File: geod.py

package info (click to toggle)
python-pyproj 3.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,720 kB
  • sloc: python: 13,468; sh: 273; makefile: 90
file content (1180 lines) | stat: -rw-r--r-- 43,663 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
"""
The Geod class can perform forward and inverse geodetic, or
Great Circle, computations.  The forward computation involves
determining latitude, longitude and back azimuth of a terminus
point given the latitude and longitude of an initial point, plus
azimuth and distance. The inverse computation involves
determining the forward and back azimuths and distance given the
latitudes and longitudes of an initial and terminus point.
"""

__all__ = [
    "Geod",
    "pj_ellps",
    "geodesic_version_str",
    "GeodIntermediateFlag",
    "GeodIntermediateReturn",
    "reverse_azimuth",
]

import math
import warnings
from typing import Any

from pyproj._geod import Geod as _Geod
from pyproj._geod import GeodIntermediateReturn, geodesic_version_str
from pyproj._geod import reverse_azimuth as _reverse_azimuth
from pyproj.enums import GeodIntermediateFlag
from pyproj.exceptions import GeodError
from pyproj.list import get_ellps_map
from pyproj.utils import DataType, _convertback, _copytobuffer

pj_ellps = get_ellps_map()


def _params_from_ellps_map(ellps: str) -> tuple[float, float, float, float, bool]:
    """
    Build Geodesic parameters from PROJ ellips map

    Parameter
    ---------
    ellps: str
        The name of the ellipse in the map.

    Returns
    -------
    tuple[float, float, float, float, bool]

    """
    ellps_dict = pj_ellps[ellps]
    semi_major_axis, semi_minor_axis, flattening, eccentricity_squared = (
        _params_from_kwargs(ellps_dict)
    )
    sphere = False
    if ellps_dict["description"] == "Normal Sphere":
        sphere = True
    return semi_major_axis, semi_minor_axis, flattening, eccentricity_squared, sphere


def _params_from_kwargs(kwargs: dict) -> tuple[float, float, float, float]:
    """
    Build Geodesic parameters from input kwargs:

    - a: the semi-major axis (required).

    Need least one of these parameters.

    - b: the semi-minor axis
    - rf: the reciprocal flattening
    - f: flattening
    - es: eccentricity squared


    Parameter
    ---------
    kwargs: dict
        The input kwargs for an ellipse.

    Returns
    -------
    tuple[float, float, float, float]

    """
    semi_major_axis = kwargs["a"]
    if "b" in kwargs:
        semi_minor_axis = kwargs["b"]
        eccentricity_squared = 1.0 - semi_minor_axis**2 / semi_major_axis**2
        flattening = (semi_major_axis - semi_minor_axis) / semi_major_axis
    elif "rf" in kwargs:
        flattening = 1.0 / kwargs["rf"]
        semi_minor_axis = semi_major_axis * (1.0 - flattening)
        eccentricity_squared = 1.0 - semi_minor_axis**2 / semi_major_axis**2
    elif "f" in kwargs:
        flattening = kwargs["f"]
        semi_minor_axis = semi_major_axis * (1.0 - flattening)
        eccentricity_squared = 1.0 - (semi_minor_axis / semi_major_axis) ** 2
    elif "es" in kwargs:
        eccentricity_squared = kwargs["es"]
        semi_minor_axis = math.sqrt(
            semi_major_axis**2 - eccentricity_squared * semi_major_axis**2
        )
        flattening = (semi_major_axis - semi_minor_axis) / semi_major_axis
    elif "e" in kwargs:
        eccentricity_squared = kwargs["e"] ** 2
        semi_minor_axis = math.sqrt(
            semi_major_axis**2 - eccentricity_squared * semi_major_axis**2
        )
        flattening = (semi_major_axis - semi_minor_axis) / semi_major_axis
    else:
        semi_minor_axis = semi_major_axis
        flattening = 0.0
        eccentricity_squared = 0.0
    return semi_major_axis, semi_minor_axis, flattening, eccentricity_squared


class Geod(_Geod):
    """
    performs forward and inverse geodetic, or Great Circle,
    computations.  The forward computation (using the 'fwd' method)
    involves determining latitude, longitude and back azimuth of a
    terminus point given the latitude and longitude of an initial
    point, plus azimuth and distance. The inverse computation (using
    the 'inv' method) involves determining the forward and back
    azimuths and distance given the latitudes and longitudes of an
    initial and terminus point.

    Attributes
    ----------
    initstring: str
        The string form of the user input used to create the Geod.
    sphere: bool
        If True, it is a sphere.
    a: float
        The ellipsoid equatorial radius, or semi-major axis.
    b: float
        The ellipsoid polar radius, or semi-minor axis.
    es: float
        The 'eccentricity' of the ellipse, squared (1-b2/a2).
    f: float
        The ellipsoid 'flattening' parameter ( (a-b)/a ).

    """

    def __init__(self, initstring: str | None = None, **kwargs) -> None:
        """
        initialize a Geod class instance.

        Geodetic parameters for specifying the ellipsoid
        can be given in a dictionary 'initparams', as keyword arguments,
        or as as proj geod initialization string.

        You can get a dictionary of ellipsoids using :func:`pyproj.get_ellps_map`
        or with the variable `pyproj.pj_ellps`.

        The parameters of the ellipsoid may also be set directly using
        the 'a' (semi-major or equatorial axis radius) keyword, and
        any one of the following keywords: 'b' (semi-minor,
        or polar axis radius), 'e' (eccentricity), 'es' (eccentricity
        squared), 'f' (flattening), or 'rf' (reciprocal flattening).

        See the proj documentation (https://proj.org) for more
        information about specifying ellipsoid parameters.

        Example usage:

        >>> from pyproj import Geod
        >>> g = Geod(ellps='clrk66') # Use Clarke 1866 ellipsoid.
        >>> # specify the lat/lons of some cities.
        >>> boston_lat = 42.+(15./60.); boston_lon = -71.-(7./60.)
        >>> portland_lat = 45.+(31./60.); portland_lon = -123.-(41./60.)
        >>> newyork_lat = 40.+(47./60.); newyork_lon = -73.-(58./60.)
        >>> london_lat = 51.+(32./60.); london_lon = -(5./60.)
        >>> # compute forward and back azimuths, plus distance
        >>> # between Boston and Portland.
        >>> az12,az21,dist = g.inv(boston_lon,boston_lat,portland_lon,portland_lat)
        >>> f"{az12:.3f} {az21:.3f} {dist:.3f}"
        '-66.531 75.654 4164192.708'
        >>> # compute latitude, longitude and back azimuth of Portland,
        >>> # given Boston lat/lon, forward azimuth and distance to Portland.
        >>> endlon, endlat, backaz = g.fwd(boston_lon, boston_lat, az12, dist)
        >>> f"{endlat:.3f} {endlon:.3f} {backaz:.3f}"
        '45.517 -123.683 75.654'
        >>> # compute the azimuths, distances from New York to several
        >>> # cities (pass a list)
        >>> lons1 = 3*[newyork_lon]; lats1 = 3*[newyork_lat]
        >>> lons2 = [boston_lon, portland_lon, london_lon]
        >>> lats2 = [boston_lat, portland_lat, london_lat]
        >>> az12,az21,dist = g.inv(lons1,lats1,lons2,lats2)
        >>> for faz, baz, d in list(zip(az12,az21,dist)):
        ...     f"{faz:7.3f} {baz:8.3f} {d:12.3f}"
        ' 54.663 -123.448   288303.720'
        '-65.463   79.342  4013037.318'
        ' 51.254  -71.576  5579916.651'
        >>> g2 = Geod('+ellps=clrk66') # use proj4 style initialization string
        >>> az12,az21,dist = g2.inv(boston_lon,boston_lat,portland_lon,portland_lat)
        >>> f"{az12:.3f} {az21:.3f} {dist:.3f}"
        '-66.531 75.654 4164192.708'
        """
        # if initparams is a proj-type init string,
        # convert to dict.
        ellpsd: dict[str, str | float] = {}
        if initstring is not None:
            for kvpair in initstring.split():
                # Actually only +a and +b are needed
                # We can ignore safely any parameter that doesn't have a value
                if kvpair.find("=") == -1:
                    continue
                key, val = kvpair.split("=")
                key = key.lstrip("+")
                if key in ["a", "b", "rf", "f", "es", "e"]:
                    ellpsd[key] = float(val)
                else:
                    ellpsd[key] = val
        # merge this dict with kwargs dict.
        kwargs = dict(list(kwargs.items()) + list(ellpsd.items()))
        sphere = False
        if "ellps" in kwargs:
            (
                semi_major_axis,
                semi_minor_axis,
                flattening,
                eccentricity_squared,
                sphere,
            ) = _params_from_ellps_map(kwargs["ellps"])
        else:
            (
                semi_major_axis,
                semi_minor_axis,
                flattening,
                eccentricity_squared,
            ) = _params_from_kwargs(kwargs)

        if math.fabs(flattening) < 1.0e-8:
            sphere = True

        super().__init__(
            semi_major_axis, flattening, sphere, semi_minor_axis, eccentricity_squared
        )

    def fwd(  # pylint: disable=invalid-name
        self,
        lons: Any,
        lats: Any,
        az: Any,
        dist: Any,
        radians: bool = False,
        inplace: bool = False,
        return_back_azimuth: bool = True,
    ) -> tuple[Any, Any, Any]:
        """
        Forward transformation

        Determine longitudes, latitudes and back azimuths of terminus
        points given longitudes and latitudes of initial points,
        plus forward azimuths and distances.

        .. versionadded:: 3.5.0 inplace
        .. versionadded:: 3.5.0 return_back_azimuth

        Accepted numeric scalar or array:

        - :class:`int`
        - :class:`float`
        - :class:`numpy.floating`
        - :class:`numpy.integer`
        - :class:`list`
        - :class:`tuple`
        - :class:`array.array`
        - :class:`numpy.ndarray`
        - :class:`xarray.DataArray`
        - :class:`pandas.Series`

        Parameters
        ----------
        lons: scalar or array
            Longitude(s) of initial point(s)
        lats: scalar or array
            Latitude(s) of initial point(s)
        az: scalar or array
            Forward azimuth(s)
        dist: scalar or array
            Distance(s) between initial and terminus point(s)
            in meters
        radians: bool, default=False
            If True, the input data is assumed to be in radians.
            Otherwise, the data is assumed to be in degrees.
        inplace: bool, default=False
            If True, will attempt to write the results to the input array
            instead of returning a new array. This will fail if the input
            is not an array in C order with the double data type.
        return_back_azimuth: bool, default=True
            If True, the third return value will be the back azimuth,
            Otherwise, it will be the forward azimuth.

        Returns
        -------
        scalar or array:
            Longitude(s) of terminus point(s)
        scalar or array:
            Latitude(s) of terminus point(s)
        scalar or array:
            Back azimuth(s) or Forward azimuth(s)
        """
        try:
            # Fast-path for scalar input, will raise if invalid types are input
            # and we can fallback below
            return self._fwd_point(
                lons,
                lats,
                az,
                dist,
                radians=radians,
                return_back_azimuth=return_back_azimuth,
            )
        except TypeError:
            pass

        # process inputs, making copies that support buffer API.
        inx, x_data_type = _copytobuffer(lons, inplace=inplace)
        iny, y_data_type = _copytobuffer(lats, inplace=inplace)
        inz, z_data_type = _copytobuffer(az, inplace=inplace)
        ind = _copytobuffer(dist, inplace=inplace)[0]
        self._fwd(
            inx, iny, inz, ind, radians=radians, return_back_azimuth=return_back_azimuth
        )
        # if inputs were lists, tuples or floats, convert back.
        outx = _convertback(x_data_type, inx)
        outy = _convertback(y_data_type, iny)
        outz = _convertback(z_data_type, inz)
        return outx, outy, outz

    def inv(
        self,
        lons1: Any,
        lats1: Any,
        lons2: Any,
        lats2: Any,
        radians: bool = False,
        inplace: bool = False,
        return_back_azimuth: bool = True,
    ) -> tuple[Any, Any, Any]:
        """

        Inverse transformation

        Determine forward and back azimuths, plus distances
        between initial points and terminus points.

        .. versionadded:: 3.5.0 inplace
        .. versionadded:: 3.5.0 return_back_azimuth

        Accepted numeric scalar or array:

        - :class:`int`
        - :class:`float`
        - :class:`numpy.floating`
        - :class:`numpy.integer`
        - :class:`list`
        - :class:`tuple`
        - :class:`array.array`
        - :class:`numpy.ndarray`
        - :class:`xarray.DataArray`
        - :class:`pandas.Series`

        Parameters
        ----------
        lons1: scalar or array
            Longitude(s) of initial point(s)
        lats1: scalar or array
            Latitude(s) of initial point(s)
        lons2: scalar or array
            Longitude(s) of terminus point(s)
        lats2: scalar or array
            Latitude(s) of terminus point(s)
        radians: bool, default=False
            If True, the input data is assumed to be in radians.
            Otherwise, the data is assumed to be in degrees.
        inplace: bool, default=False
            If True, will attempt to write the results to the input array
            instead of returning a new array. This will fail if the input
            is not an array in C order with the double data type.
        return_back_azimuth: bool, default=True
            If True, the second return value (azi21) will be the back azimuth
            (flipped 180 degrees), Otherwise, it will also be a forward azimuth.

        Returns
        -------
        scalar or array:
            Forward azimuth(s) (azi12)
        scalar or array:
            Back azimuth(s) or Forward azimuth(s) (azi21)
        scalar or array:
            Distance(s) between initial and terminus point(s)
            in meters
        """
        try:
            # Fast-path for scalar input, will raise if invalid types are input
            # and we can fallback below
            return self._inv_point(
                lons1,
                lats1,
                lons2,
                lats2,
                radians=radians,
                return_back_azimuth=return_back_azimuth,
            )
        except TypeError:
            pass

        # process inputs, making copies that support buffer API.
        inx, x_data_type = _copytobuffer(lons1, inplace=inplace)
        iny, y_data_type = _copytobuffer(lats1, inplace=inplace)
        inz, z_data_type = _copytobuffer(lons2, inplace=inplace)
        ind = _copytobuffer(lats2, inplace=inplace)[0]
        self._inv(
            inx, iny, inz, ind, radians=radians, return_back_azimuth=return_back_azimuth
        )
        # if inputs were lists, tuples or floats, convert back.
        outx = _convertback(x_data_type, inx)
        outy = _convertback(y_data_type, iny)
        outz = _convertback(z_data_type, inz)
        return outx, outy, outz

    def npts(
        self,
        lon1: float,
        lat1: float,
        lon2: float,
        lat2: float,
        npts: int,
        radians: bool = False,
        initial_idx: int = 1,
        terminus_idx: int = 1,
    ) -> list:
        """
        .. versionadded:: 3.1.0 initial_idx, terminus_idx

        Given a single initial point and terminus point, returns
        a list of longitude/latitude pairs describing npts equally
        spaced intermediate points along the geodesic between the
        initial and terminus points.

        Similar to inv_intermediate(), but with less options.

        Example usage:

        >>> from pyproj import Geod
        >>> g = Geod(ellps='clrk66') # Use Clarke 1866 ellipsoid.
        >>> # specify the lat/lons of Boston and Portland.
        >>> boston_lat = 42.+(15./60.); boston_lon = -71.-(7./60.)
        >>> portland_lat = 45.+(31./60.); portland_lon = -123.-(41./60.)
        >>> # find ten equally spaced points between Boston and Portland.
        >>> lonlats = g.npts(boston_lon,boston_lat,portland_lon,portland_lat,10)
        >>> for lon,lat in lonlats: f'{lat:.3f} {lon:.3f}'
        '43.528 -75.414'
        '44.637 -79.883'
        '45.565 -84.512'
        '46.299 -89.279'
        '46.830 -94.156'
        '47.149 -99.112'
        '47.251 -104.106'
        '47.136 -109.100'
        '46.805 -114.051'
        '46.262 -118.924'
        >>> # test with radians=True (inputs/outputs in radians, not degrees)
        >>> import math
        >>> dg2rad = math.radians(1.)
        >>> rad2dg = math.degrees(1.)
        >>> lonlats = g.npts(
        ...    dg2rad*boston_lon,
        ...    dg2rad*boston_lat,
        ...    dg2rad*portland_lon,
        ...    dg2rad*portland_lat,
        ...    10,
        ...    radians=True
        ... )
        >>> for lon,lat in lonlats: f'{rad2dg*lat:.3f} {rad2dg*lon:.3f}'
        '43.528 -75.414'
        '44.637 -79.883'
        '45.565 -84.512'
        '46.299 -89.279'
        '46.830 -94.156'
        '47.149 -99.112'
        '47.251 -104.106'
        '47.136 -109.100'
        '46.805 -114.051'
        '46.262 -118.924'

        Parameters
        ----------
        lon1: float
            Longitude of the initial point
        lat1: float
            Latitude of the initial point
        lon2: float
            Longitude of the terminus point
        lat2: float
            Latitude of the terminus point
        npts: int
            Number of points to be returned
            (including initial and/or terminus points, if required)
        radians: bool, default=False
            If True, the input data is assumed to be in radians.
            Otherwise, the data is assumed to be in degrees.
        initial_idx: int, default=1
            if initial_idx==0 then the initial point would be included in the output
            (as the first point)
        terminus_idx: int, default=1
            if terminus_idx==0 then the terminus point would be included in the output
            (as the last point)
        Returns
        -------
        list of tuples:
            list of (lon, lat) points along the geodesic
            between the initial and terminus points.
        """

        res = self._inv_or_fwd_intermediate(
            lon1=lon1,
            lat1=lat1,
            lon2_or_azi1=lon2,
            lat2=lat2,
            npts=npts,
            del_s=0,
            radians=radians,
            initial_idx=initial_idx,
            terminus_idx=terminus_idx,
            flags=GeodIntermediateFlag.AZIS_DISCARD,
            out_lons=None,
            out_lats=None,
            out_azis=None,
            return_back_azimuth=False,
            is_fwd=False,
        )
        return list(zip(res.lons, res.lats))

    def inv_intermediate(
        self,
        lon1: float,
        lat1: float,
        lon2: float,
        lat2: float,
        npts: int = 0,
        del_s: float = 0,
        initial_idx: int = 1,
        terminus_idx: int = 1,
        radians: bool = False,
        flags: GeodIntermediateFlag = GeodIntermediateFlag.DEFAULT,
        out_lons: Any | None = None,
        out_lats: Any | None = None,
        out_azis: Any | None = None,
        return_back_azimuth: bool | None = None,
    ) -> GeodIntermediateReturn:
        """
        .. versionadded:: 3.1.0
        .. versionadded:: 3.5.0 return_back_azimuth

        Given a single initial point and terminus point,
        and the number of points, returns
        a list of longitude/latitude pairs describing npts equally
        spaced intermediate points along the geodesic between the
        initial and terminus points.

        npts and del_s parameters are mutually exclusive:

        if npts != 0:
            it calculates the distance between the points by
            the distance between the initial point and the
            terminus point divided by npts
            (the number of intermediate points)
        else:
            it calculates the number of intermediate points by
            dividing the distance between the initial and
            terminus points by del_s
            (delimiter distance between two successive points)

        Similar to npts(), but with more options.

        Example usage:

        >>> from pyproj import Geod
        >>> g = Geod(ellps='clrk66') # Use Clarke 1866 ellipsoid.
        >>> # specify the lat/lons of Boston and Portland.
        >>> boston_lat = 42.+(15./60.); boston_lon = -71.-(7./60.)
        >>> portland_lat = 45.+(31./60.); portland_lon = -123.-(41./60.)
        >>> # find ten equally spaced points between Boston and Portland.
        >>> r = g.inv_intermediate(boston_lon,boston_lat,portland_lon,portland_lat,10)
        >>> for lon,lat in zip(r.lons, r.lats): f'{lat:.3f} {lon:.3f}'
        '43.528 -75.414'
        '44.637 -79.883'
        '45.565 -84.512'
        '46.299 -89.279'
        '46.830 -94.156'
        '47.149 -99.112'
        '47.251 -104.106'
        '47.136 -109.100'
        '46.805 -114.051'
        '46.262 -118.924'
        >>> # test with radians=True (inputs/outputs in radians, not degrees)
        >>> import math
        >>> dg2rad = math.radians(1.)
        >>> rad2dg = math.degrees(1.)
        >>> r = g.inv_intermediate(
        ...    dg2rad*boston_lon,
        ...    dg2rad*boston_lat,
        ...    dg2rad*portland_lon,
        ...    dg2rad*portland_lat,
        ...    10,
        ...    radians=True
        ... )
        >>> for lon,lat in zip(r.lons, r.lats): f'{rad2dg*lat:.3f} {rad2dg*lon:.3f}'
        '43.528 -75.414'
        '44.637 -79.883'
        '45.565 -84.512'
        '46.299 -89.279'
        '46.830 -94.156'
        '47.149 -99.112'
        '47.251 -104.106'
        '47.136 -109.100'
        '46.805 -114.051'
        '46.262 -118.924'

        Parameters
        ----------
        lon1: float
            Longitude of the initial point
        lat1: float
            Latitude of the initial point
        lon2: float
            Longitude of the terminus point
        lat2: float
            Latitude of the terminus point
        npts: int, default=0
            Number of points to be returned
            npts == 0 if del_s != 0
        del_s: float, default=0
            delimiter distance between two successive points
            del_s == 0 if npts != 0
        radians: bool, default=False
            If True, the input data is assumed to be in radians.
            Otherwise, the data is assumed to be in degrees.
        initial_idx: int, default=1
            if initial_idx==0 then the initial point would be included in the output
            (as the first point)
        terminus_idx: int, default=1
            if terminus_idx==0 then the terminus point would be included in the output
            (as the last point)
        flags: GeodIntermediateFlag, default=GeodIntermediateFlag.DEFAULT
            * 1st - round/ceil/trunc (see ``GeodIntermediateFlag.NPTS_*``)
            * 2nd - update del_s to the new npts or not
                    (see ``GeodIntermediateFlag.DEL_S_*``)
            * 3rd - if out_azis=None, indicates if to save or discard the azimuths
                    (see ``GeodIntermediateFlag.AZIS_*``)
            * default - round npts, update del_s accordingly, discard azis
        out_lons: array, :class:`numpy.ndarray`, optional
            Longitude(s) of the intermediate point(s)
            If None then buffers would be allocated internnaly
        out_lats: array, :class:`numpy.ndarray`, optional
            Latitudes(s) of the intermediate point(s)
            If None then buffers would be allocated internnaly
        out_azis: array, :class:`numpy.ndarray`, optional
            az12(s) of the intermediate point(s)
            If None then buffers would be allocated internnaly
            unless requested otherwise by the flags
        return_back_azimuth: bool, default=True
            if True, out_azis will store the back azimuth,
            Otherwise, out_azis will store the forward azimuth.

        Returns
        -------
        GeodIntermediateReturn:
            number of points, distance and output arrays (GeodIntermediateReturn docs)
        """
        if return_back_azimuth is None:
            return_back_azimuth = True
            warnings.warn(
                "Back azimuth is being returned by default to be compatible with fwd()"
                "This is a breaking change for pyproj 3.5+."
                "To avoid this warning, set return_back_azimuth=True."
                "Otherwise, to restore old behaviour, set return_back_azimuth=False."
                "This warning will be removed in future version."
            )
        return super()._inv_or_fwd_intermediate(
            lon1=lon1,
            lat1=lat1,
            lon2_or_azi1=lon2,
            lat2=lat2,
            npts=npts,
            del_s=del_s,
            radians=radians,
            initial_idx=initial_idx,
            terminus_idx=terminus_idx,
            flags=int(flags),
            out_lons=out_lons,
            out_lats=out_lats,
            out_azis=out_azis,
            return_back_azimuth=return_back_azimuth,
            is_fwd=False,
        )

    def fwd_intermediate(
        self,
        lon1: float,
        lat1: float,
        azi1: float,
        npts: int,
        del_s: float,
        initial_idx: int = 1,
        terminus_idx: int = 1,
        radians: bool = False,
        flags: GeodIntermediateFlag = GeodIntermediateFlag.DEFAULT,
        out_lons: Any | None = None,
        out_lats: Any | None = None,
        out_azis: Any | None = None,
        return_back_azimuth: bool | None = None,
    ) -> GeodIntermediateReturn:
        """
        .. versionadded:: 3.1.0
        .. versionadded:: 3.5.0 return_back_azimuth

        Given a single initial point and azimuth, number of points (npts)
        and delimiter distance between two successive points (del_s), returns
        a list of longitude/latitude pairs describing npts equally
        spaced intermediate points along the geodesic between the
        initial and terminus points.

        Example usage:

        >>> from pyproj import Geod
        >>> g = Geod(ellps='clrk66') # Use Clarke 1866 ellipsoid.
        >>> # specify the lat/lons of Boston and Portland.
        >>> boston_lat = 42.+(15./60.); boston_lon = -71.-(7./60.)
        >>> portland_lat = 45.+(31./60.); portland_lon = -123.-(41./60.)
        >>> az12,az21,dist = g.inv(boston_lon,boston_lat,portland_lon,portland_lat)
        >>> # find ten equally spaced points between Boston and Portland.
        >>> npts = 10
        >>> del_s = dist/(npts+1)
        >>> r = g.fwd_intermediate(boston_lon,boston_lat,az12,npts=npts,del_s=del_s)
        >>> for lon,lat in zip(r.lons, r.lats): f'{lat:.3f} {lon:.3f}'
        '43.528 -75.414'
        '44.637 -79.883'
        '45.565 -84.512'
        '46.299 -89.279'
        '46.830 -94.156'
        '47.149 -99.112'
        '47.251 -104.106'
        '47.136 -109.100'
        '46.805 -114.051'
        '46.262 -118.924'
        >>> # test with radians=True (inputs/outputs in radians, not degrees)
        >>> import math
        >>> dg2rad = math.radians(1.)
        >>> rad2dg = math.degrees(1.)
        >>> r = g.fwd_intermediate(
        ...    dg2rad*boston_lon,
        ...    dg2rad*boston_lat,
        ...    dg2rad*az12,
        ...    npts=npts,
        ...    del_s=del_s,
        ...    radians=True
        ... )
        >>> for lon,lat in zip(r.lons, r.lats): f'{rad2dg*lat:.3f} {rad2dg*lon:.3f}'
        '43.528 -75.414'
        '44.637 -79.883'
        '45.565 -84.512'
        '46.299 -89.279'
        '46.830 -94.156'
        '47.149 -99.112'
        '47.251 -104.106'
        '47.136 -109.100'
        '46.805 -114.051'
        '46.262 -118.924'

        Parameters
        ----------
        lon1: float
            Longitude of the initial point
        lat1: float
            Latitude of the initial point
        azi1: float
            Azimuth from the initial point towards the terminus point
        npts: int
            Number of points to be returned
            (including initial and/or terminus points, if required)
        del_s: float
            delimiter distance between two successive points
        radians: bool, default=False
            If True, the input data is assumed to be in radians.
            Otherwise, the data is assumed to be in degrees.
        initial_idx: int, default=1
            if initial_idx==0 then the initial point would be included in the output
            (as the first point)
        terminus_idx: int, default=1
            if terminus_idx==0 then the terminus point would be included in the output
            (as the last point)
        flags: GeodIntermediateFlag, default=GeodIntermediateFlag.DEFAULT
            * 1st - round/ceil/trunc (see ``GeodIntermediateFlag.NPTS_*``)
            * 2nd - update del_s to the new npts or not
                    (see ``GeodIntermediateFlag.DEL_S_*``)
            * 3rd - if out_azis=None, indicates if to save or discard the azimuths
                    (see ``GeodIntermediateFlag.AZIS_*``)
            * default - round npts, update del_s accordingly, discard azis
        out_lons: array, :class:`numpy.ndarray`, optional
            Longitude(s) of the intermediate point(s)
            If None then buffers would be allocated internnaly
        out_lats: array, :class:`numpy.ndarray`, optional
            Latitudes(s) of the intermediate point(s)
            If None then buffers would be allocated internnaly
        out_azis: array, :class:`numpy.ndarray`, optional
            az12(s) of the intermediate point(s)
            If None then buffers would be allocated internnaly
            unless requested otherwise by the flags
        return_back_azimuth: bool, default=True
            if True, out_azis will store the back azimuth,
            Otherwise, out_azis will store the forward azimuth.

        Returns
        -------
        GeodIntermediateReturn:
            number of points, distance and output arrays (GeodIntermediateReturn docs)
        """
        if return_back_azimuth is None:
            return_back_azimuth = True
            warnings.warn(
                "Back azimuth is being returned by default to be compatible with inv()"
                "This is a breaking change for pyproj 3.5+."
                "To avoid this warning, set return_back_azimuth=True."
                "Otherwise, to restore old behaviour, set return_back_azimuth=False."
                "This warning will be removed in future version."
            )
        return super()._inv_or_fwd_intermediate(
            lon1=lon1,
            lat1=lat1,
            lon2_or_azi1=azi1,
            lat2=math.nan,
            npts=npts,
            del_s=del_s,
            radians=radians,
            initial_idx=initial_idx,
            terminus_idx=terminus_idx,
            flags=int(flags),
            out_lons=out_lons,
            out_lats=out_lats,
            out_azis=out_azis,
            return_back_azimuth=return_back_azimuth,
            is_fwd=True,
        )

    def line_length(self, lons: Any, lats: Any, radians: bool = False) -> float:
        """
        .. versionadded:: 2.3.0

        Calculate the total distance between points along a line (meters).

        >>> from pyproj import Geod
        >>> geod = Geod('+a=6378137 +f=0.0033528106647475126')
        >>> lats = [-72.9, -71.9, -74.9, -74.3, -77.5, -77.4, -71.7, -65.9, -65.7,
        ...         -66.6, -66.9, -69.8, -70.0, -71.0, -77.3, -77.9, -74.7]
        >>> lons = [-74, -102, -102, -131, -163, 163, 172, 140, 113,
        ...         88, 59, 25, -4, -14, -33, -46, -61]
        >>> total_length = geod.line_length(lons, lats)
        >>> f"{total_length:.3f}"
        '14259605.611'


        Parameters
        ----------
        lons: array, :class:`numpy.ndarray`, list, tuple, or scalar
            The longitude points along a line.
        lats: array, :class:`numpy.ndarray`, list, tuple, or scalar
            The latitude points along a line.
        radians: bool, default=False
            If True, the input data is assumed to be in radians.
            Otherwise, the data is assumed to be in degrees.

        Returns
        -------
        float:
            The total length of the line (meters).
        """
        # process inputs, making copies that support buffer API.
        inx = _copytobuffer(lons)[0]
        iny = _copytobuffer(lats)[0]
        return self._line_length(inx, iny, radians=radians)

    def line_lengths(self, lons: Any, lats: Any, radians: bool = False) -> Any:
        """
        .. versionadded:: 2.3.0

        Calculate the distances between points along a line (meters).

        >>> from pyproj import Geod
        >>> geod = Geod(ellps="WGS84")
        >>> lats = [-72.9, -71.9, -74.9]
        >>> lons = [-74, -102, -102]
        >>> for line_length in geod.line_lengths(lons, lats):
        ...     f"{line_length:.3f}"
        '943065.744'
        '334805.010'

        Parameters
        ----------
        lons: array, :class:`numpy.ndarray`, list, tuple, or scalar
            The longitude points along a line.
        lats: array, :class:`numpy.ndarray`, list, tuple, or scalar
            The latitude points along a line.
        radians: bool, default=False
            If True, the input data is assumed to be in radians.
            Otherwise, the data is assumed to be in degrees.

        Returns
        -------
        array, :class:`numpy.ndarray`, list, tuple, or scalar:
            The total length of the line (meters).
        """
        # process inputs, making copies that support buffer API.
        inx, x_data_type = _copytobuffer(lons)
        iny = _copytobuffer(lats)[0]
        self._line_length(inx, iny, radians=radians)
        line_lengths = _convertback(x_data_type, inx)
        return line_lengths if x_data_type == DataType.FLOAT else line_lengths[:-1]

    def polygon_area_perimeter(
        self, lons: Any, lats: Any, radians: bool = False
    ) -> tuple[float, float]:
        """
        .. versionadded:: 2.3.0

        A simple interface for computing the area (meters^2) and perimeter (meters)
        of a geodesic polygon.

        Arbitrarily complex polygons are allowed. In the case self-intersecting
        of polygons the area is accumulated "algebraically", e.g., the areas of
        the 2 loops in a figure-8 polygon will partially cancel. There's no need
        to "close" the polygon by repeating the first vertex. The area returned
        is signed with counter-clockwise traversal being treated as positive.

        .. note:: lats should be in the range [-90 deg, 90 deg].


        Example usage:

        >>> from pyproj import Geod
        >>> geod = Geod('+a=6378137 +f=0.0033528106647475126')
        >>> lats = [-72.9, -71.9, -74.9, -74.3, -77.5, -77.4, -71.7, -65.9, -65.7,
        ...         -66.6, -66.9, -69.8, -70.0, -71.0, -77.3, -77.9, -74.7]
        >>> lons = [-74, -102, -102, -131, -163, 163, 172, 140, 113,
        ...         88, 59, 25, -4, -14, -33, -46, -61]
        >>> poly_area, poly_perimeter = geod.polygon_area_perimeter(lons, lats)
        >>> f"{poly_area:.1f} {poly_perimeter:.1f}"
        '13376856682207.4 14710425.4'


        Parameters
        ----------
        lons: array, :class:`numpy.ndarray`, list, tuple, or scalar
            An array of longitude values.
        lats: array, :class:`numpy.ndarray`, list, tuple, or scalar
            An array of latitude values.
        radians: bool, default=False
            If True, the input data is assumed to be in radians.
            Otherwise, the data is assumed to be in degrees.

        Returns
        -------
        (float, float):
            The geodesic area (meters^2) and perimeter (meters) of the polygon.
        """
        return self._polygon_area_perimeter(
            _copytobuffer(lons)[0], _copytobuffer(lats)[0], radians=radians
        )

    def geometry_length(self, geometry, radians: bool = False) -> float:
        """
        .. versionadded:: 2.3.0

        Returns the geodesic length (meters) of the shapely geometry.

        If it is a Polygon, it will return the sum of the
        lengths along the perimeter.
        If it is a MultiPolygon or MultiLine, it will return
        the sum of the lengths.

        Example usage:

        >>> from pyproj import Geod
        >>> from shapely.geometry import Point, LineString
        >>> line_string = LineString([Point(1, 2), Point(3, 4)])
        >>> geod = Geod(ellps="WGS84")
        >>> f"{geod.geometry_length(line_string):.3f}"
        '313588.397'

        Parameters
        ----------
        geometry: :class:`shapely.geometry.BaseGeometry`
            The geometry to calculate the length from.
        radians: bool, default=False
            If True, the input data is assumed to be in radians.
            Otherwise, the data is assumed to be in degrees.

        Returns
        -------
        float:
            The total geodesic length of the geometry (meters).
        """
        try:
            return self.line_length(*geometry.xy, radians=radians)  # type: ignore[misc]
        except (AttributeError, NotImplementedError):
            pass
        if hasattr(geometry, "exterior"):
            return self.geometry_length(geometry.exterior, radians=radians)
        if hasattr(geometry, "geoms"):
            total_length = 0.0
            for geom in geometry.geoms:
                total_length += self.geometry_length(geom, radians=radians)
            return total_length
        raise GeodError("Invalid geometry provided.")

    def geometry_area_perimeter(
        self, geometry, radians: bool = False
    ) -> tuple[float, float]:
        """
        .. versionadded:: 2.3.0

        A simple interface for computing the area (meters^2) and perimeter (meters)
        of a geodesic polygon as a shapely geometry.

        Arbitrarily complex polygons are allowed.  In the case self-intersecting
        of polygons the area is accumulated "algebraically", e.g., the areas of
        the 2 loops in a figure-8 polygon will partially cancel.  There's no need
        to "close" the polygon by repeating the first vertex.

        .. note:: lats should be in the range [-90 deg, 90 deg].

        .. warning:: The area returned is signed with counter-clockwise (CCW) traversal
                     being treated as positive. For polygons, holes should use the
                     opposite traversal to the exterior (if the exterior is CCW, the
                     holes/interiors should be CW). You can use `shapely.ops.orient` to
                     modify the orientation.

        If it is a Polygon, it will return the area and exterior perimeter.
        It will subtract the area of the interior holes.
        If it is a MultiPolygon or MultiLine, it will return
        the sum of the areas and perimeters of all geometries.


        Example usage:

        >>> from pyproj import Geod
        >>> from shapely.geometry import LineString, Point, Polygon
        >>> geod = Geod(ellps="WGS84")
        >>> poly_area, poly_perimeter = geod.geometry_area_perimeter(
        ...     Polygon(
        ...         LineString([
        ...             Point(1, 1), Point(10, 1), Point(10, 10), Point(1, 10)
        ...         ]),
        ...         holes=[LineString([Point(1, 2), Point(3, 4), Point(5, 2)])],
        ...     )
        ... )
        >>> f"{poly_area:.0f} {poly_perimeter:.0f}"
        '944373881400 3979008'


        Parameters
        ----------
        geometry: :class:`shapely.geometry.BaseGeometry`
            The geometry to calculate the area and perimeter from.
        radians: bool, default=False
            If True, the input data is assumed to be in radians.
            Otherwise, the data is assumed to be in degrees.

        Returns
        -------
        (float, float):
            The geodesic area (meters^2) and perimeter (meters) of the polygon.
        """
        try:
            return self.polygon_area_perimeter(  # type: ignore[misc]
                *geometry.xy, radians=radians
            )
        except (AttributeError, NotImplementedError):
            pass
        # polygon
        if hasattr(geometry, "exterior"):
            total_area, total_perimeter = self.geometry_area_perimeter(
                geometry.exterior, radians=radians
            )
            # subtract area of holes
            for hole in geometry.interiors:
                area, _ = self.geometry_area_perimeter(hole, radians=radians)
                total_area += area
            return total_area, total_perimeter
        # multi geometries
        if hasattr(geometry, "geoms"):
            total_area = 0.0
            total_perimeter = 0.0
            for geom in geometry.geoms:
                area, perimeter = self.geometry_area_perimeter(geom, radians=radians)
                total_area += area
                total_perimeter += perimeter
            return total_area, total_perimeter
        raise GeodError("Invalid geometry provided.")

    def __repr__(self) -> str:
        # search for ellipse name
        for ellps, vals in pj_ellps.items():
            if self.a == vals["a"]:
                # self.sphere is True when self.f is zero or very close to
                # zero (0), so prevent divide by zero.
                if self.b == vals.get("b") or (
                    not self.sphere and (1.0 / self.f) == vals.get("rf")
                ):
                    return f"{self.__class__.__name__}(ellps={ellps!r})"

        # no ellipse name found, call super class
        return super().__repr__()

    def __eq__(self, other: object) -> bool:
        """
        equality operator == for Geod objects

        Example usage:

        >>> from pyproj import Geod
        >>> # Use Clarke 1866 ellipsoid.
        >>> gclrk1 = Geod(ellps='clrk66')
        >>> # Define Clarke 1866 using parameters
        >>> gclrk2 = Geod(a=6378206.4, b=6356583.8)
        >>> gclrk1 == gclrk2
        True
        >>> # WGS 66 ellipsoid, PROJ style
        >>> gwgs66 = Geod('+ellps=WGS66')
        >>> # Naval Weapons Lab., 1965 ellipsoid
        >>> gnwl9d = Geod('+ellps=NWL9D')
        >>> # these ellipsoids are the same
        >>> gnwl9d == gwgs66
        True
        >>> gclrk1 != gnwl9d  # Clarke 1866 is unlike NWL9D
        True
        """
        if not isinstance(other, _Geod):
            return False

        return self.__repr__() == other.__repr__()


def reverse_azimuth(azi: Any, radians: bool = False) -> Any:
    """
    Reverses the given azimuth (forward <-> backwards)

    .. versionadded:: 3.5.0

    Accepted numeric scalar or array:

    - :class:`int`
    - :class:`float`
    - :class:`numpy.floating`
    - :class:`numpy.integer`
    - :class:`list`
    - :class:`tuple`
    - :class:`array.array`
    - :class:`numpy.ndarray`
    - :class:`xarray.DataArray`
    - :class:`pandas.Series`

    Parameters
    ----------
    azi: scalar or array
        The azimuth.
    radians: bool, default=False
        If True, the input data is assumed to be in radians.
        Otherwise, the data is assumed to be in degrees.

    Returns
    -------
    scalar or array:
        The reversed azimuth (forward <-> backwards)
    """
    inazi, azi_data_type = _copytobuffer(azi)
    _reverse_azimuth(inazi, radians=radians)
    return _convertback(azi_data_type, inazi)