1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
|
.. _examples:
Getting Started
===============
There are examples of usage within the API documentation and tests. This
section is to demonstrate recommended usage.
Also see: :ref:`gotchas`
Using CRS
---------
For more usage examples and documentation see :class:`pyproj.crs.CRS`.
Initializing CRS
~~~~~~~~~~~~~~~~
The :class:`pyproj.crs.CRS` class can be initialized in many different ways.
Here are some examples of initialization.
.. code:: python
>>> from pyproj import CRS
>>> crs = CRS.from_epsg(4326)
>>> crs = CRS.from_string("EPSG:4326")
>>> crs = CRS.from_proj4("+proj=latlon")
>>> crs = CRS.from_user_input(4326)
Converting CRS to a different format
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. warning:: You will likely lose important projection
information when converting to a PROJ string from
another format. See: https://proj4.org/faq.html#what-is-the-best-format-for-describing-coordinate-reference-systems
.. code:: python
>>> from pyproj import CRS
>>> crs = CRS.from_epsg(4326)
>>> crs.to_epsg()
4326
>>> crs.to_authority()
('EPSG', '4326')
>>> crs = CRS.from_proj4("+proj=omerc +lat_0=-36 +lonc=147 +alpha=-54 +k=1 +x_0=0 +y_0=0 +gamma=0 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0")
>>> crs
<Bound CRS: +proj=omerc +lat_0=-36 +lonc=147 +alpha=-54 +k=1 + ...>
Name: unknown
Axis Info [cartesian]:
- E[east]: Easting (metre)
- N[north]: Northing (metre)
Area of Use:
- undefined
Coordinate Operation:
- name: Transformation from unknown to WGS84
- method: Position Vector transformation (geog2D domain)
Datum: Unknown based on WGS84 ellipsoid
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich
Source CRS: unknown
>>> print(crs.to_wkt(pretty=True))
BOUNDCRS[
SOURCECRS[
PROJCRS["unknown",
BASEGEOGCRS["unknown",
DATUM["Unknown based on WGS84 ellipsoid",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1],
ID["EPSG",7030]]],
...
PARAMETER["Z-axis rotation",0,
ID["EPSG",8610]],
PARAMETER["Scale difference",1,
ID["EPSG",8611]]]]
>>> from pyproj.enums import WktVersion
>>> print(crs.to_wkt(WktVersion.WKT1_GDAL, pretty=True))
PROJCS["unknown",
GEOGCS["unknown",
DATUM["Unknown_based_on_WGS84_ellipsoid",
SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG","7030"]],
TOWGS84[0,0,0,0,0,0,0]],
PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],
UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9122"]]],
PROJECTION["Hotine_Oblique_Mercator_Azimuth_Center"],
PARAMETER["latitude_of_center",-36],
PARAMETER["longitude_of_center",147],
PARAMETER["azimuth",-54],
PARAMETER["rectified_grid_angle",0],
PARAMETER["scale_factor",1],
PARAMETER["false_easting",0],
PARAMETER["false_northing",0],
UNIT["metre",1,
AUTHORITY["EPSG","9001"]],
AXIS["Easting",EAST],
AXIS["Northing",NORTH]]
>>> from pprint import pprint
>>> pprint(crs.to_cf())
{'azimuth_of_central_line': -54,
'crs_wkt': 'BOUNDCRS[SOURCECRS[PROJCRS["unknown",BASEGEOGCRS["unknown",DATUM["Unknown '
...
'difference",1,ID["EPSG",8611]]]]',
'false_easting': 0.0,
'false_northing': 0.0,
'grid_mapping_name': 'oblique_mercator',
'horizontal_datum_name': 'Unknown based on WGS84 ellipsoid',
'inverse_flattening': 298.257223563,
'latitude_of_projection_origin': -36.0,
'longitude_of_prime_meridian': 0.0,
'longitude_of_projection_origin': 147.0,
'prime_meridian_name': 'Greenwich',
'reference_ellipsoid_name': 'WGS 84',
'scale_factor_at_projection_origin': 1.0,
'semi_major_axis': 6378137.0,
'semi_minor_axis': 6356752.314245179,
'towgs84': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}
Extracting attributes from CRS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are many attributes you can pull from the :class:`pyproj.crs.CRS`.
This is just a small subset of what is available.
.. code:: python
>>> crs = CRS("urn:ogc:def:crs,crs:EPSG::2393,crs:EPSG::5717")
>>> crs
<Compound CRS: EPSG:3901>
Name: KKJ / Finland Uniform Coordinate System + N60 height
Axis Info [cartesian|vertical]:
- X[north]: Northing (metre)
- Y[east]: Easting (metre)
- H[up]: Gravity-related height (metre)
Area of Use:
- undefined
Datum: Kartastokoordinaattijarjestelma (1966)
- Ellipsoid: International 1924
- Prime Meridian: Greenwich
Sub CRS:
- KKJ / Finland Uniform Coordinate System
- N60 height
>>> crs.sub_crs_list
[<Projected CRS: EPSG:2393>
Name: KKJ / Finland Uniform Coordinate System
Axis Info [cartesian]:
- X[north]: Northing (metre)
- Y[east]: Easting (metre)
Area of Use:
- name: Finland - 25.5°E to 28.5°E onshore. Also all country.
- bounds: (19.24, 59.75, 31.59, 70.09)
Coordinate Operation:
- name: Finland Uniform Coordinate System
- method: Transverse Mercator
Datum: Kartastokoordinaattijarjestelma (1966)
- Ellipsoid: International 1924
- Prime Meridian: Greenwich
, <Vertical CRS: EPSG:5717>
Name: N60 height
Axis Info [vertical]:
- H[up]: Gravity-related height (metre)
Area of Use:
- name: Finland - onshore.
- bounds: (19.24, 59.75, 31.59, 70.09)
Datum: Helsinki 1960
- Ellipsoid: undefined
- Prime Meridian: undefined
]
>>> cop = crs.sub_crs_list[0].coordinate_operation
>>> print(cop.to_wkt(pretty=True))
CONVERSION["Finland Uniform Coordinate System",
METHOD["Transverse Mercator",
ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",0,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",27,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8802]],
PARAMETER["Scale factor at natural origin",1,
SCALEUNIT["unity",1],
ID["EPSG",8805]],
PARAMETER["False easting",3500000,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],
PARAMETER["False northing",0,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]]
>>> cop.method_code
'9807'
>>> cop.method_name
'Transverse Mercator'
>>> cop.params
[Param(name=Latitude of natural origin, auth_name=EPSG, code=8801, value=0.0, unit_name=degree, unit_auth_name=, unit_code=, unit_category=angular),
...
Param(name=False northing, auth_name=EPSG, code=8807, value=0.0, unit_name=metre, unit_auth_name=, unit_code=, unit_category=linear)]
Find UTM CRS by Latitude and Longitude
---------------------------------------
.. note:: For more database methods see: :ref:`database`.
.. code-block:: python
from pyproj import CRS
from pyproj.aoi import AreaOfInterest
from pyproj.database import query_utm_crs_info
utm_crs_list = query_utm_crs_info(
datum_name="WGS 84",
area_of_interest=AreaOfInterest(
west_lon_degree=-93.581543,
south_lat_degree=42.032974,
east_lon_degree=-93.581543,
north_lat_degree=42.032974,
),
)
utm_crs = CRS.from_epsg(utm_crs_list[0].code)
Transformations from CRS to CRS
-------------------------------
Step 1: Inspect CRS definition to ensure proper area of use and axis order
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For more options available for inspection, usage examples,
and documentation see :class:`pyproj.crs.CRS`.
.. code:: python
>>> from pyproj import CRS
>>> crs_4326 = CRS.from_epsg(4326)
>>> crs_4326
<Geographic 2D CRS: EPSG:4326>
Name: WGS 84
Axis Info [ellipsoidal]:
- Lat[north]: Geodetic latitude (degree)
- Lon[east]: Geodetic longitude (degree)
Area of Use:
- name: World
- bounds: (-180.0, -90.0, 180.0, 90.0)
Datum: World Geodetic System 1984
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich
>>> crs_26917 = CRS.from_epsg(26917)
>>> crs_26917
<Projected CRS: EPSG:26917>
Name: NAD83 / UTM zone 17N
Axis Info [cartesian]:
- E[east]: Easting (metre)
- N[north]: Northing (metre)
Area of Use:
- name: North America - 84°W to 78°W and NAD83 by country
- bounds: (-84.0, 23.81, -78.0, 84.0)
Coordinate Operation:
- name: UTM zone 17N
- method: Transverse Mercator
Datum: North American Datum 1983
- Ellipsoid: GRS 1980
- Prime Meridian: Greenwich
Note that `crs_4326` has the latitude (north) axis first and the `crs_26917`
has the easting axis first. This means that in the transformation, we will need
to input the data with latitude first and longitude second. Also, note that the
second projection is a UTM projection with bounds (-84.0, 23.81, -78.0, 84.0) which
are in the form (min_x, min_y, max_x, max_y), so the transformation input/output should
be within those bounds for best results.
Step 2: Create Transformer to convert from CRS to CRS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The :class:`pyproj.transformer.Transformer` can be initialized with anything supported
by :meth:`pyproj.crs.CRS.from_user_input`. There are a couple of examples added
here for demonstration. For more usage examples and documentation,
see :class:`pyproj.transformer.Transformer`.
.. code:: python
>>> from pyproj import Transformer
>>> transformer = Transformer.from_crs(crs_4326, crs_26917)
>>> transformer = Transformer.from_crs(4326, 26917)
>>> transformer = Transformer.from_crs("EPSG:4326", "EPSG:26917")
>>> transformer
<Unknown Transformer: unknown>
Inverse of NAD83 to WGS 84 (1) + UTM zone 17N
>>> transformer.transform(50, -80)
(571666.4475041276, 5539109.815175673)
If you prefer to always have the axis order in the x,y or lon,lat order,
you can use the `always_xy` option when creating the transformer.
.. code:: python
>>> from pyproj import Transformer
>>> transformer = Transformer.from_crs("EPSG:4326", "EPSG:26917", always_xy=True)
>>> transformer.transform(-80, 50)
(571666.4475041276, 5539109.815175673)
Converting between geographic and projection coordinates within one datum
-------------------------------------------------------------------------
Step 1: Retrieve the geodetic CRS based on original CRS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: python
>>> from pyproj import CRS
>>> crs = CRS.from_epsg(3857)
>>> crs
<Projected CRS: EPSG:3857>
Name: WGS 84 / Pseudo-Mercator
Axis Info [cartesian]:
- X[east]: Easting (metre)
- Y[north]: Northing (metre)
Area of Use:
- name: World - 85°S to 85°N
- bounds: (-180.0, -85.06, 180.0, 85.06)
Coordinate Operation:
- name: Popular Visualisation Pseudo-Mercator
- method: Popular Visualisation Pseudo Mercator
Datum: World Geodetic System 1984
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich
>>> crs.geodetic_crs
<Geographic 2D CRS: EPSG:4326>
Name: WGS 84
Axis Info [ellipsoidal]:
- Lat[north]: Geodetic latitude (degree)
- Lon[east]: Geodetic longitude (degree)
Area of Use:
- name: World
- bounds: (-180.0, -90.0, 180.0, 90.0)
Datum: World Geodetic System 1984
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich
Step 2: Create Transformer to convert from geodetic CRS to CRS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: python
>>> proj = Transformer.from_crs(crs.geodetic_crs, crs)
>>> proj
<Conversion Transformer: pipeline>
Popular Visualisation Pseudo-Mercator
Area of Use:
- name: World
- bounds: (-180.0, -90.0, 180.0, 90.0)
>>> proj.transform(12, 15)
(1669792.3618991035, 1345708.4084091093)
4D Transformations with Time
----------------------------
.. note:: If you are doing a transformation with a CRS that is time based,
it is recommended to include the time in the transformation operation.
.. code:: python
>>> transformer = Transformer.from_crs(7789, 8401)
>>> transformer
<Transformation Transformer: helmert>
ITRF2014 to ETRF2014 (1)
>>> transformer.transform(xx=3496737.2679, yy=743254.4507, zz=5264462.9620, tt=2019.0)
(3496737.757717311, 743253.9940103051, 5264462.701132784, 2019.0)
Geodesic calculations
---------------------
This is useful if you need to calculate the distance between two
points or the area of a geometry on Earth's surface.
For more examples of usage and documentation, see :class:`pyproj.Geod`.
Creating Geod class
~~~~~~~~~~~~~~~~~~~
This example demonstrates creating a :class:`pyproj.Geod` using an
ellipsoid name as well as deriving one using a :class:`pyproj.crs.CRS`.
.. code:: python
>>> from pyproj import CRS, Geod
>>> geod_clrk = Geod(ellps='clrk66') # Use Clarke 1866 ellipsoid.
>>> geod_clrk
Geod(ellps='clrk66')
>>> geod_wgs84 = CRS("EPSG:4326").get_geod()
>>> geod_wgs84
Geod('+a=6378137 +f=0.0033528106647475126')
Geodesic line length
~~~~~~~~~~~~~~~~~~~~
Calculate the geodesic length of a line (See: :meth:`pyproj.Geod.line_length`):
.. code:: python
>>> from pyproj import Geod
>>> lats = [-72.9, -71.9, -74.9, -74.3, -77.5, -77.4, -71.7, -65.9, -65.7,
... -66.6, -66.9, -69.8, -70.0, -71.0, -77.3, -77.9, -74.7]
>>> lons = [-74, -102, -102, -131, -163, 163, 172, 140, 113,
... 88, 59, 25, -4, -14, -33, -46, -61]
>>> geod = Geod(ellps="WGS84")
>>> total_length = geod.line_length(lons, lats)
>>> f"{total_length:.3f}"
'14259605.611'
Calculate the geodesic length of a shapely geometry (See: :meth:`pyproj.Geod.geometry_length`):
.. code:: python
>>> from pyproj import Geod
>>> from shapely.geometry import Point, LineString
>>> line_string = LineString([Point(1, 2), Point(3, 4)]))
>>> geod = Geod(ellps="WGS84")
>>> total_length = geod.geometry_length(line_string)
>>> f"{total_length:.3f}"
'313588.397'
Geodesic area
~~~~~~~~~~~~~
Calculate the geodesic area and perimeter of a polygon (See: :meth:`pyproj.Geod.polygon_area_perimeter`):
.. code:: python
>>> from pyproj import Geod
>>> geod = Geod('+a=6378137 +f=0.0033528106647475126')
>>> lats = [-72.9, -71.9, -74.9, -74.3, -77.5, -77.4, -71.7, -65.9, -65.7,
... -66.6, -66.9, -69.8, -70.0, -71.0, -77.3, -77.9, -74.7]
>>> lons = [-74, -102, -102, -131, -163, 163, 172, 140, 113,
... 88, 59, 25, -4, -14, -33, -46, -61]
>>> poly_area, poly_perimeter = geod.polygon_area_perimeter(lons, lats)
>>> f"{poly_area:.3f} {poly_perimeter:.3f}"
'13376856682207.406 14710425.407'
Calculate the geodesic area and perimeter of a shapely polygon (See: :meth:`pyproj.Geod.geometry_area_perimeter`):
.. code:: python
>>> from pyproj import Geod
>>> from shapely.geometry import LineString, Point, Polygon
>>> geod = Geod('+a=6378137 +f=0.0033528106647475126')
>>> poly_area, poly_perimeter = geod.geometry_area_perimeter(
Polygon(
LineString([Point(1, 1), Point(1, 10), Point(10, 10), Point(10, 1)]),
holes=[LineString([Point(1, 2), Point(3, 4), Point(5, 2)])],
)
)
>>> f"{poly_area:.3f} {poly_perimeter:.3f}"
'-944373881400.339 3979008.036'
|