File: test_proj.py

package info (click to toggle)
python-pyproj 3.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,720 kB
  • sloc: python: 13,468; sh: 273; makefile: 90
file content (597 lines) | stat: -rw-r--r-- 21,292 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
import concurrent.futures
import math
import os
import unittest
from unittest.mock import patch

import numpy
import pytest
from numpy.testing import assert_almost_equal

import pyproj
from pyproj import Geod, Proj, pj_ellps, pj_list, transform
from pyproj.exceptions import CRSError, ProjError
from pyproj.geod import reverse_azimuth
from test.conftest import proj_network_env


class BasicTest(unittest.TestCase):
    def testInitWithBackupString4(self):
        # this fails unless backup of to_string(4) is used
        pj = Proj(
            "+proj=merc +a=6378137.0 +b=6378137.0 +nadgrids=@null "
            "+lon_0=0.0 +x_0=0.0 +y_0=0.0 +units=m +no_defs"
        )
        assert pj.crs.name == "unknown"

    def testProjAwips221(self):
        # AWIPS is Advanced Weather Interactive Processing System
        params = {"proj": "lcc", "R": 6371200, "lat_1": 50, "lat_2": 50, "lon_0": -107}
        awips221 = Proj(
            proj=params["proj"],
            R=params["R"],
            lat_1=params["lat_1"],
            lat_2=params["lat_2"],
            lon_0=params["lon_0"],
            preserve_units=False,
        )
        awips221_from_dict = Proj(params, preserve_units=False)

        items = sorted(val for val in awips221.crs.srs.split() if val)
        items_dict = sorted(val for val in awips221_from_dict.crs.srs.split() if val)
        self.assertEqual(items, items_dict)

        expected = sorted(
            [
                "+proj=lcc",
                "+R=6371200",
                "+lat_1=50",
                "+lat_2=50",
                "+lon_0=-107",
                "+type=crs",
            ]
        )
        self.assertEqual(items, expected)

        point = awips221(-145.5, 1.0)
        x, y = -5632642.22547495, 1636571.4883145525
        self.assertAlmostEqual(point[0], x)
        self.assertAlmostEqual(point[1], y)

        pairs = [
            [(-45, 45), (4351601.20766915, 7606948.029327129)],
            [(45, 45), (5285389.07739382, 14223336.17467613)],
            [(45, -45), (20394982.466924712, 21736546.456803113)],
            [(-45, -45), (16791730.756976362, -3794425.4816524936)],
        ]
        for point_geog, expected in pairs:
            point = awips221(*point_geog)
            self.assertAlmostEqual(point[0], expected[0])
            self.assertAlmostEqual(point[1], expected[1])
            point_geog2 = awips221(*point, inverse=True)
            self.assertAlmostEqual(point_geog[0], point_geog2[0])
            self.assertAlmostEqual(point_geog[1], point_geog2[1])

    def test_from_dict_with_bool(self):
        # issue #183
        p_d = {
            "proj": "omerc",
            "lat_2": 80.27942,
            "lat_0": 62.87671,
            "lat_1": 42.751232,
            "ellps": "WGS84",
            "no_rot": True,
            "lon_1": 33.793186,
            "lon_2": -18.374414,
        }
        p = Proj(p_d)
        self.assertTrue("+no_rot" in p.srs.split())
        p_d = {
            "proj": "omerc",
            "lat_2": 80.27942,
            "lat_0": 62.87671,
            "lat_1": 42.751232,
            "ellps": "WGS84",
            "no_rot": False,
            "lon_1": 33.793186,
            "lon_2": -18.374414,
        }
        p = Proj(p_d)
        self.assertFalse("+no_rot" in p.srs.split())


class InverseHammerTest(unittest.TestCase):
    # This is a unit test of the inverse of the hammer projection, which
    # was added in the 4.9.3 version of PROJ (then PROJ.4).
    @classmethod
    def setUpClass(self):
        self.p = Proj(proj="hammer")  # hammer proj
        self.x, self.y = self.p(-30, 40)

    def test_forward(self):
        self.assertAlmostEqual(self.x, -2711575.083, places=3)
        self.assertAlmostEqual(self.y, 4395506.619, places=3)

    def test_inverse(self):
        lon, lat = self.p(self.x, self.y, inverse=True)
        self.assertAlmostEqual(lon, -30.0, places=3)
        self.assertAlmostEqual(lat, 40.0, places=3)


class TypeError_Transform_Issue8_Test(unittest.TestCase):
    # Test for "Segmentation fault on pyproj.transform #8"
    # https://github.com/jswhit/pyproj/issues/8

    def setUp(self):
        with pytest.warns(FutureWarning):
            self.p = Proj(init="epsg:4269")

    def test_tranform_none_1st_parmeter(self):
        # test should raise Type error if projections are not of Proj classes
        # version 1.9.4 produced AttributeError, now should raise TypeError
        with pytest.warns(FutureWarning), pytest.raises(CRSError):
            transform(None, self.p, -74, 39)

    def test_tranform_none_2nd_parmeter(self):
        # test should raise Type error if projections are not of Proj classes
        # version 1.9.4 has a Segmentation Fault, now should raise TypeError
        with pytest.warns(FutureWarning), pytest.raises(CRSError):
            transform(self.p, None, -74, 39)


class Geod_NoDefs_Issue22_Test(unittest.TestCase):
    # Test for Issue #22, Geod with "+no_defs" in initstring
    # Before PR #23 merged 2015-10-07, having +no_defs in the
    # initstring would result in a ValueError
    def test_geod_nodefs(self):
        Geod("+a=6378137 +b=6378137 +no_defs")


class ProjLatLongTypeErrorTest(unittest.TestCase):
    # .latlong() using in transform raised a TypeError in release 1.9.5.1
    # reported in issue #53, resolved in #73.
    def test_latlong_typeerror(self):
        p = Proj("+proj=stere +lon_0=-39 +lat_0=90 +lat_ts=71.0 +ellps=WGS84")
        self.assertTrue(isinstance(p, Proj))
        # if not patched this line raises a "TypeError: p2 must be a Proj class"
        with pytest.warns(FutureWarning):
            lon, lat = transform(p, p.to_latlong(), 200000, 400000)


class ForwardInverseTest(unittest.TestCase):
    def test_fwd_inv(self):
        for pj in pj_list.keys():
            with self.subTest(pj=pj):
                try:
                    p = Proj(proj=pj)
                    x, y = p(-30, 40)
                    # note, for proj 4.9.2 or before the inverse projection
                    # may be missing and pyproj 1.9.5.1 or before does not
                    # test for this and will
                    # give a segmentation fault at this point:
                    lon, lat = p(x, y, inverse=True)
                except RuntimeError:
                    pass


# Tests for shared memory between Geod objects
class GeodSharedMemoryBugTestIssue64(unittest.TestCase):
    def setUp(self):
        self.g = Geod(ellps="clrk66")
        self.ga = self.g.a
        self.mercury = Geod(a=2439700)  # Mercury 2000 ellipsoid
        # Mercury is much smaller than earth.

    def test_not_shared_memory(self):
        self.assertEqual(self.ga, self.g.a)
        # mecury must have a different major axis from earth
        self.assertNotEqual(self.g.a, self.mercury.a)
        self.assertNotEqual(self.g.b, self.mercury.b)
        self.assertNotEqual(self.g.sphere, self.mercury.sphere)
        self.assertNotEqual(self.g.f, self.mercury.f)
        self.assertNotEqual(self.g.es, self.mercury.es)

        # initstrings were not shared in issue #64
        self.assertNotEqual(self.g.initstring, self.mercury.initstring)

    def test_distances(self):
        # note calculated distance was not an issue with #64,
        # but it still a shared memory test
        boston_lat = 42.0 + (15.0 / 60.0)
        boston_lon = -71.0 - (7.0 / 60.0)
        portland_lat = 45.0 + (31.0 / 60.0)
        portland_lon = -123.0 - (41.0 / 60.0)

        az12, az21, dist_g = self.g.inv(
            boston_lon, boston_lat, portland_lon, portland_lat
        )

        az12, az21, dist_mercury = self.mercury.inv(
            boston_lon, boston_lat, portland_lon, portland_lat
        )
        self.assertLess(dist_mercury, dist_g)


class ReprTests(unittest.TestCase):
    # test __repr__ for Proj object
    def test_repr(self):
        p = Proj(proj="latlong", preserve_units=True)
        expected = (
            "<Other Coordinate Operation Transformer: longlat>\n"
            "Description: PROJ-based coordinate operation\n"
            "Area of Use:\n"
            "- undefined"
        )
        self.assertEqual(repr(p), expected)

    # test __repr__ for Geod object
    def test_sphere(self):
        # ellipse is Venus 2000 (IAU2000:29900), which is a sphere
        g = Geod("+a=6051800 +b=6051800")
        self.assertEqual(repr(g), "Geod('+a=6051800.0 +f=0.0')")

    # test __repr__ for Geod object
    def test_ellps_name_round_trip(self):
        # this could be done in a parameter fashion
        for ellps_name in pj_ellps:
            # skip tests, these ellipses NWL9D and WGS66 are the same
            if ellps_name in ("NWL9D", "WGS66"):
                continue
            p = Geod(ellps=ellps_name)
            expected = f"Geod(ellps='{ellps_name}')"
            self.assertEqual(repr(p), expected)


class TestRadians(unittest.TestCase):
    """Tests issue #84"""

    def setUp(self):
        self.g = Geod(ellps="clrk66")
        self.boston_d = (-71.0 - (7.0 / 60.0), 42.0 + (15.0 / 60.0))
        self.boston_r = (math.radians(self.boston_d[0]), math.radians(self.boston_d[1]))
        self.portland_d = (-123.0 - (41.0 / 60.0), 45.0 + (31.0 / 60.0))
        self.portland_r = (
            math.radians(self.portland_d[0]),
            math.radians(self.portland_d[1]),
        )

    def test_inv_radians(self):
        # Get bearings and distance from Boston to Portland in degrees
        az12_d, az21_d, dist_d = self.g.inv(
            self.boston_d[0],
            self.boston_d[1],
            self.portland_d[0],
            self.portland_d[1],
            radians=False,
        )

        # Get bearings and distance from Boston to Portland in radians
        az12_r, az21_r, dist_r = self.g.inv(
            self.boston_r[0],
            self.boston_r[1],
            self.portland_r[0],
            self.portland_r[1],
            radians=True,
        )

        # Check they are equal
        self.assertAlmostEqual(az12_d, math.degrees(az12_r))
        self.assertAlmostEqual(az21_d, math.degrees(az21_r))
        self.assertAlmostEqual(dist_d, dist_r)

    def test_fwd_radians(self):
        # Get bearing and distance to Portland
        az12_d, az21_d, dist = self.g.inv(
            self.boston_d[0],
            self.boston_d[1],
            self.portland_d[0],
            self.portland_d[1],
            radians=False,
        )

        # Calculate Portland's lon/lat from bearing and distance in degrees
        endlon_d, endlat_d, backaz_d = self.g.fwd(
            self.boston_d[0], self.boston_d[1], az12_d, dist, radians=False
        )

        # Calculate Portland's lon/lat from bearing and distance in radians
        for return_back_azimuth in [False, True]:
            endlon_r, endlat_r, backaz_r = self.g.fwd(
                self.boston_r[0],
                self.boston_r[1],
                math.radians(az12_d),
                dist,
                radians=True,
                return_back_azimuth=return_back_azimuth,
            )
            if not return_back_azimuth:
                backaz_r = reverse_azimuth(backaz_r, radians=True)

            # Check they are equal
            self.assertAlmostEqual(endlon_d, math.degrees(endlon_r))
            self.assertAlmostEqual(endlat_d, math.degrees(endlat_r))
            self.assertAlmostEqual(backaz_d, math.degrees(backaz_r))

        # Check to make sure we're back in Portland
        self.assertAlmostEqual(endlon_d, self.portland_d[0])
        self.assertAlmostEqual(endlat_d, self.portland_d[1])

    def test_npts_radians(self):
        # Calculate 10 points between Boston and Portland in degrees
        points_d = self.g.npts(
            lon1=self.boston_d[0],
            lat1=self.boston_d[1],
            lon2=self.portland_d[0],
            lat2=self.portland_d[1],
            npts=10,
            radians=False,
        )

        # Calculate 10 points between Boston and Portland in radians
        points_r = self.g.npts(
            lon1=self.boston_r[0],
            lat1=self.boston_r[1],
            lon2=self.portland_r[0],
            lat2=self.portland_r[1],
            npts=10,
            radians=True,
        )

        # Check they are equal
        for index, dpoint in enumerate(points_d):
            self.assertAlmostEqual(dpoint[0], math.degrees(points_r[index][0]))
            self.assertAlmostEqual(dpoint[1], math.degrees(points_r[index][1]))


class Geod_NaN_Issue112_Test(unittest.TestCase):
    # Test for Issue #112; Geod should silently propagate NaNs in input
    # to the output.
    def test_geod_nans(self):
        g = Geod(ellps="clrk66")
        (azi1, azi2, s12) = g.inv(43, 10, float("nan"), 20)
        self.assertTrue(azi1 != azi1)
        self.assertTrue(azi2 != azi2)
        self.assertTrue(s12 != s12)
        (azi1, azi2, s12) = g.inv(43, 10, 53, float("nan"))
        self.assertTrue(azi1 != azi1)
        self.assertTrue(azi2 != azi2)
        self.assertTrue(s12 != s12)
        # Illegal latitude is treated as NaN
        (azi1, azi2, s12) = g.inv(43, 10, 53, 91)
        self.assertTrue(azi1 != azi1)
        self.assertTrue(azi2 != azi2)
        self.assertTrue(s12 != s12)
        (lon2, lat2, azi2) = g.fwd(43, 10, float("nan"), 1e6)
        self.assertTrue(lon2 != lon2)
        self.assertTrue(lat2 != lat2)
        self.assertTrue(azi2 != azi2)
        (lon2, lat2, azi2) = g.fwd(43, 10, 20, float("nan"))
        self.assertTrue(lon2 != lon2)
        self.assertTrue(lat2 != lat2)
        self.assertTrue(azi2 != azi2)
        (lon2, lat2, azi2) = g.fwd(43, float("nan"), 20, 1e6)
        self.assertTrue(lon2 != lon2)
        self.assertTrue(lat2 != lat2)
        self.assertTrue(azi2 != azi2)
        # Illegal latitude is treated as NaN
        (lon2, lat2, azi2) = g.fwd(43, 91, 20, 1e6)
        self.assertTrue(lon2 != lon2)
        self.assertTrue(lat2 != lat2)
        self.assertTrue(azi2 != azi2)
        # Only lon2 is NaN
        (lon2, lat2, azi2) = g.fwd(float("nan"), 10, 20, 1e6)
        self.assertTrue(lon2 != lon2)
        self.assertTrue(lat2 == lat2)
        self.assertTrue(azi2 == azi2)


def test_proj_equals():
    assert Proj(4326) == Proj("epsg:4326")
    assert Proj(4326) != Proj("epsg:3857")
    with pytest.warns(UserWarning):
        assert Proj(4326) == Proj(Proj("epsg:4326").crs.to_proj4())


def test_initialize_proj_crs_no_proj4():
    proj = Proj(
        {
            "a": 6371229.0,
            "b": 6371229.0,
            "lon_0": -10.0,
            "o_lat_p": 30.0,
            "o_lon_p": 0.0,
            "o_proj": "longlat",
            "proj": "ob_tran",
        }
    )
    assert proj.srs.startswith("+proj=ob_tran")


def test_initialize_proj_crs_no_plus():
    proj = Proj("proj=lonlat")
    assert proj.crs.srs == "proj=lonlat type=crs"


def test_initialize_projparams_with_kwargs():
    proj_mixed_args = Proj("+proj=utm +zone=10", ellps="WGS84")
    proj_positional = Proj("+proj=utm +zone=10 +ellps=WGS84")
    assert proj_mixed_args.is_exact_same(proj_positional)


def test_equals_different_type():
    assert Proj("epsg:4326") != ""


def test_is_exact_same_different_type():
    assert not Proj("epsg:4326").is_exact_same(None)


def test_reset_errno():
    proj = Proj(
        {"proj": "laea", "lat_0": -90, "lon_0": 0, "a": 6371228.0, "units": "m"}
    )
    assert not proj.crs.is_geographic
    assert proj(0, 0, inverse=True, errcheck=True) == (0.0, -90.0)


@pytest.mark.parametrize("radians", [False, True])
def test_get_factors__2d_input(radians):
    transformer = Proj(3857)
    longitude = numpy.array([[0, 1], [2, 3]])
    latitude = numpy.array([[1, 2], [3, 4]])
    if radians:
        longitude = numpy.radians(longitude)
        latitude = numpy.radians(latitude)
    factors = transformer.get_factors(
        longitude=longitude, latitude=latitude, radians=radians
    )
    assert_almost_equal(
        factors.meridional_scale, [[1.0001523, 1.0006095], [1.0013723, 1.0024419]]
    )
    assert_almost_equal(
        factors.parallel_scale, [[1.0001523, 1.0006095], [1.0013723, 1.0024419]]
    )
    assert_almost_equal(
        factors.areal_scale, [[1.00030468, 1.00121946], [1.00274658, 1.00488976]]
    )
    assert_almost_equal(factors.angular_distortion, [[0, 0], [0, 0]], decimal=5)
    assert_almost_equal(
        factors.meridian_parallel_angle, [[89.99, 90], [90, 90]], decimal=2
    )
    assert_almost_equal(factors.meridian_convergence, [[0, 0], [0, 0]])
    assert_almost_equal(
        factors.tissot_semimajor, [[1.00015234, 1.00060955], [1.00137235, 1.0024419]]
    )
    assert_almost_equal(
        factors.tissot_semiminor, [[1.00015232, 1.00060953], [1.00137235, 1.0024419]]
    )
    assert_almost_equal(factors.dx_dlam, [[1, 1], [1, 1]])
    assert_almost_equal(factors.dx_dphi, [[0, 0], [0, 0]])
    assert_almost_equal(factors.dy_dlam, [[0, 0], [0, 0]])
    assert_almost_equal(
        factors.dy_dphi, [[1.00015233, 1.00060954], [1.00137235, 1.0024419]]
    )


def test_get_factors():
    transformer = Proj(3717)
    factors = transformer.get_factors(-120, 34)
    assert_almost_equal(factors.meridional_scale, 1.0005466)
    assert_almost_equal(factors.parallel_scale, 1.0005466)
    assert_almost_equal(factors.areal_scale, 1.00109349)
    assert_almost_equal(factors.angular_distortion, 0)
    assert_almost_equal(factors.meridian_parallel_angle, 90)
    assert_almost_equal(factors.meridian_convergence, 1.67864770)
    assert_almost_equal(factors.tissot_semimajor, 1.00055, decimal=5)
    assert_almost_equal(factors.tissot_semiminor, 1.00055, decimal=5)
    assert_almost_equal(factors.dx_dlam, 0.8300039)
    assert_almost_equal(factors.dx_dphi, -0.0292052)
    assert_almost_equal(factors.dy_dlam, 0.0243244)
    assert_almost_equal(factors.dy_dphi, 0.9965495)


def test_get_factors__nan_inf():
    transformer = Proj(3857)
    factors = transformer.get_factors(
        longitude=[0, numpy.nan, numpy.inf, 0], latitude=[numpy.nan, 2, 2, numpy.inf]
    )
    assert_almost_equal(
        factors.meridional_scale, [numpy.inf, numpy.inf, numpy.inf, numpy.inf]
    )
    assert_almost_equal(
        factors.parallel_scale, [numpy.inf, numpy.inf, numpy.inf, numpy.inf]
    )
    assert_almost_equal(
        factors.areal_scale, [numpy.inf, numpy.inf, numpy.inf, numpy.inf]
    )
    assert_almost_equal(
        factors.angular_distortion, [numpy.inf, numpy.inf, numpy.inf, numpy.inf]
    )
    assert_almost_equal(
        factors.meridian_parallel_angle, [numpy.inf, numpy.inf, numpy.inf, numpy.inf]
    )
    assert_almost_equal(
        factors.meridian_convergence, [numpy.inf, numpy.inf, numpy.inf, numpy.inf]
    )
    assert_almost_equal(
        factors.tissot_semimajor, [numpy.inf, numpy.inf, numpy.inf, numpy.inf]
    )
    assert_almost_equal(
        factors.tissot_semiminor, [numpy.inf, numpy.inf, numpy.inf, numpy.inf]
    )
    assert_almost_equal(factors.dx_dlam, [numpy.inf, numpy.inf, numpy.inf, numpy.inf])
    assert_almost_equal(factors.dx_dphi, [numpy.inf, numpy.inf, numpy.inf, numpy.inf])
    assert_almost_equal(factors.dy_dlam, [numpy.inf, numpy.inf, numpy.inf, numpy.inf])
    assert_almost_equal(factors.dy_dphi, [numpy.inf, numpy.inf, numpy.inf, numpy.inf])


def test_get_factors__errcheck():
    transformer = Proj(3857)
    with pytest.raises(ProjError):
        transformer.get_factors(longitude=40, latitude=70, errcheck=True, radians=True)


def test_numpy_bool_kwarg_false():
    # Issue 564
    south = numpy.array(50) < 0
    proj = Proj(
        proj="utm", zone=32, ellipsis="WGS84", datum="WGS84", units="m", south=south
    )
    assert "south" not in proj.srs


def test_numpy_bool_kwarg_true():
    # Issue 564
    south = numpy.array(50) > 0
    proj = Proj(
        proj="utm", zone=32, ellipsis="WGS84", datum="WGS84", units="m", south=south
    )
    assert "+south " in proj.srs


@patch.dict("os.environ", {"PROJ_NETWORK": "ON"}, clear=True)
def test_network__disable():
    with proj_network_env():
        pyproj.network.set_network_enabled(active=False)
        transformer = Proj(3857)
        assert transformer.is_network_enabled is False


@patch.dict("os.environ", {"PROJ_NETWORK": "OFF"}, clear=True)
def test_network__enable():
    with proj_network_env():
        pyproj.network.set_network_enabled(active=True)
        transformer = Proj(3857)
        assert transformer.is_network_enabled is True


def test_network__default():
    with proj_network_env():
        pyproj.network.set_network_enabled()
        transformer = Proj(3857)
        assert transformer.is_network_enabled == (
            os.environ.get("PROJ_NETWORK") == "ON"
        )


def test_radians():
    proj = Proj(
        {"proj": "lcc", "R": 6371200, "lat_1": 50, "lat_2": 50, "lon_0": -107},
        preserve_units=False,
    )
    assert_almost_equal(
        proj(math.radians(-145.5), math.radians(1.0), radians=True),
        (-5632642.22547495, 1636571.4883145525),
    )


def test_proj_multithread():
    # https://github.com/pyproj4/pyproj/issues/782
    trans = Proj("EPSG:3857")

    def transform(num):
        return trans(1, 2)

    with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
        for result in executor.map(transform, range(10)):
            pass