Also see: :ref:`gotchas`


Using CRS
---------
For more usage examples and documentation see :class:`pyproj.crs.CRS`.

Initializing CRS
~~~~~~~~~~~~~~~~

The :class:`pyproj.crs.CRS` class can be initialized in many different ways.
Here are some examples of initialization.


.. code:: python

    >>> from pyproj import CRS
    >>> crs = CRS.from_epsg(4326)
    >>> crs = CRS.from_string("EPSG:4326")
    >>> crs = CRS.from_proj4("+proj=latlon")
    >>> crs = CRS.from_user_input(4326)


Converting CRS to a different format
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. warning:: You will likely lose important projection
    information when converting to a PROJ string from
    another format. See: https://proj4.org/faq.html#what-is-the-best-format-for-describing-coordinate-reference-systems


.. code:: python

    >>> from pyproj import CRS
    >>> crs = CRS.from_epsg(4326)
    >>> crs.to_epsg()
    4326
    >>> crs.to_authority()
    ('EPSG', '4326')
    >>> crs = CRS.from_proj4("+proj=omerc +lat_0=-36 +lonc=147 +alpha=-54 +k=1 +x_0=0 +y_0=0 +gamma=0 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0")
    >>> crs
    <Bound CRS: +proj=omerc +lat_0=-36 +lonc=147 +alpha=-54 +k=1 + ...>
    Name: unknown
    Axis Info [cartesian]:
    - E[east]: Easting (metre)
    - N[north]: Northing (metre)
    Area of Use:
    - undefined
    Coordinate Operation:
    - name: Transformation from unknown to WGS84
    - method: Position Vector transformation (geog2D domain)
    Datum: Unknown based on WGS84 ellipsoid
    - Ellipsoid: WGS 84
    - Prime Meridian: Greenwich
    Source CRS: unknown

    >>> print(crs.to_wkt(pretty=True))
    BOUNDCRS[
        SOURCECRS[
            PROJCRS["unknown",
                BASEGEOGCRS["unknown",
                    DATUM["Unknown based on WGS84 ellipsoid",
                        ELLIPSOID["WGS 84",6378137,298.257223563,
                            LENGTHUNIT["metre",1],
                            ID["EPSG",7030]]],
    ...
            PARAMETER["Z-axis rotation",0,
                ID["EPSG",8610]],
            PARAMETER["Scale difference",1,
                ID["EPSG",8611]]]]

    >>> from pyproj.enums import WktVersion
    >>> print(crs.to_wkt(WktVersion.WKT1_GDAL, pretty=True))
    PROJCS["unknown",
        GEOGCS["unknown",
            DATUM["Unknown_based_on_WGS84_ellipsoid",
                SPHEROID["WGS 84",6378137,298.257223563,
                    AUTHORITY["EPSG","7030"]],
                TOWGS84[0,0,0,0,0,0,0]],
            PRIMEM["Greenwich",0,
                AUTHORITY["EPSG","8901"]],
            UNIT["degree",0.0174532925199433,
                AUTHORITY["EPSG","9122"]]],
        PROJECTION["Hotine_Oblique_Mercator_Azimuth_Center"],
        PARAMETER["latitude_of_center",-36],
        PARAMETER["longitude_of_center",147],
        PARAMETER["azimuth",-54],
        PARAMETER["rectified_grid_angle",0],
        PARAMETER["scale_factor",1],
        PARAMETER["false_easting",0],
        PARAMETER["false_northing",0],
        UNIT["metre",1,
            AUTHORITY["EPSG","9001"]],
        AXIS["Easting",EAST],
        AXIS["Northing",NORTH]]

    >>> from pprint import pprint
    >>> pprint(crs.to_cf())
    {'azimuth_of_central_line': -54,
    'crs_wkt': 'BOUNDCRS[SOURCECRS[PROJCRS["unknown",BASEGEOGCRS["unknown",DATUM["Unknown '
    ...
                'difference",1,ID["EPSG",8611]]]]',
    'false_easting': 0.0,
    'false_northing': 0.0,
    'grid_mapping_name': 'oblique_mercator',
    'horizontal_datum_name': 'Unknown based on WGS84 ellipsoid',
    'inverse_flattening': 298.257223563,
    'latitude_of_projection_origin': -36.0,
    'longitude_of_prime_meridian': 0.0,
    'longitude_of_projection_origin': 147.0,
    'prime_meridian_name': 'Greenwich',
    'reference_ellipsoid_name': 'WGS 84',
    'scale_factor_at_projection_origin': 1.0,
    'semi_major_axis': 6378137.0,
    'semi_minor_axis': 6356752.314245179,
    'towgs84': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}


Extracting attributes from CRS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

There are many attributes you can pull from the :class:`pyproj.crs.CRS`.
This is just a small subset of what is available.


.. code:: python

    >>> crs = CRS("urn:ogc:def:crs,crs:EPSG::2393,crs:EPSG::5717")
    >>> crs
    <Compound CRS: EPSG:3901>
    Name: KKJ / Finland Uniform Coordinate System + N60 height
    Axis Info [cartesian|vertical]:
    - X[north]: Northing (metre)
    - Y[east]: Easting (metre)
    - H[up]: Gravity-related height (metre)
    Area of Use:
    - undefined
    Datum: Kartastokoordinaattijarjestelma (1966)
    - Ellipsoid: International 1924
    - Prime Meridian: Greenwich
    Sub CRS:
    - KKJ / Finland Uniform Coordinate System
    - N60 height
    >>> crs.sub_crs_list
    [<Projected CRS: EPSG:2393>
    Name: KKJ / Finland Uniform Coordinate System
    Axis Info [cartesian]:
    - X[north]: Northing (metre)
    - Y[east]: Easting (metre)
    Area of Use:
    - name: Finland - 25.5°E to 28.5°E onshore. Also all country.
    - bounds: (19.24, 59.75, 31.59, 70.09)
    Coordinate Operation:
    - name: Finland Uniform Coordinate System
    - method: Transverse Mercator
    Datum: Kartastokoordinaattijarjestelma (1966)
    - Ellipsoid: International 1924
    - Prime Meridian: Greenwich
    , <Vertical CRS: EPSG:5717>
    Name: N60 height
    Axis Info [vertical]:
    - H[up]: Gravity-related height (metre)
    Area of Use:
    - name: Finland - onshore.
    - bounds: (19.24, 59.75, 31.59, 70.09)
    Datum: Helsinki 1960
    - Ellipsoid: undefined
    - Prime Meridian: undefined
    ]
    >>> cop = crs.sub_crs_list[0].coordinate_operation
    >>> print(cop.to_wkt(pretty=True))
    CONVERSION["Finland Uniform Coordinate System",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",0,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",27,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",3500000,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",0,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]]
    >>> cop.method_code
    '9807'
    >>> cop.method_name
    'Transverse Mercator'
    >>> cop.params
    [Param(name=Latitude of natural origin, auth_name=EPSG, code=8801, value=0.0, unit_name=degree, unit_auth_name=, unit_code=, unit_category=angular),
     ...
     Param(name=False northing, auth_name=EPSG, code=8807, value=0.0, unit_name=metre, unit_auth_name=, unit_code=, unit_category=linear)]


Find UTM CRS by Latitude and Longitude
---------------------------------------

.. note:: For more database methods see: :ref:`database`.

.. code-block:: python

    from pyproj import CRS
    from pyproj.aoi import AreaOfInterest
    from pyproj.database import query_utm_crs_info

    utm_crs_list = query_utm_crs_info(
        datum_name="WGS 84",
        area_of_interest=AreaOfInterest(
            west_lon_degree=-93.581543,
            south_lat_degree=42.032974,
            east_lon_degree=-93.581543,
            north_lat_degree=42.032974,
        ),
    )
    utm_crs = CRS.from_epsg(utm_crs_list[0].code)


Transformations from CRS to CRS
-------------------------------

Step 1: Inspect CRS definition to ensure proper area of use and axis order
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For more options available for inspection, usage examples,
and documentation see :class:`pyproj.crs.CRS`.

.. code:: python

    >>> from pyproj import CRS
    >>> crs_4326 = CRS.from_epsg(4326)
    >>> crs_4326
    <Geographic 2D CRS: EPSG:4326>
    Name: WGS 84
    Axis Info [ellipsoidal]:
    - Lat[north]: Geodetic latitude (degree)
    - Lon[east]: Geodetic longitude (degree)
    Area of Use:
    - name: World
    - bounds: (-180.0, -90.0, 180.0, 90.0)
    Datum: World Geodetic System 1984
    - Ellipsoid: WGS 84
    - Prime Meridian: Greenwich

    >>> crs_26917 = CRS.from_epsg(26917)
    >>> crs_26917
    <Projected CRS: EPSG:26917>
    Name: NAD83 / UTM zone 17N
    Axis Info [cartesian]:
    - E[east]: Easting (metre)
    - N[north]: Northing (metre)
    Area of Use:
    - name: North America - 84°W to 78°W and NAD83 by country
    - bounds: (-84.0, 23.81, -78.0, 84.0)
    Coordinate Operation:
    - name: UTM zone 17N
    - method: Transverse Mercator
    Datum: North American Datum 1983
    - Ellipsoid: GRS 1980
    - Prime Meridian: Greenwich


Note that `crs_4326` has the latitude (north) axis first and the `crs_26917`
has the easting axis first. This means that in the transformation, we will need
to input the data with latitude first and longitude second. Also, note that the
second projection is a UTM projection with bounds (-84.0, 23.81, -78.0, 84.0) which
are in the form (min_x, min_y, max_x, max_y), so the transformation input/output should
be within those bounds for best results.


Step 2: Create Transformer to convert from CRS to CRS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The :class:`pyproj.transformer.Transformer` can be initialized with anything supported
by :meth:`pyproj.crs.CRS.from_user_input`. There are a couple of examples added
here for demonstration. For more usage examples and documentation,
see :class:`pyproj.transformer.Transformer`.


.. code:: python

    >>> from pyproj import Transformer
    >>> transformer = Transformer.from_crs(crs_4326, crs_26917)
    >>> transformer = Transformer.from_crs(4326, 26917)
    >>> transformer = Transformer.from_crs("EPSG:4326", "EPSG:26917")
    >>> transformer
    <Unknown Transformer: unknown>
    Inverse of NAD83 to WGS 84 (1) + UTM zone 17N
    >>> transformer.transform(50, -80)
    (571666.4475041276, 5539109.815175673)

If you prefer to always have the axis order in the x,y or lon,lat order,
you can use the `always_xy` option when creating the transformer.

.. code:: python

    >>> from pyproj import Transformer
    >>> transformer = Transformer.from_crs("EPSG:4326", "EPSG:26917", always_xy=True)
    >>> transformer.transform(-80, 50)
    (571666.4475041276, 5539109.815175673)



Converting between geographic and projection coordinates within one datum
-------------------------------------------------------------------------

Step 1: Retrieve the geodetic CRS based on original CRS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. code:: python

    >>> from pyproj import CRS
    >>> crs = CRS.from_epsg(3857)
    >>> crs
    <Projected CRS: EPSG:3857>
    Name: WGS 84 / Pseudo-Mercator
    Axis Info [cartesian]:
    - X[east]: Easting (metre)
    - Y[north]: Northing (metre)
    Area of Use:
    - name: World - 85°S to 85°N
    - bounds: (-180.0, -85.06, 180.0, 85.06)
    Coordinate Operation:
    - name: Popular Visualisation Pseudo-Mercator
    - method: Popular Visualisation Pseudo Mercator
    Datum: World Geodetic System 1984
    - Ellipsoid: WGS 84
    - Prime Meridian: Greenwich

    >>> crs.geodetic_crs
    <Geographic 2D CRS: EPSG:4326>
    Name: WGS 84
    Axis Info [ellipsoidal]:
    - Lat[north]: Geodetic latitude (degree)
    - Lon[east]: Geodetic longitude (degree)
    Area of Use:
    - name: World
    - bounds: (-180.0, -90.0, 180.0, 90.0)
    Datum: World Geodetic System 1984
    - Ellipsoid: WGS 84
    - Prime Meridian: Greenwich



Step 2: Create Transformer to convert from geodetic CRS to CRS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. code:: python

    >>> proj = Transformer.from_crs(crs.geodetic_crs, crs)
    >>> proj
    <Conversion Transformer: pipeline>
    Popular Visualisation Pseudo-Mercator
    Area of Use:
    - name: World
    - bounds: (-180.0, -90.0, 180.0, 90.0)
    >>> proj.transform(12, 15)
    (1669792.3618991035, 1345708.4084091093)


4D Transformations with Time
----------------------------

.. note:: If you are doing a transformation with a CRS that is time based,
    it is recommended to include the time in the transformation operation.


.. code:: python

    >>> transformer = Transformer.from_crs(7789, 8401)
    >>> transformer
    <Transformation Transformer: helmert>
    ITRF2014 to ETRF2014 (1)
    >>> transformer.transform(xx=3496737.2679, yy=743254.4507, zz=5264462.9620, tt=2019.0)
    (3496737.757717311, 743253.9940103051, 5264462.701132784, 2019.0)



Geodesic calculations
---------------------
This is useful if you need to calculate the distance between two
points or the area of a geometry on Earth's surface.

For more examples of usage and documentation, see :class:`pyproj.Geod`.


Creating Geod class
~~~~~~~~~~~~~~~~~~~

This example demonstrates creating a :class:`pyproj.Geod` using an
ellipsoid name as well as deriving one using a :class:`pyproj.crs.CRS`.

.. code:: python

    >>> from pyproj import CRS, Geod
    >>> geod_clrk = Geod(ellps='clrk66') # Use Clarke 1866 ellipsoid.
    >>> geod_clrk
    Geod(ellps='clrk66')
    >>> geod_wgs84 = CRS("EPSG:4326").get_geod()
    >>> geod_wgs84
    Geod('+a=6378137 +f=0.0033528106647475126')


Geodesic line length
~~~~~~~~~~~~~~~~~~~~

Calculate the geodesic length of a line (See: :meth:`pyproj.Geod.line_length`):

.. code:: python

    >>> from pyproj import Geod
    >>> lats = [-72.9, -71.9, -74.9, -74.3, -77.5, -77.4, -71.7, -65.9, -65.7,
    ...         -66.6, -66.9, -69.8, -70.0, -71.0, -77.3, -77.9, -74.7]
    >>> lons = [-74, -102, -102, -131, -163, 163, 172, 140, 113,
    ...         88, 59, 25, -4, -14, -33, -46, -61]
    >>> geod = Geod(ellps="WGS84")
    >>> total_length = geod.line_length(lons, lats)
    >>> f"{total_length:.3f}"
    '14259605.611'

Calculate the geodesic length of a shapely geometry (See: :meth:`pyproj.Geod.geometry_length`):

.. code:: python

    >>> from pyproj import Geod
    >>> from shapely.geometry import Point, LineString
    >>> line_string = LineString([Point(1, 2), Point(3, 4)]))
    >>> geod = Geod(ellps="WGS84")
    >>> total_length = geod.geometry_length(line_string)
    >>> f"{total_length:.3f}"
    '313588.397'


Geodesic area
~~~~~~~~~~~~~

Calculate the geodesic area and perimeter of a polygon (See: :meth:`pyproj.Geod.polygon_area_perimeter`):

.. code:: python

    >>> from pyproj import Geod
    >>> geod = Geod('+a=6378137 +f=0.0033528106647475126')
    >>> lats = [-72.9, -71.9, -74.9, -74.3, -77.5, -77.4, -71.7, -65.9, -65.7,
    ...         -66.6, -66.9, -69.8, -70.0, -71.0, -77.3, -77.9, -74.7]
    >>> lons = [-74, -102, -102, -131, -163, 163, 172, 140, 113,
    ...         88, 59, 25, -4, -14, -33, -46, -61]
    >>> poly_area, poly_perimeter = geod.polygon_area_perimeter(lons, lats)
    >>> f"{poly_area:.3f} {poly_perimeter:.3f}"
    '13376856682207.406 14710425.407'


Calculate the geodesic area and perimeter of a shapely polygon (See: :meth:`pyproj.Geod.geometry_area_perimeter`):


.. code:: python

    >>> from pyproj import Geod
    >>> from shapely.geometry import LineString, Point, Polygon
    >>> geod = Geod('+a=6378137 +f=0.0033528106647475126')
    >>> poly_area, poly_perimeter = geod.geometry_area_perimeter(
            Polygon(
                LineString([Point(1, 1), Point(1, 10), Point(10, 10), Point(10, 1)]),
                holes=[LineString([Point(1, 2), Point(3, 4), Point(5, 2)])],
            )
        )
    >>> f"{poly_area:.3f} {poly_perimeter:.3f}"
    '-944373881400.339 3979008.036'