1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
|
import warnings
from collections.abc import Callable
import numpy
from .. import colormap
from .. import debug as debug
from .. import functions as fn
from .. import getConfigOption
from ..Point import Point
from ..Qt import QtCore, QtGui, QtWidgets
from ..util.cupy_helper import getCupy
from .GraphicsObject import GraphicsObject
translate = QtCore.QCoreApplication.translate
__all__ = ['ImageItem']
class ImageItem(GraphicsObject):
"""
**Bases:** :class:`GraphicsObject <pyqtgraph.GraphicsObject>`
"""
# Overall description of ImageItem (including examples) moved to documentation text
sigImageChanged = QtCore.Signal()
sigRemoveRequested = QtCore.Signal(object) # self; emitted when 'remove' is selected from context menu
def __init__(self, image=None, **kargs):
"""
See :func:`~pyqtgraph.ImageItem.setOpts` for further keyword arguments and
and :func:`~pyqtgraph.ImageItem.setImage` for information on supported formats.
Parameters
----------
image: np.ndarray, optional
Image data
"""
GraphicsObject.__init__(self)
self.menu = None
self.image = None ## original image data
self.qimage = None ## rendered image for display
self.paintMode = None
self.levels = None ## [min, max] or [[redMin, redMax], ...]
self.lut = None
self.autoDownsample = False
self._colorMap = None # This is only set if a color map is assigned directly
self._lastDownsample = (1, 1)
self._processingBuffer = None
self._displayBuffer = None
self._renderRequired = True
self._unrenderable = False
self._xp = None # either numpy or cupy, to match the image data
self._defferedLevels = None
self.axisOrder = getConfigOption('imageAxisOrder')
self._dataTransform = self._inverseDataTransform = None
self._update_data_transforms( self.axisOrder ) # install initial transforms
# In some cases, we use a modified lookup table to handle both rescaling
# and LUT more efficiently
self._effectiveLut = None
self.drawKernel = None
self.border = None
self.removable = False
if image is not None:
self.setImage(image, **kargs)
else:
self.setOpts(**kargs)
def setCompositionMode(self, mode):
"""
Change the composition mode of the item. This is useful when overlaying
multiple items.
Parameters
----------
mode : ``QtGui.QPainter.CompositionMode``
Composition of the item, often used when overlaying items. Common
options include:
``QPainter.CompositionMode.CompositionMode_SourceOver`` (Default)
Image replaces the background if it is opaque. Otherwise, it uses
the alpha channel to blend the image with the background.
``QPainter.CompositionMode.CompositionMode_Overlay`` Image color is
mixed with the background color to reflect the lightness or
darkness of the background
``QPainter.CompositionMode.CompositionMode_Plus`` Both the alpha
and color of the image and background pixels are added together.
``QPainter.CompositionMode.CompositionMode_Plus`` The output is the
image color multiplied by the background.
See ``QPainter::CompositionMode`` in the Qt Documentation for more
options and details
"""
self.paintMode = mode
self.update()
def setBorder(self, b):
"""
Defines the border drawn around the image. Accepts all arguments supported by
:func:`~pyqtgraph.mkPen`.
"""
self.border = fn.mkPen(b)
self.update()
def width(self):
if self.image is None:
return None
axis = 0 if self.axisOrder == 'col-major' else 1
return self.image.shape[axis]
def height(self):
if self.image is None:
return None
axis = 1 if self.axisOrder == 'col-major' else 0
return self.image.shape[axis]
def channels(self):
if self.image is None:
return None
return self.image.shape[2] if self.image.ndim == 3 else 1
def boundingRect(self):
if self.image is None:
return QtCore.QRectF(0., 0., 0., 0.)
return QtCore.QRectF(0., 0., float(self.width()), float(self.height()))
def setLevels(self, levels, update=True):
"""
Sets image scaling levels.
See :func:`makeARGB <pyqtgraph.makeARGB>` for more details on how levels are applied.
Parameters
----------
levels: array_like
- ``[blackLevel, whiteLevel]``
sets black and white levels for monochrome data and can be used with a lookup table.
- ``[[minR, maxR], [minG, maxG], [minB, maxB]]``
sets individual scaling for RGB values. Not compatible with lookup tables.
update: bool, optional
Controls if image immediately updates to reflect the new levels.
"""
if self._xp is None:
self.levels = levels
self._defferedLevels = levels
return
if levels is not None:
levels = self._xp.asarray(levels)
self.levels = levels
self._effectiveLut = None
if update:
self.updateImage()
def getLevels(self):
"""
Returns the list representing the current level settings. See :func:`~setLevels`.
When ``autoLevels`` is active, the format is ``[blackLevel, whiteLevel]``.
"""
return self.levels
def setColorMap(self, colorMap):
"""
Sets a color map for false color display of a monochrome image.
Parameters
----------
colorMap : :class:`~pyqtgraph.ColorMap` or `str`
A string argument will be passed to :func:`colormap.get() <pyqtgraph.colormap.get>`
"""
if isinstance(colorMap, colormap.ColorMap):
self._colorMap = colorMap
elif isinstance(colorMap, str):
self._colorMap = colormap.get(colorMap)
else:
raise TypeError("'colorMap' argument must be ColorMap or string")
self.setLookupTable( self._colorMap.getLookupTable(nPts=256) )
def getColorMap(self):
"""
Returns the assigned :class:`pyqtgraph.ColorMap`, or `None` if not available
"""
return self._colorMap
def setLookupTable(self, lut, update=True):
"""
Sets lookup table ``lut`` to use for false color display of a monochrome image. See :func:`makeARGB <pyqtgraph.makeARGB>` for more
information on how this is used. Optionally, `lut` can be a callable that accepts the current image as an
argument and returns the lookup table to use.
Ordinarily, this table is supplied by a :class:`~pyqtgraph.HistogramLUTItem`,
:class:`~pyqtgraph.GradientEditorItem` or :class:`~pyqtgraph.ColorBarItem`.
Setting ``update = False`` avoids an immediate image update.
"""
if lut is not self.lut:
if self._xp is not None:
lut = self._ensure_proper_substrate(lut, self._xp)
self.lut = lut
self._effectiveLut = None
if update:
self.updateImage()
@staticmethod
def _ensure_proper_substrate(data, substrate):
if data is None or isinstance(data, Callable) or isinstance(data, substrate.ndarray):
return data
cupy = getCupy()
if substrate == cupy and not isinstance(data, cupy.ndarray):
data = cupy.asarray(data)
elif substrate == numpy:
if cupy is not None and isinstance(data, cupy.ndarray):
data = data.get()
else:
data = numpy.asarray(data)
return data
def setAutoDownsample(self, active=True):
"""
Controls automatic downsampling for this ImageItem.
If `active` is `True`, the image is automatically downsampled to match the
screen resolution. This improves performance for large images and
reduces aliasing. If `autoDownsample` is not specified, then ImageItem will
choose whether to downsample the image based on its size.
`False` disables automatic downsampling.
"""
self.autoDownsample = active
self._renderRequired = True
self.update()
def setOpts(self, update=True, **kargs):
"""
Sets display and processing options for this ImageItem. :func:`~pyqtgraph.ImageItem.__init__` and
:func:`~pyqtgraph.ImageItem.setImage` support all keyword arguments listed here.
Parameters
----------
autoDownsample: bool
See :func:`~pyqtgraph.ImageItem.setAutoDownsample`.
axisOrder: str
| `'col-major'`: The shape of the array represents (width, height) of the image. This is the default.
| `'row-major'`: The shape of the array represents (height, width).
border: bool
Sets a pen to draw to draw an image border. See :func:`~pyqtgraph.ImageItem.setBorder`.
compositionMode:
See :func:`~pyqtgraph.ImageItem.setCompositionMode`
colorMap: :class:`~pyqtgraph.ColorMap` or `str`
Sets a color map. A string will be passed to :func:`colormap.get() <pyqtgraph.colormap.get()>`
lut: array_like
Sets a color lookup table to use when displaying the image.
See :func:`~pyqtgraph.ImageItem.setLookupTable`.
levels: array_like
Shape of (min, max). Sets minimum and maximum values to use when
rescaling the image data. By default, these will be set to the
estimated minimum and maximum values in the image. If the image array
has dtype uint8, no rescaling is necessary. See
:func:`~pyqtgraph.ImageItem.setLevels`.
opacity: float
Overall opacity for an RGB image. Between 0.0-1.0.
rect: :class:`QRectF`, :class:`QRect` or array_like
Displays the current image within the specified rectangle in plot
coordinates. If ``array_like``, should be of the of ``floats
(`x`,`y`,`w`,`h`)`` . See :func:`~pyqtgraph.ImageItem.setRect`.
update : bool, optional
Controls if image immediately updates to reflect the new options.
"""
if 'axisOrder' in kargs:
val = kargs['axisOrder']
if val not in ('row-major', 'col-major'):
raise ValueError("axisOrder must be either 'row-major' or 'col-major'")
self.axisOrder = val
self._update_data_transforms(self.axisOrder) # update cached transforms
if 'colorMap' in kargs:
self.setColorMap(kargs['colorMap'])
if 'lut' in kargs:
self.setLookupTable(kargs['lut'], update=update)
if 'levels' in kargs:
self.setLevels(kargs['levels'], update=update)
#if 'clipLevel' in kargs:
#self.setClipLevel(kargs['clipLevel'])
if 'opacity' in kargs:
self.setOpacity(kargs['opacity'])
if 'compositionMode' in kargs:
self.setCompositionMode(kargs['compositionMode'])
if 'border' in kargs:
self.setBorder(kargs['border'])
if 'removable' in kargs:
self.removable = kargs['removable']
self.menu = None
if 'autoDownsample' in kargs:
self.setAutoDownsample(kargs['autoDownsample'])
if 'rect' in kargs:
self.setRect(kargs['rect'])
if update:
self.update()
def setRect(self, *args):
"""
setRect(rect) or setRect(x,y,w,h)
Sets translation and scaling of this ImageItem to display the current image within the rectangle given
as ``rect`` (:class:`QtCore.QRect` or :class:`QtCore.QRectF`), or described by parameters `x, y, w, h`,
defining starting position, width and height.
This method cannot be used before an image is assigned.
See the :ref:`examples <ImageItem_examples>` for how to manually set transformations.
"""
if len(args) == 0:
self.resetTransform() # reset scaling and rotation when called without argument
return
if isinstance(args[0], (QtCore.QRectF, QtCore.QRect)):
rect = args[0] # use QRectF or QRect directly
else:
if hasattr(args[0],'__len__'):
args = args[0] # promote tuple or list of values
rect = QtCore.QRectF( *args ) # QRectF(x,y,w,h), but also accepts other initializers
tr = QtGui.QTransform()
tr.translate(rect.left(), rect.top())
tr.scale(rect.width() / self.width(), rect.height() / self.height())
self.setTransform(tr)
def clear(self):
"""
Clears the assigned image.
"""
self.image = None
self.prepareGeometryChange()
self.informViewBoundsChanged()
self.update()
def _buildQImageBuffer(self, shape):
self._displayBuffer = numpy.empty(shape[:2] + (4,), dtype=numpy.ubyte)
if self._xp == getCupy():
self._processingBuffer = self._xp.empty(shape[:2] + (4,), dtype=self._xp.ubyte)
else:
self._processingBuffer = self._displayBuffer
self.qimage = None
def setImage(self, image=None, autoLevels=None, **kargs):
"""
Updates the image displayed by this ImageItem. For more information on how the image
is processed before displaying, see :func:`~pyqtgraph.makeARGB`.
For backward compatibility, image data is assumed to be in column-major order (column, row) by default.
However, most data is stored in row-major order (row, column). It can either be transposed before assignment::
imageitem.setImage(imagedata.T)
or the interpretation of the data can be changed locally through the ``axisOrder`` keyword or by changing the
`imageAxisOrder` :ref:`global configuration option <apiref_config>`
All keywords supported by :func:`~pyqtgraph.ImageItem.setOpts` are also allowed here.
Parameters
----------
image: np.ndarray, optional
Image data given as NumPy array with an integer or floating
point dtype of any bit depth. A 2-dimensional array describes single-valued (monochromatic) data.
A 3-dimensional array is used to give individual color components. The third dimension must
be of length 3 (RGB) or 4 (RGBA).
rect: QRectF or QRect or array_like, optional
If given, sets translation and scaling to display the image within the
specified rectangle. If ``array_like`` should be the form of floats
``[x, y, w, h]`` See :func:`~pyqtgraph.ImageItem.setRect`
autoLevels: bool, optional
If `True`, ImageItem will automatically select levels based on the maximum and minimum values encountered
in the data. For performance reasons, this search subsamples the images and may miss individual bright or
or dark points in the data set.
If `False`, the search will be omitted.
The default is `False` if a ``levels`` keyword argument is given, and `True` otherwise.
levelSamples: int, default 65536
When determining minimum and maximum values, ImageItem
only inspects a subset of pixels no larger than this number.
Setting this larger than the total number of pixels considers all values.
"""
profile = debug.Profiler()
gotNewData = False
if image is None:
if self.image is None:
return
else:
old_xp = self._xp
cp = getCupy()
self._xp = cp.get_array_module(image) if cp else numpy
gotNewData = True
processingSubstrateChanged = old_xp != self._xp
if processingSubstrateChanged:
self._processingBuffer = None
shapeChanged = (processingSubstrateChanged or self.image is None or image.shape != self.image.shape)
image = image.view()
if self.image is None or image.dtype != self.image.dtype:
self._effectiveLut = None
self.image = image
if self.image.shape[0] > 2**15-1 or self.image.shape[1] > 2**15-1:
if 'autoDownsample' not in kargs:
kargs['autoDownsample'] = True
if shapeChanged:
self.prepareGeometryChange()
self.informViewBoundsChanged()
profile()
if autoLevels is None:
if 'levels' in kargs:
autoLevels = False
else:
autoLevels = True
if autoLevels:
level_samples = kargs.pop('levelSamples', 2**16)
mn, mx = self.quickMinMax( targetSize=level_samples )
# mn and mx can still be NaN if the data is all-NaN
if mn == mx or self._xp.isnan(mn) or self._xp.isnan(mx):
mn = 0
mx = 255
kargs['levels'] = [mn,mx]
profile()
self.setOpts(update=False, **kargs)
profile()
self._renderRequired = True
self.update()
profile()
if gotNewData:
self.sigImageChanged.emit()
if self._defferedLevels is not None:
levels = self._defferedLevels
self._defferedLevels = None
self.setLevels((levels))
def _update_data_transforms(self, axisOrder='col-major'):
""" Sets up the transforms needed to map between input array and display """
self._dataTransform = QtGui.QTransform()
self._inverseDataTransform = QtGui.QTransform()
if self.axisOrder == 'row-major': # transpose both
self._dataTransform.scale(1, -1)
self._dataTransform.rotate(-90)
self._inverseDataTransform.scale(1, -1)
self._inverseDataTransform.rotate(-90)
def dataTransform(self):
"""
Returns the transform that maps from this image's input array to its
local coordinate system.
This transform corrects for the transposition that occurs when image data
is interpreted in row-major order.
:meta private:
"""
# Might eventually need to account for downsampling / clipping here
# transforms are updated in setOpts call.
return self._dataTransform
def inverseDataTransform(self):
"""Return the transform that maps from this image's local coordinate
system to its input array.
See dataTransform() for more information.
:meta private:
"""
# transforms are updated in setOpts call.
return self._inverseDataTransform
def mapToData(self, obj):
return self._inverseDataTransform.map(obj)
def mapFromData(self, obj):
return self._dataTransform.map(obj)
def quickMinMax(self, targetSize=1e6):
"""
Estimates the min/max values of the image data by subsampling.
Subsampling is performed at regular strides chosen to evaluate a number of samples
equal to or less than `targetSize`.
Returns (`min`, `max`).
"""
data = self.image
if targetSize < 2: # keep at least two pixels
targetSize = 2
while True:
h, w = data.shape[:2]
if h * w <= targetSize: break
if h > w:
data = data[::2, ::] # downsample first axis
else:
data = data[::, ::2] # downsample second axis
return self._xp.nanmin(data), self._xp.nanmax(data)
def updateImage(self, *args, **kargs):
## used for re-rendering qimage from self.image.
## can we make any assumptions here that speed things up?
## dtype, range, size are all the same?
defaults = {
'autoLevels': False,
}
defaults.update(kargs)
return self.setImage(*args, **defaults)
def render(self):
# Convert data to QImage for display.
self._unrenderable = True
if self.image is None or self.image.size == 0:
return
# Request a lookup table if this image has only one channel
if self.image.ndim == 2 or self.image.shape[2] == 1:
self.lut = self._ensure_proper_substrate(self.lut, self._xp)
if isinstance(self.lut, Callable):
lut = self._ensure_proper_substrate(self.lut(self.image), self._xp)
else:
lut = self.lut
else:
lut = None
if self.autoDownsample:
xds, yds = self._computeDownsampleFactors()
if xds is None:
return
axes = [1, 0] if self.axisOrder == 'row-major' else [0, 1]
image = fn.downsample(self.image, xds, axis=axes[0])
image = fn.downsample(image, yds, axis=axes[1])
self._lastDownsample = (xds, yds)
# Check if downsampling reduced the image size to zero due to inf values.
if image.size == 0:
return
else:
image = self.image
# Convert single-channel image to 2D array
if image.ndim == 3 and image.shape[-1] == 1:
image = image[..., 0]
# Assume images are in column-major order for backward compatibility
# (most images are in row-major order)
if self.axisOrder == 'col-major':
image = image.swapaxes(0, 1)
levels = self.levels
augmented_alpha = False
if lut is not None and lut.dtype != self._xp.uint8:
# Both _try_rescale_float() and _try_combine_lut() assume that
# lut is of type uint8. It is considered a usage error if that
# is not the case.
# However, the makeARGB() codepath has previously allowed such
# a usage to work. Rather than fail outright, we delegate this
# case to makeARGB().
warnings.warn(
"Using non-uint8 LUTs is an undocumented accidental feature and may "
"be removed at some point in the future. Please open an issue if you "
"instead believe this to be worthy of protected inclusion in pyqtgraph.",
DeprecationWarning, stacklevel=2)
elif image.dtype.kind == 'f':
image, levels, lut, augmented_alpha = self._try_rescale_float(image, levels, lut)
# if we succeeded, we will have an uint8 image with levels None.
# lut if not None will have <= 256 entries
# if the image data is a small int, then we can combine levels + lut
# into a single lut for better performance
elif image.dtype in (self._xp.ubyte, self._xp.uint16):
image, levels, lut, augmented_alpha = self._try_combine_lut(image, levels, lut)
qimage = self._try_make_qimage(image, levels, lut, augmented_alpha)
if qimage is not None:
self._processingBuffer = None
self._displayBuffer = None
self.qimage = qimage
self._renderRequired = False
self._unrenderable = False
return
if self._processingBuffer is None or self._processingBuffer.shape[:2] != image.shape[:2]:
self._buildQImageBuffer(image.shape)
fn.makeARGB(image, lut=lut, levels=levels, output=self._processingBuffer)
if self._xp == getCupy():
self._processingBuffer.get(out=self._displayBuffer)
self.qimage = fn.ndarray_to_qimage(self._displayBuffer, QtGui.QImage.Format.Format_ARGB32)
self._renderRequired = False
self._unrenderable = False
def _try_rescale_float(self, image, levels, lut):
xp = self._xp
augmented_alpha = False
can_handle = False
while True:
if levels is None or levels.ndim != 1:
# float images always need levels
# can't handle multi-channel levels
break
# awkward, but fastest numpy native nan evaluation
if xp.isnan(image.min()):
# don't handle images with nans
# this should be an uncommon case
break
can_handle = True
break
if not can_handle:
return image, levels, lut, augmented_alpha
# Decide on maximum scaled value
if lut is not None:
scale = lut.shape[0]
num_colors = lut.shape[0]
else:
scale = 255.
num_colors = 256
dtype = xp.min_scalar_type(num_colors-1)
minVal, maxVal = levels
if minVal == maxVal:
maxVal = xp.nextafter(maxVal, 2*maxVal)
rng = maxVal - minVal
rng = 1 if rng == 0 else rng
fn_numba = fn.getNumbaFunctions()
if xp == numpy and image.flags.c_contiguous and dtype == xp.uint16 and fn_numba is not None:
lut, augmented_alpha = self._convert_2dlut_to_1dlut(lut)
image = fn_numba.rescale_and_lookup1d(image, scale/rng, minVal, lut)
if image.dtype == xp.uint32:
image = image[..., xp.newaxis].view(xp.uint8)
return image, None, None, augmented_alpha
else:
image = fn.rescaleData(image, scale/rng, offset=minVal, dtype=dtype, clip=(0, num_colors-1))
levels = None
if image.dtype == xp.uint16 and image.ndim == 2:
image, augmented_alpha = self._apply_lut_for_uint16_mono(image, lut)
lut = None
# image is now of type uint8
return image, levels, lut, augmented_alpha
def _try_combine_lut(self, image, levels, lut):
augmented_alpha = False
xp = self._xp
can_handle = False
while True:
if levels is not None and levels.ndim != 1:
# can't handle multi-channel levels
break
if image.dtype == xp.uint16 and levels is None and \
image.ndim == 3 and image.shape[2] == 3:
# uint16 rgb can't be directly displayed, so make it
# pass through effective lut processing
levels = [0, 65535]
if levels is None and lut is None:
# nothing to combine
break
can_handle = True
break
if not can_handle:
return image, levels, lut, augmented_alpha
# distinguish between lut for levels and colors
levels_lut = None
colors_lut = lut
eflsize = 2**(image.itemsize*8)
if levels is None:
info = xp.iinfo(image.dtype)
minlev, maxlev = info.min, info.max
else:
minlev, maxlev = levels
levdiff = maxlev - minlev
levdiff = 1 if levdiff == 0 else levdiff # don't allow division by 0
if colors_lut is None:
if image.dtype == xp.ubyte and image.ndim == 2:
# uint8 mono image
ind = xp.arange(eflsize)
levels_lut = fn.rescaleData(ind, scale=255./levdiff,
offset=minlev, dtype=xp.ubyte)
# image data is not scaled. instead, levels_lut is used
# as (grayscale) Indexed8 ColorTable to get the same effect.
# due to the small size of the input to rescaleData(), we
# do not bother caching the result
return image, None, levels_lut, augmented_alpha
else:
# uint16 mono, uint8 rgb, uint16 rgb
# rescale image data by computation instead of by memory lookup
image = fn.rescaleData(image, scale=255./levdiff,
offset=minlev, dtype=xp.ubyte)
return image, None, colors_lut, augmented_alpha
else:
num_colors = colors_lut.shape[0]
effscale = num_colors / levdiff
lutdtype = xp.min_scalar_type(num_colors - 1)
if image.dtype == xp.ubyte or lutdtype != xp.ubyte:
# combine if either:
# 1) uint8 mono image
# 2) colors_lut has more entries than will fit within 8-bits
if self._effectiveLut is None:
ind = xp.arange(eflsize)
levels_lut = fn.rescaleData(ind, scale=effscale,
offset=minlev, dtype=lutdtype, clip=(0, num_colors-1))
efflut = colors_lut[levels_lut]
self._effectiveLut = efflut
efflut = self._effectiveLut
# apply the effective lut early for the following types:
if image.dtype == xp.uint16 and image.ndim == 2:
image, augmented_alpha = self._apply_lut_for_uint16_mono(image, efflut)
efflut = None
return image, None, efflut, augmented_alpha
else:
# uint16 image with colors_lut <= 256 entries
# don't combine, we will use QImage ColorTable
image = fn.rescaleData(image, scale=effscale,
offset=minlev, dtype=lutdtype, clip=(0, num_colors-1))
return image, None, colors_lut, augmented_alpha
def _apply_lut_for_uint16_mono(self, image, lut):
# Note: compared to makeARGB(), we have already clipped the data to range
xp = self._xp
augmented_alpha = False
# if lut is 1d, then lut[image] is fastest
# if lut is 2d, then lut.take(image, axis=0) is faster than lut[image]
if not image.flags.c_contiguous:
image = lut.take(image, axis=0)
# if lut had dimensions (N, 1), then our resultant image would
# have dimensions (h, w, 1)
if image.ndim == 3 and image.shape[-1] == 1:
image = image[..., 0]
return image, augmented_alpha
# if we are contiguous, we can take a faster codepath where we
# ensure that the lut is 1d
lut, augmented_alpha = self._convert_2dlut_to_1dlut(lut)
fn_numba = fn.getNumbaFunctions()
if xp == numpy and fn_numba is not None:
image = fn_numba.numba_take(lut, image)
else:
image = lut[image]
if image.dtype == xp.uint32:
image = image[..., xp.newaxis].view(xp.uint8)
return image, augmented_alpha
def _convert_2dlut_to_1dlut(self, lut):
# converts:
# - uint8 (N, 1) to uint8 (N,)
# - uint8 (N, 3) or (N, 4) to uint32 (N,)
# this allows faster lookup as 1d lookup is faster
xp = self._xp
augmented_alpha = False
if lut.ndim == 1:
return lut, augmented_alpha
if lut.shape[1] == 3: # rgb
# convert rgb lut to rgba so that it is 32-bits
lut = xp.column_stack([lut, xp.full(lut.shape[0], 255, dtype=xp.uint8)])
augmented_alpha = True
if lut.shape[1] == 4: # rgba
lut = lut.view(xp.uint32)
lut = lut.ravel()
return lut, augmented_alpha
def _try_make_qimage(self, image, levels, lut, augmented_alpha):
xp = self._xp
ubyte_nolvl = image.dtype == xp.ubyte and levels is None
is_passthru8 = ubyte_nolvl and lut is None
is_indexed8 = ubyte_nolvl and image.ndim == 2 and \
lut is not None and lut.shape[0] <= 256
is_passthru16 = image.dtype == xp.uint16 and levels is None and lut is None
can_grayscale16 = is_passthru16 and image.ndim == 2 and \
hasattr(QtGui.QImage.Format, 'Format_Grayscale16')
is_rgba64 = is_passthru16 and image.ndim == 3 and image.shape[2] == 4
# bypass makeARGB for supported combinations
supported = is_passthru8 or is_indexed8 or can_grayscale16 or is_rgba64
if not supported:
return None
if self._xp == getCupy():
image = image.get()
# worthwhile supporting non-contiguous arrays
image = numpy.ascontiguousarray(image)
fmt = None
ctbl = None
if is_passthru8:
# both levels and lut are None
# these images are suitable for display directly
if image.ndim == 2:
fmt = QtGui.QImage.Format.Format_Grayscale8
elif image.shape[2] == 3:
fmt = QtGui.QImage.Format.Format_RGB888
elif image.shape[2] == 4:
if augmented_alpha:
fmt = QtGui.QImage.Format.Format_RGBX8888
else:
fmt = QtGui.QImage.Format.Format_RGBA8888
elif is_indexed8:
# levels and/or lut --> lut-only
fmt = QtGui.QImage.Format.Format_Indexed8
if lut.ndim == 1 or lut.shape[1] == 1:
ctbl = [QtGui.qRgb(x,x,x) for x in lut.ravel().tolist()]
elif lut.shape[1] == 3:
ctbl = [QtGui.qRgb(*rgb) for rgb in lut.tolist()]
elif lut.shape[1] == 4:
ctbl = [QtGui.qRgba(*rgba) for rgba in lut.tolist()]
elif can_grayscale16:
# single channel uint16
# both levels and lut are None
fmt = QtGui.QImage.Format.Format_Grayscale16
elif is_rgba64:
# uint16 rgba
# both levels and lut are None
fmt = QtGui.QImage.Format.Format_RGBA64 # endian-independent
if fmt is None:
raise ValueError("unsupported image type")
qimage = fn.ndarray_to_qimage(image, fmt)
if ctbl is not None:
qimage.setColorTable(ctbl)
return qimage
def paint(self, p, *args):
profile = debug.Profiler()
if self.image is None:
return
if self._renderRequired:
self.render()
if self._unrenderable:
return
profile('render QImage')
if self.paintMode is not None:
p.setCompositionMode(self.paintMode)
profile('set comp mode')
shape = self.image.shape[:2] if self.axisOrder == 'col-major' else self.image.shape[:2][::-1]
p.drawImage(QtCore.QRectF(0,0,*shape), self.qimage)
profile('p.drawImage')
if self.border is not None:
p.setPen(self.border)
p.drawRect(self.boundingRect())
def save(self, fileName, *args):
"""
Saves this image to file. Note that this saves the visible image (after scale/color changes), not the
original data.
"""
if self._renderRequired:
self.render()
self.qimage.save(fileName, *args)
def getHistogram(self, bins='auto', step='auto', perChannel=False, targetImageSize=200,
targetHistogramSize=500, **kwds):
"""
Returns `x` and `y` arrays containing the histogram values for the current image.
For an explanation of the return format, see :func:`numpy.histogram()`.
The `step` argument causes pixels to be skipped when computing the histogram to save time.
If `step` is 'auto', then a step is chosen such that the analyzed data has
dimensions approximating `targetImageSize` for each axis.
The `bins` argument and any extra keyword arguments are passed to
:func:`numpy.histogram()`. If `bins` is `auto`, a bin number is automatically
chosen based on the image characteristics:
* Integer images will have approximately `targetHistogramSize` bins,
with each bin having an integer width.
* All other types will have `targetHistogramSize` bins.
If `perChannel` is `True`, then a histogram is computed for each channel,
and the output is a list of the results.
"""
# This method is also used when automatically computing levels.
if self.image is None or self.image.size == 0:
return None, None
if step == 'auto':
step = (max(1, int(self._xp.ceil(self.image.shape[0] / targetImageSize))),
max(1, int(self._xp.ceil(self.image.shape[1] / targetImageSize))))
if self._xp.isscalar(step):
step = (step, step)
stepData = self.image[::step[0], ::step[1]]
if isinstance(bins, str) and bins == 'auto':
mn = self._xp.nanmin(stepData).item()
mx = self._xp.nanmax(stepData).item()
if mx == mn:
# degenerate image, arange will fail
mx += 1
if self._xp.isnan(mn) or self._xp.isnan(mx):
# the data are all-nan
return None, None
if stepData.dtype.kind in "ui":
# For integer data, we select the bins carefully to avoid aliasing
step = int(self._xp.ceil((mx - mn) / 500.))
bins = []
if step > 0.0:
bins = self._xp.arange(mn, mx + 1.01 * step, step, dtype=int)
else:
# for float data, let numpy select the bins.
bins = self._xp.linspace(mn, mx, 500)
if len(bins) == 0:
bins = self._xp.asarray((mn, mx))
kwds['bins'] = bins
cp = getCupy()
if perChannel:
hist = []
for i in range(stepData.shape[-1]):
stepChan = stepData[..., i]
stepChan = stepChan[self._xp.isfinite(stepChan)]
h = self._xp.histogram(stepChan, **kwds)
if cp:
hist.append((cp.asnumpy(h[1][:-1]), cp.asnumpy(h[0])))
else:
hist.append((h[1][:-1], h[0]))
return hist
else:
stepData = stepData[self._xp.isfinite(stepData)]
hist = self._xp.histogram(stepData, **kwds)
if cp:
return cp.asnumpy(hist[1][:-1]), cp.asnumpy(hist[0])
else:
return hist[1][:-1], hist[0]
def setPxMode(self, b):
"""
Sets whether the item ignores transformations and draws directly to screen pixels.
If `True`, the item will not inherit any scale or rotation transformations from its
parent items, but its position will be transformed as usual.
(see ``GraphicsItem::ItemIgnoresTransformations`` in the Qt documentation)
"""
self.setFlag(self.GraphicsItemFlag.ItemIgnoresTransformations, b)
def setScaledMode(self):
self.setPxMode(False)
def getPixmap(self):
if self._renderRequired:
self.render()
if self._unrenderable:
return None
return QtGui.QPixmap.fromImage(self.qimage)
def pixelSize(self):
"""
Returns the scene-size of a single pixel in the image
"""
br = self.sceneBoundingRect()
if self.image is None:
return 1,1
return br.width()/self.width(), br.height()/self.height()
def viewTransformChanged(self):
if self.autoDownsample:
xds, yds = self._computeDownsampleFactors()
if xds is None:
self._renderRequired = True
self._unrenderable = True
return
if (xds, yds) != self._lastDownsample:
self._renderRequired = True
self.update()
def _computeDownsampleFactors(self):
# reduce dimensions of image based on screen resolution
o = self.mapToDevice(QtCore.QPointF(0, 0))
x = self.mapToDevice(QtCore.QPointF(1, 0))
y = self.mapToDevice(QtCore.QPointF(0, 1))
# scene may not be available yet
if o is None:
return None, None
w = Point(x - o).length()
h = Point(y - o).length()
if w == 0 or h == 0:
return None, None
return max(1, int(1.0 / w)), max(1, int(1.0 / h))
def mouseDragEvent(self, ev):
if ev.button() != QtCore.Qt.MouseButton.LeftButton:
ev.ignore()
return
elif self.drawKernel is not None:
ev.accept()
self.drawAt(ev.pos(), ev)
def mouseClickEvent(self, ev):
if ev.button() == QtCore.Qt.MouseButton.RightButton:
if self.raiseContextMenu(ev):
ev.accept()
if self.drawKernel is not None and ev.button() == QtCore.Qt.MouseButton.LeftButton:
self.drawAt(ev.pos(), ev)
def raiseContextMenu(self, ev):
menu = self.getMenu()
if menu is None:
return False
menu = self.scene().addParentContextMenus(self, menu, ev)
pos = ev.screenPos()
menu.popup(QtCore.QPoint(int(pos.x()), int(pos.y())))
return True
def getMenu(self):
if self.menu is None:
if not self.removable:
return None
self.menu = QtWidgets.QMenu()
self.menu.setTitle(translate("ImageItem", "Image"))
remAct = QtGui.QAction(translate("ImageItem", "Remove image"), self.menu)
remAct.triggered.connect(self.removeClicked)
self.menu.addAction(remAct)
self.menu.remAct = remAct
return self.menu
def hoverEvent(self, ev):
if not ev.isExit() and self.drawKernel is not None and ev.acceptDrags(QtCore.Qt.MouseButton.LeftButton):
ev.acceptClicks(QtCore.Qt.MouseButton.LeftButton) ## we don't use the click, but we also don't want anyone else to use it.
ev.acceptClicks(QtCore.Qt.MouseButton.RightButton)
elif not ev.isExit() and self.removable:
ev.acceptClicks(QtCore.Qt.MouseButton.RightButton) ## accept context menu clicks
def tabletEvent(self, ev):
pass
#print(ev.device())
#print(ev.pointerType())
#print(ev.pressure())
def drawAt(self, pos, ev=None):
if self.axisOrder == "col-major":
pos = [int(pos.x()), int(pos.y())]
else:
pos = [int(pos.y()), int(pos.x())]
dk = self.drawKernel
kc = self.drawKernelCenter
sx = [0,dk.shape[0]]
sy = [0,dk.shape[1]]
tx = [pos[0] - kc[0], pos[0] - kc[0]+ dk.shape[0]]
ty = [pos[1] - kc[1], pos[1] - kc[1]+ dk.shape[1]]
for i in [0,1]:
dx1 = -min(0, tx[i])
dx2 = min(0, self.image.shape[0]-tx[i])
tx[i] += dx1+dx2
sx[i] += dx1+dx2
dy1 = -min(0, ty[i])
dy2 = min(0, self.image.shape[1]-ty[i])
ty[i] += dy1+dy2
sy[i] += dy1+dy2
ts = (slice(tx[0],tx[1]), slice(ty[0],ty[1]))
ss = (slice(sx[0],sx[1]), slice(sy[0],sy[1]))
mask = self.drawMask
src = dk
if isinstance(self.drawMode, Callable):
self.drawMode(dk, self.image, mask, ss, ts, ev)
else:
src = src[ss]
if self.drawMode == 'set':
if mask is not None:
mask = mask[ss]
self.image[ts] = self.image[ts] * (1-mask) + src * mask
else:
self.image[ts] = src
elif self.drawMode == 'add':
self.image[ts] += src
else:
raise Exception("Unknown draw mode '%s'" % self.drawMode)
self.updateImage()
def setDrawKernel(self, kernel=None, mask=None, center=(0,0), mode='set'):
self.drawKernel = kernel
self.drawKernelCenter = center
self.drawMode = mode
self.drawMask = mask
def removeClicked(self):
## Send remove event only after we have exited the menu event handler
self.removeTimer = QtCore.QTimer()
self.removeTimer.timeout.connect(self.emitRemoveRequested)
self.removeTimer.start(0)
def emitRemoveRequested(self):
self.removeTimer.timeout.disconnect(self.emitRemoveRequested)
self.sigRemoveRequested.emit(self)
|