File: ImageItem.py

package info (click to toggle)
python-pyqtgraph 0.13.1-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,520 kB
  • sloc: python: 52,773; makefile: 115; ansic: 40; sh: 2
file content (1125 lines) | stat: -rw-r--r-- 44,734 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
import warnings
from collections.abc import Callable

import numpy

from .. import colormap
from .. import debug as debug
from .. import functions as fn
from .. import getConfigOption
from ..Point import Point
from ..Qt import QtCore, QtGui, QtWidgets
from ..util.cupy_helper import getCupy
from .GraphicsObject import GraphicsObject

translate = QtCore.QCoreApplication.translate

__all__ = ['ImageItem']


class ImageItem(GraphicsObject):
    """
    **Bases:** :class:`GraphicsObject <pyqtgraph.GraphicsObject>`
    """
    # Overall description of ImageItem (including examples) moved to documentation text
    sigImageChanged = QtCore.Signal()
    sigRemoveRequested = QtCore.Signal(object)  # self; emitted when 'remove' is selected from context menu

    def __init__(self, image=None, **kargs):
        """
        See :func:`~pyqtgraph.ImageItem.setOpts` for further keyword arguments and 
        and :func:`~pyqtgraph.ImageItem.setImage` for information on supported formats.

        Parameters
        ----------
            image: np.ndarray, optional
                Image data
        """
        GraphicsObject.__init__(self)
        self.menu = None
        self.image = None   ## original image data
        self.qimage = None  ## rendered image for display

        self.paintMode = None
        self.levels = None  ## [min, max] or [[redMin, redMax], ...]
        self.lut = None
        self.autoDownsample = False
        self._colorMap = None # This is only set if a color map is assigned directly
        self._lastDownsample = (1, 1)
        self._processingBuffer = None
        self._displayBuffer = None
        self._renderRequired = True
        self._unrenderable = False
        self._xp = None  # either numpy or cupy, to match the image data
        self._defferedLevels = None

        self.axisOrder = getConfigOption('imageAxisOrder')
        self._dataTransform = self._inverseDataTransform = None
        self._update_data_transforms( self.axisOrder ) # install initial transforms

        # In some cases, we use a modified lookup table to handle both rescaling
        # and LUT more efficiently
        self._effectiveLut = None

        self.drawKernel = None
        self.border = None
        self.removable = False

        if image is not None:
            self.setImage(image, **kargs)
        else:
            self.setOpts(**kargs)

    def setCompositionMode(self, mode):
        """
        Change the composition mode of the item. This is useful when overlaying
        multiple items.
        
        Parameters
        ----------
        mode : ``QtGui.QPainter.CompositionMode``
            Composition of the item, often used when overlaying items.  Common
            options include:

            ``QPainter.CompositionMode.CompositionMode_SourceOver`` (Default)
            Image replaces the background if it is opaque. Otherwise, it uses
            the alpha channel to blend the image with the background.

            ``QPainter.CompositionMode.CompositionMode_Overlay`` Image color is
            mixed with the background color to reflect the lightness or
            darkness of the background

            ``QPainter.CompositionMode.CompositionMode_Plus`` Both the alpha
            and color of the image and background pixels are added together.

            ``QPainter.CompositionMode.CompositionMode_Plus`` The output is the
            image color multiplied by the background.

            See ``QPainter::CompositionMode`` in the Qt Documentation for more
            options and details
        """
        self.paintMode = mode
        self.update()

    def setBorder(self, b):
        """
        Defines the border drawn around the image. Accepts all arguments supported by 
        :func:`~pyqtgraph.mkPen`.
        """
        self.border = fn.mkPen(b)
        self.update()

    def width(self):
        if self.image is None:
            return None
        axis = 0 if self.axisOrder == 'col-major' else 1
        return self.image.shape[axis]

    def height(self):
        if self.image is None:
            return None
        axis = 1 if self.axisOrder == 'col-major' else 0
        return self.image.shape[axis]

    def channels(self):
        if self.image is None:
            return None
        return self.image.shape[2] if self.image.ndim == 3 else 1

    def boundingRect(self):
        if self.image is None:
            return QtCore.QRectF(0., 0., 0., 0.)
        return QtCore.QRectF(0., 0., float(self.width()), float(self.height()))

    def setLevels(self, levels, update=True):
        """
        Sets image scaling levels. 
        See :func:`makeARGB <pyqtgraph.makeARGB>` for more details on how levels are applied.
        
        Parameters
        ----------
            levels: array_like
                - ``[blackLevel, whiteLevel]`` 
                  sets black and white levels for monochrome data and can be used with a lookup table.
                - ``[[minR, maxR], [minG, maxG], [minB, maxB]]``
                  sets individual scaling for RGB values. Not compatible with lookup tables.
            update: bool, optional
                Controls if image immediately updates to reflect the new levels.
        """
        if self._xp is None:
            self.levels = levels
            self._defferedLevels = levels
            return
        if levels is not None:
            levels = self._xp.asarray(levels)
        self.levels = levels
        self._effectiveLut = None
        if update:
            self.updateImage()

    def getLevels(self):
        """
        Returns the list representing the current level settings. See :func:`~setLevels`.
        When ``autoLevels`` is active, the format is ``[blackLevel, whiteLevel]``.
        """
        return self.levels
        
    def setColorMap(self, colorMap):
        """
        Sets a color map for false color display of a monochrome image.

        Parameters
        ----------
        colorMap : :class:`~pyqtgraph.ColorMap` or `str`
            A string argument will be passed to :func:`colormap.get() <pyqtgraph.colormap.get>`
        """
        if isinstance(colorMap, colormap.ColorMap):
            self._colorMap = colorMap
        elif isinstance(colorMap, str):
            self._colorMap = colormap.get(colorMap)
        else:
            raise TypeError("'colorMap' argument must be ColorMap or string")
        self.setLookupTable( self._colorMap.getLookupTable(nPts=256) )
        
    def getColorMap(self):
        """
        Returns the assigned :class:`pyqtgraph.ColorMap`, or `None` if not available
        """
        return self._colorMap
        
    def setLookupTable(self, lut, update=True):
        """
        Sets lookup table ``lut`` to use for false color display of a monochrome image. See :func:`makeARGB <pyqtgraph.makeARGB>` for more 
        information on how this is used. Optionally, `lut` can be a callable that accepts the current image as an
        argument and returns the lookup table to use.

        Ordinarily, this table is supplied by a :class:`~pyqtgraph.HistogramLUTItem`,
        :class:`~pyqtgraph.GradientEditorItem` or :class:`~pyqtgraph.ColorBarItem`.
        
        Setting ``update = False`` avoids an immediate image update.
        """
        if lut is not self.lut:
            if self._xp is not None:
                lut = self._ensure_proper_substrate(lut, self._xp)
            self.lut = lut
            self._effectiveLut = None
            if update:
                self.updateImage()

    @staticmethod
    def _ensure_proper_substrate(data, substrate):
        if data is None or isinstance(data, Callable) or isinstance(data, substrate.ndarray):
            return data
        cupy = getCupy()
        if substrate == cupy and not isinstance(data, cupy.ndarray):
            data = cupy.asarray(data)
        elif substrate == numpy:
            if cupy is not None and isinstance(data, cupy.ndarray):
                data = data.get()
            else:
                data = numpy.asarray(data)
        return data

    def setAutoDownsample(self, active=True):
        """
        Controls automatic downsampling for this ImageItem.

        If `active` is `True`, the image is automatically downsampled to match the
        screen resolution. This improves performance for large images and
        reduces aliasing. If `autoDownsample` is not specified, then ImageItem will
        choose whether to downsample the image based on its size.
        
        `False` disables automatic downsampling.
        """
        self.autoDownsample = active
        self._renderRequired = True
        self.update()

    def setOpts(self, update=True, **kargs):
        """
        Sets display and processing options for this ImageItem. :func:`~pyqtgraph.ImageItem.__init__` and 
        :func:`~pyqtgraph.ImageItem.setImage` support all keyword arguments listed here.

        Parameters
        ----------
            autoDownsample: bool
                See :func:`~pyqtgraph.ImageItem.setAutoDownsample`.
            axisOrder: str
                | `'col-major'`: The shape of the array represents (width, height) of the image. This is the default.
                | `'row-major'`: The shape of the array represents (height, width).
            border: bool
                Sets a pen to draw to draw an image border. See :func:`~pyqtgraph.ImageItem.setBorder`.
            compositionMode:
                See :func:`~pyqtgraph.ImageItem.setCompositionMode`
            colorMap: :class:`~pyqtgraph.ColorMap` or `str`
                Sets a color map. A string will be passed to :func:`colormap.get() <pyqtgraph.colormap.get()>`
            lut: array_like
                Sets a color lookup table to use when displaying the image.
                See :func:`~pyqtgraph.ImageItem.setLookupTable`.
            levels: array_like
                Shape of (min, max). Sets minimum and maximum values to use when
                rescaling the image data. By default, these will be set to the
                estimated minimum and maximum values in the image. If the image array
                has dtype uint8, no rescaling is necessary. See
                :func:`~pyqtgraph.ImageItem.setLevels`.
            opacity: float
                Overall opacity for an RGB image. Between 0.0-1.0.
            rect: :class:`QRectF`, :class:`QRect` or array_like
                Displays the current image within the specified rectangle in plot
                coordinates. If ``array_like``, should be of the of ``floats 
                (`x`,`y`,`w`,`h`)`` . See :func:`~pyqtgraph.ImageItem.setRect`.
            update : bool, optional
                Controls if image immediately updates to reflect the new options.
        """
        if 'axisOrder' in kargs:
            val = kargs['axisOrder']            
            if val not in ('row-major', 'col-major'):
                raise ValueError("axisOrder must be either 'row-major' or 'col-major'")
            self.axisOrder = val
            self._update_data_transforms(self.axisOrder) # update cached transforms
        if 'colorMap' in kargs:
            self.setColorMap(kargs['colorMap'])
        if 'lut' in kargs:
            self.setLookupTable(kargs['lut'], update=update)
        if 'levels' in kargs:
            self.setLevels(kargs['levels'], update=update)
        #if 'clipLevel' in kargs:
            #self.setClipLevel(kargs['clipLevel'])
        if 'opacity' in kargs:
            self.setOpacity(kargs['opacity'])
        if 'compositionMode' in kargs:
            self.setCompositionMode(kargs['compositionMode'])
        if 'border' in kargs:
            self.setBorder(kargs['border'])
        if 'removable' in kargs:
            self.removable = kargs['removable']
            self.menu = None
        if 'autoDownsample' in kargs:
            self.setAutoDownsample(kargs['autoDownsample'])
        if 'rect' in kargs:
            self.setRect(kargs['rect'])
        if update:
            self.update()

    def setRect(self, *args):
        """
        setRect(rect) or setRect(x,y,w,h)
        
        Sets translation and scaling of this ImageItem to display the current image within the rectangle given
        as ``rect`` (:class:`QtCore.QRect` or :class:`QtCore.QRectF`), or described by parameters `x, y, w, h`, 
        defining starting position, width and height.

        This method cannot be used before an image is assigned.
        See the :ref:`examples <ImageItem_examples>` for how to manually set transformations.
        """
        if len(args) == 0:
            self.resetTransform() # reset scaling and rotation when called without argument
            return
        if isinstance(args[0], (QtCore.QRectF, QtCore.QRect)):
            rect = args[0] # use QRectF or QRect directly
        else:
            if hasattr(args[0],'__len__'):
                args = args[0] # promote tuple or list of values
            rect = QtCore.QRectF( *args ) # QRectF(x,y,w,h), but also accepts other initializers
        tr = QtGui.QTransform()
        tr.translate(rect.left(), rect.top())
        tr.scale(rect.width() / self.width(), rect.height() / self.height())
        self.setTransform(tr)

    def clear(self):
        """
        Clears the assigned image.
        """
        self.image = None
        self.prepareGeometryChange()
        self.informViewBoundsChanged()
        self.update()

    def _buildQImageBuffer(self, shape):
        self._displayBuffer = numpy.empty(shape[:2] + (4,), dtype=numpy.ubyte)
        if self._xp == getCupy():
            self._processingBuffer = self._xp.empty(shape[:2] + (4,), dtype=self._xp.ubyte)
        else:
            self._processingBuffer = self._displayBuffer
        self.qimage = None

    def setImage(self, image=None, autoLevels=None, **kargs):
        """
        Updates the image displayed by this ImageItem. For more information on how the image
        is processed before displaying, see :func:`~pyqtgraph.makeARGB`.
        
        For backward compatibility, image data is assumed to be in column-major order (column, row) by default.
        However, most data is stored in row-major order (row, column). It can either be transposed before assignment::

            imageitem.setImage(imagedata.T)
        
        or the interpretation of the data can be changed locally through the ``axisOrder`` keyword or by changing the 
        `imageAxisOrder` :ref:`global configuration option <apiref_config>`
        
        All keywords supported by :func:`~pyqtgraph.ImageItem.setOpts` are also allowed here.

        Parameters
        ----------
        image: np.ndarray, optional
            Image data given as NumPy array with an integer or floating
            point dtype of any bit depth. A 2-dimensional array describes single-valued (monochromatic) data.
            A 3-dimensional array is used to give individual color components. The third dimension must
            be of length 3 (RGB) or 4 (RGBA).
        rect: QRectF or QRect or array_like, optional
            If given, sets translation and scaling to display the image within the
            specified rectangle. If ``array_like`` should be the form of floats
            ``[x, y, w, h]`` See :func:`~pyqtgraph.ImageItem.setRect`
        autoLevels: bool, optional
            If `True`, ImageItem will automatically select levels based on the maximum and minimum values encountered 
            in the data. For performance reasons, this search subsamples the images and may miss individual bright or
            or dark points in the data set.
            
            If `False`, the search will be omitted.

            The default is `False` if a ``levels`` keyword argument is given, and `True` otherwise.
        levelSamples: int, default 65536
            When determining minimum and maximum values, ImageItem
            only inspects a subset of pixels no larger than this number.
            Setting this larger than the total number of pixels considers all values.
        """
        profile = debug.Profiler()

        gotNewData = False
        if image is None:
            if self.image is None:
                return
        else:
            old_xp = self._xp
            cp = getCupy()
            self._xp = cp.get_array_module(image) if cp else numpy
            gotNewData = True
            processingSubstrateChanged = old_xp != self._xp
            if processingSubstrateChanged:
                self._processingBuffer = None
            shapeChanged = (processingSubstrateChanged or self.image is None or image.shape != self.image.shape)
            image = image.view()
            if self.image is None or image.dtype != self.image.dtype:
                self._effectiveLut = None
            self.image = image
            if self.image.shape[0] > 2**15-1 or self.image.shape[1] > 2**15-1:
                if 'autoDownsample' not in kargs:
                    kargs['autoDownsample'] = True
            if shapeChanged:
                self.prepareGeometryChange()
                self.informViewBoundsChanged()

        profile()

        if autoLevels is None:
            if 'levels' in kargs:
                autoLevels = False
            else:
                autoLevels = True
        if autoLevels:
            level_samples = kargs.pop('levelSamples', 2**16) 
            mn, mx = self.quickMinMax( targetSize=level_samples )
            # mn and mx can still be NaN if the data is all-NaN
            if mn == mx or self._xp.isnan(mn) or self._xp.isnan(mx):
                mn = 0
                mx = 255
            kargs['levels'] = [mn,mx]

        profile()

        self.setOpts(update=False, **kargs)

        profile()

        self._renderRequired = True
        self.update()

        profile()

        if gotNewData:
            self.sigImageChanged.emit()
        if self._defferedLevels is not None:
            levels = self._defferedLevels
            self._defferedLevels = None
            self.setLevels((levels))

    def _update_data_transforms(self, axisOrder='col-major'):
        """ Sets up the transforms needed to map between input array and display """
        self._dataTransform = QtGui.QTransform()
        self._inverseDataTransform = QtGui.QTransform()
        if self.axisOrder == 'row-major': # transpose both
            self._dataTransform.scale(1, -1)
            self._dataTransform.rotate(-90)
            self._inverseDataTransform.scale(1, -1)
            self._inverseDataTransform.rotate(-90)

    def dataTransform(self):
        """
        Returns the transform that maps from this image's input array to its
        local coordinate system.

        This transform corrects for the transposition that occurs when image data
        is interpreted in row-major order.
        
        :meta private:
        """
        # Might eventually need to account for downsampling / clipping here
        # transforms are updated in setOpts call.
        return self._dataTransform

    def inverseDataTransform(self):
        """Return the transform that maps from this image's local coordinate
        system to its input array.

        See dataTransform() for more information.

        :meta private:
        """
        # transforms are updated in setOpts call.
        return self._inverseDataTransform

    def mapToData(self, obj):
        return self._inverseDataTransform.map(obj)

    def mapFromData(self, obj):
        return self._dataTransform.map(obj)

    def quickMinMax(self, targetSize=1e6):
        """
        Estimates the min/max values of the image data by subsampling.
        Subsampling is performed at regular strides chosen to evaluate a number of samples
        equal to or less than `targetSize`.
        
        Returns (`min`, `max`).
        """
        data = self.image
        if targetSize < 2: # keep at least two pixels
            targetSize = 2
        while True:
            h, w = data.shape[:2]
            if h * w <= targetSize: break
            if h > w:
                data = data[::2, ::] # downsample first axis
            else:
                data = data[::, ::2] # downsample second axis
        return self._xp.nanmin(data), self._xp.nanmax(data)

    def updateImage(self, *args, **kargs):
        ## used for re-rendering qimage from self.image.

        ## can we make any assumptions here that speed things up?
        ## dtype, range, size are all the same?
        defaults = {
            'autoLevels': False,
        }
        defaults.update(kargs)
        return self.setImage(*args, **defaults)

    def render(self):
        # Convert data to QImage for display.
        self._unrenderable = True
        if self.image is None or self.image.size == 0:
            return

        # Request a lookup table if this image has only one channel
        if self.image.ndim == 2 or self.image.shape[2] == 1:
            self.lut = self._ensure_proper_substrate(self.lut, self._xp)
            if isinstance(self.lut, Callable):
                lut = self._ensure_proper_substrate(self.lut(self.image), self._xp)
            else:
                lut = self.lut
        else:
            lut = None

        if self.autoDownsample:
            xds, yds = self._computeDownsampleFactors()
            if xds is None:
                return

            axes = [1, 0] if self.axisOrder == 'row-major' else [0, 1]
            image = fn.downsample(self.image, xds, axis=axes[0])
            image = fn.downsample(image, yds, axis=axes[1])
            self._lastDownsample = (xds, yds)

            # Check if downsampling reduced the image size to zero due to inf values.
            if image.size == 0:
                return
        else:
            image = self.image

        # Convert single-channel image to 2D array
        if image.ndim == 3 and image.shape[-1] == 1:
            image = image[..., 0]

        # Assume images are in column-major order for backward compatibility
        # (most images are in row-major order)
        if self.axisOrder == 'col-major':
            image = image.swapaxes(0, 1)

        levels = self.levels
        augmented_alpha = False

        if lut is not None and lut.dtype != self._xp.uint8:
            # Both _try_rescale_float() and _try_combine_lut() assume that
            # lut is of type uint8. It is considered a usage error if that
            # is not the case.
            # However, the makeARGB() codepath has previously allowed such
            # a usage to work. Rather than fail outright, we delegate this
            # case to makeARGB().
            warnings.warn(
                "Using non-uint8 LUTs is an undocumented accidental feature and may "
                "be removed at some point in the future. Please open an issue if you "
                "instead believe this to be worthy of protected inclusion in pyqtgraph.",
                DeprecationWarning, stacklevel=2)
        elif image.dtype.kind == 'f':
            image, levels, lut, augmented_alpha = self._try_rescale_float(image, levels, lut)
            # if we succeeded, we will have an uint8 image with levels None.
            # lut if not None will have <= 256 entries

        # if the image data is a small int, then we can combine levels + lut
        # into a single lut for better performance
        elif image.dtype in (self._xp.ubyte, self._xp.uint16):
            image, levels, lut, augmented_alpha = self._try_combine_lut(image, levels, lut)

        qimage = self._try_make_qimage(image, levels, lut, augmented_alpha)

        if qimage is not None:
            self._processingBuffer = None
            self._displayBuffer = None
            self.qimage = qimage
            self._renderRequired = False
            self._unrenderable = False
            return

        if self._processingBuffer is None or self._processingBuffer.shape[:2] != image.shape[:2]:
            self._buildQImageBuffer(image.shape)

        fn.makeARGB(image, lut=lut, levels=levels, output=self._processingBuffer)
        if self._xp == getCupy():
            self._processingBuffer.get(out=self._displayBuffer)
        self.qimage = fn.ndarray_to_qimage(self._displayBuffer, QtGui.QImage.Format.Format_ARGB32)

        self._renderRequired = False
        self._unrenderable = False

    def _try_rescale_float(self, image, levels, lut):
        xp = self._xp
        augmented_alpha = False

        can_handle = False
        while True:
            if levels is None or levels.ndim != 1:
                # float images always need levels
                # can't handle multi-channel levels
                break

            # awkward, but fastest numpy native nan evaluation
            if xp.isnan(image.min()):
                # don't handle images with nans
                # this should be an uncommon case
                break

            can_handle = True
            break

        if not can_handle:
            return image, levels, lut, augmented_alpha

        # Decide on maximum scaled value
        if lut is not None:
            scale = lut.shape[0]
            num_colors = lut.shape[0]
        else:
            scale = 255.
            num_colors = 256
        dtype = xp.min_scalar_type(num_colors-1)

        minVal, maxVal = levels
        if minVal == maxVal:
            maxVal = xp.nextafter(maxVal, 2*maxVal)
        rng = maxVal - minVal
        rng = 1 if rng == 0 else rng

        fn_numba = fn.getNumbaFunctions()
        if xp == numpy and image.flags.c_contiguous and dtype == xp.uint16 and fn_numba is not None:
            lut, augmented_alpha = self._convert_2dlut_to_1dlut(lut)
            image = fn_numba.rescale_and_lookup1d(image, scale/rng, minVal, lut)
            if image.dtype == xp.uint32:
                image = image[..., xp.newaxis].view(xp.uint8)
            return image, None, None, augmented_alpha
        else:
            image = fn.rescaleData(image, scale/rng, offset=minVal, dtype=dtype, clip=(0, num_colors-1))

            levels = None

            if image.dtype == xp.uint16 and image.ndim == 2:
                image, augmented_alpha = self._apply_lut_for_uint16_mono(image, lut)
                lut = None

            # image is now of type uint8
            return image, levels, lut, augmented_alpha

    def _try_combine_lut(self, image, levels, lut):
        augmented_alpha = False
        xp = self._xp

        can_handle = False
        while True:
            if levels is not None and levels.ndim != 1:
                # can't handle multi-channel levels
                break
            if image.dtype == xp.uint16 and levels is None and \
                    image.ndim == 3 and image.shape[2] == 3:
                # uint16 rgb can't be directly displayed, so make it
                # pass through effective lut processing
                levels = [0, 65535]
            if levels is None and lut is None:
                # nothing to combine
                break

            can_handle = True
            break

        if not can_handle:
            return image, levels, lut, augmented_alpha

        # distinguish between lut for levels and colors
        levels_lut = None
        colors_lut = lut

        eflsize = 2**(image.itemsize*8)
        if levels is None:
            info = xp.iinfo(image.dtype)
            minlev, maxlev = info.min, info.max
        else:
            minlev, maxlev = levels
        levdiff = maxlev - minlev
        levdiff = 1 if levdiff == 0 else levdiff  # don't allow division by 0

        if colors_lut is None:
            if image.dtype == xp.ubyte and image.ndim == 2:
                # uint8 mono image
                ind = xp.arange(eflsize)
                levels_lut = fn.rescaleData(ind, scale=255./levdiff,
                                        offset=minlev, dtype=xp.ubyte)
                # image data is not scaled. instead, levels_lut is used
                # as (grayscale) Indexed8 ColorTable to get the same effect.
                # due to the small size of the input to rescaleData(), we
                # do not bother caching the result
                return image, None, levels_lut, augmented_alpha
            else:
                # uint16 mono, uint8 rgb, uint16 rgb
                # rescale image data by computation instead of by memory lookup
                image = fn.rescaleData(image, scale=255./levdiff,
                                    offset=minlev, dtype=xp.ubyte)
                return image, None, colors_lut, augmented_alpha
        else:
            num_colors = colors_lut.shape[0]
            effscale = num_colors / levdiff
            lutdtype = xp.min_scalar_type(num_colors - 1)

            if image.dtype == xp.ubyte or lutdtype != xp.ubyte:
                # combine if either:
                #   1) uint8 mono image
                #   2) colors_lut has more entries than will fit within 8-bits
                if self._effectiveLut is None:
                    ind = xp.arange(eflsize)
                    levels_lut = fn.rescaleData(ind, scale=effscale,
                                    offset=minlev, dtype=lutdtype, clip=(0, num_colors-1))
                    efflut = colors_lut[levels_lut]
                    self._effectiveLut = efflut
                efflut = self._effectiveLut

                # apply the effective lut early for the following types:
                if image.dtype == xp.uint16 and image.ndim == 2:
                    image, augmented_alpha = self._apply_lut_for_uint16_mono(image, efflut)
                    efflut = None
                return image, None, efflut, augmented_alpha
            else:
                # uint16 image with colors_lut <= 256 entries
                # don't combine, we will use QImage ColorTable
                image = fn.rescaleData(image, scale=effscale,
                                offset=minlev, dtype=lutdtype, clip=(0, num_colors-1))
                return image, None, colors_lut, augmented_alpha

    def _apply_lut_for_uint16_mono(self, image, lut):
        # Note: compared to makeARGB(), we have already clipped the data to range

        xp = self._xp
        augmented_alpha = False

        # if lut is 1d, then lut[image] is fastest
        # if lut is 2d, then lut.take(image, axis=0) is faster than lut[image]

        if not image.flags.c_contiguous:
            image = lut.take(image, axis=0)

            # if lut had dimensions (N, 1), then our resultant image would
            # have dimensions (h, w, 1)
            if image.ndim == 3 and image.shape[-1] == 1:
                image = image[..., 0]

            return image, augmented_alpha

        # if we are contiguous, we can take a faster codepath where we
        # ensure that the lut is 1d

        lut, augmented_alpha = self._convert_2dlut_to_1dlut(lut)

        fn_numba = fn.getNumbaFunctions()
        if xp == numpy and fn_numba is not None:
            image = fn_numba.numba_take(lut, image)
        else:
            image = lut[image]

        if image.dtype == xp.uint32:
            image = image[..., xp.newaxis].view(xp.uint8)

        return image, augmented_alpha

    def _convert_2dlut_to_1dlut(self, lut):
        # converts:
        #   - uint8 (N, 1) to uint8 (N,)
        #   - uint8 (N, 3) or (N, 4) to uint32 (N,)
        # this allows faster lookup as 1d lookup is faster
        xp = self._xp
        augmented_alpha = False

        if lut.ndim == 1:
            return lut, augmented_alpha

        if lut.shape[1] == 3:   # rgb
            # convert rgb lut to rgba so that it is 32-bits
            lut = xp.column_stack([lut, xp.full(lut.shape[0], 255, dtype=xp.uint8)])
            augmented_alpha = True
        if lut.shape[1] == 4:   # rgba
            lut = lut.view(xp.uint32)
        lut = lut.ravel()

        return lut, augmented_alpha

    def _try_make_qimage(self, image, levels, lut, augmented_alpha):
        xp = self._xp

        ubyte_nolvl = image.dtype == xp.ubyte and levels is None
        is_passthru8 = ubyte_nolvl and lut is None
        is_indexed8 = ubyte_nolvl and image.ndim == 2 and \
            lut is not None and lut.shape[0] <= 256
        is_passthru16 = image.dtype == xp.uint16 and levels is None and lut is None
        can_grayscale16 = is_passthru16 and image.ndim == 2 and \
            hasattr(QtGui.QImage.Format, 'Format_Grayscale16')
        is_rgba64 = is_passthru16 and image.ndim == 3 and image.shape[2] == 4

        # bypass makeARGB for supported combinations
        supported = is_passthru8 or is_indexed8 or can_grayscale16 or is_rgba64
        if not supported:
            return None

        if self._xp == getCupy():
            image = image.get()

        # worthwhile supporting non-contiguous arrays
        image = numpy.ascontiguousarray(image)

        fmt = None
        ctbl = None
        if is_passthru8:
            # both levels and lut are None
            # these images are suitable for display directly
            if image.ndim == 2:
                fmt = QtGui.QImage.Format.Format_Grayscale8
            elif image.shape[2] == 3:
                fmt = QtGui.QImage.Format.Format_RGB888
            elif image.shape[2] == 4:
                if augmented_alpha:
                    fmt = QtGui.QImage.Format.Format_RGBX8888
                else:
                    fmt = QtGui.QImage.Format.Format_RGBA8888
        elif is_indexed8:
            # levels and/or lut --> lut-only
            fmt = QtGui.QImage.Format.Format_Indexed8
            if lut.ndim == 1 or lut.shape[1] == 1:
                ctbl = [QtGui.qRgb(x,x,x) for x in lut.ravel().tolist()]
            elif lut.shape[1] == 3:
                ctbl = [QtGui.qRgb(*rgb) for rgb in lut.tolist()]
            elif lut.shape[1] == 4:
                ctbl = [QtGui.qRgba(*rgba) for rgba in lut.tolist()]
        elif can_grayscale16:
            # single channel uint16
            # both levels and lut are None
            fmt = QtGui.QImage.Format.Format_Grayscale16
        elif is_rgba64:
            # uint16 rgba
            # both levels and lut are None
            fmt = QtGui.QImage.Format.Format_RGBA64 # endian-independent
        if fmt is None:
            raise ValueError("unsupported image type")
        qimage = fn.ndarray_to_qimage(image, fmt)
        if ctbl is not None:
            qimage.setColorTable(ctbl)
        return qimage

    def paint(self, p, *args):
        profile = debug.Profiler()
        if self.image is None:
            return
        if self._renderRequired:
            self.render()
            if self._unrenderable:
                return
            profile('render QImage')
        if self.paintMode is not None:
            p.setCompositionMode(self.paintMode)
            profile('set comp mode')

        shape = self.image.shape[:2] if self.axisOrder == 'col-major' else self.image.shape[:2][::-1]
        p.drawImage(QtCore.QRectF(0,0,*shape), self.qimage)
        profile('p.drawImage')
        if self.border is not None:
            p.setPen(self.border)
            p.drawRect(self.boundingRect())

    def save(self, fileName, *args):
        """
        Saves this image to file. Note that this saves the visible image (after scale/color changes), not the 
        original data.
        """
        if self._renderRequired:
            self.render()
        self.qimage.save(fileName, *args)

    def getHistogram(self, bins='auto', step='auto', perChannel=False, targetImageSize=200,
                     targetHistogramSize=500, **kwds):
        """
        Returns `x` and `y` arrays containing the histogram values for the current image.
        For an explanation of the return format, see :func:`numpy.histogram()`.

        The `step` argument causes pixels to be skipped when computing the histogram to save time.
        If `step` is 'auto', then a step is chosen such that the analyzed data has
        dimensions approximating `targetImageSize` for each axis.

        The `bins` argument and any extra keyword arguments are passed to
        :func:`numpy.histogram()`. If `bins` is `auto`, a bin number is automatically
        chosen based on the image characteristics:

          * Integer images will have approximately `targetHistogramSize` bins,
            with each bin having an integer width.
          * All other types will have `targetHistogramSize` bins.

        If `perChannel` is `True`, then a histogram is computed for each channel, 
        and the output is a list of the results.
        """
        # This method is also used when automatically computing levels.
        if self.image is None or self.image.size == 0:
            return None, None
        if step == 'auto':
            step = (max(1, int(self._xp.ceil(self.image.shape[0] / targetImageSize))),
                    max(1, int(self._xp.ceil(self.image.shape[1] / targetImageSize))))
        if self._xp.isscalar(step):
            step = (step, step)
        stepData = self.image[::step[0], ::step[1]]

        if isinstance(bins, str) and bins == 'auto':
            mn = self._xp.nanmin(stepData).item()
            mx = self._xp.nanmax(stepData).item()
            if mx == mn:
                # degenerate image, arange will fail
                mx += 1
            if self._xp.isnan(mn) or self._xp.isnan(mx):
                # the data are all-nan
                return None, None
            if stepData.dtype.kind in "ui":
                # For integer data, we select the bins carefully to avoid aliasing
                step = int(self._xp.ceil((mx - mn) / 500.))
                bins = []
                if step > 0.0:
                    bins = self._xp.arange(mn, mx + 1.01 * step, step, dtype=int)
            else:
                # for float data, let numpy select the bins.
                bins = self._xp.linspace(mn, mx, 500)

            if len(bins) == 0:
                bins = self._xp.asarray((mn, mx))

        kwds['bins'] = bins

        cp = getCupy()
        if perChannel:
            hist = []
            for i in range(stepData.shape[-1]):
                stepChan = stepData[..., i]
                stepChan = stepChan[self._xp.isfinite(stepChan)]
                h = self._xp.histogram(stepChan, **kwds)
                if cp:
                    hist.append((cp.asnumpy(h[1][:-1]), cp.asnumpy(h[0])))
                else:
                    hist.append((h[1][:-1], h[0]))
            return hist
        else:
            stepData = stepData[self._xp.isfinite(stepData)]
            hist = self._xp.histogram(stepData, **kwds)
            if cp:
                return cp.asnumpy(hist[1][:-1]), cp.asnumpy(hist[0])
            else:
                return hist[1][:-1], hist[0]

    def setPxMode(self, b):
        """
        Sets whether the item ignores transformations and draws directly to screen pixels.
        If `True`, the item will not inherit any scale or rotation transformations from its
        parent items, but its position will be transformed as usual.
        (see ``GraphicsItem::ItemIgnoresTransformations`` in the Qt documentation)
        """
        self.setFlag(self.GraphicsItemFlag.ItemIgnoresTransformations, b)

    def setScaledMode(self):
        self.setPxMode(False)

    def getPixmap(self):
        if self._renderRequired:
            self.render()
            if self._unrenderable:
                return None
        return QtGui.QPixmap.fromImage(self.qimage)

    def pixelSize(self):
        """
        Returns the scene-size of a single pixel in the image
        """
        br = self.sceneBoundingRect()
        if self.image is None:
            return 1,1
        return br.width()/self.width(), br.height()/self.height()

    def viewTransformChanged(self):
        if self.autoDownsample:
            xds, yds = self._computeDownsampleFactors()
            if xds is None:
                self._renderRequired = True
                self._unrenderable = True
                return
            if (xds, yds) != self._lastDownsample:
                self._renderRequired = True
                self.update()

    def _computeDownsampleFactors(self):
        # reduce dimensions of image based on screen resolution
        o = self.mapToDevice(QtCore.QPointF(0, 0))
        x = self.mapToDevice(QtCore.QPointF(1, 0))
        y = self.mapToDevice(QtCore.QPointF(0, 1))
        # scene may not be available yet
        if o is None:
            return None, None
        w = Point(x - o).length()
        h = Point(y - o).length()
        if w == 0 or h == 0:
            return None, None
        return max(1, int(1.0 / w)), max(1, int(1.0 / h))

    def mouseDragEvent(self, ev):
        if ev.button() != QtCore.Qt.MouseButton.LeftButton:
            ev.ignore()
            return
        elif self.drawKernel is not None:
            ev.accept()
            self.drawAt(ev.pos(), ev)

    def mouseClickEvent(self, ev):
        if ev.button() == QtCore.Qt.MouseButton.RightButton:
            if self.raiseContextMenu(ev):
                ev.accept()
        if self.drawKernel is not None and ev.button() == QtCore.Qt.MouseButton.LeftButton:
            self.drawAt(ev.pos(), ev)

    def raiseContextMenu(self, ev):
        menu = self.getMenu()
        if menu is None:
            return False
        menu = self.scene().addParentContextMenus(self, menu, ev)
        pos = ev.screenPos()
        menu.popup(QtCore.QPoint(int(pos.x()), int(pos.y())))
        return True

    def getMenu(self):
        if self.menu is None:
            if not self.removable:
                return None
            self.menu = QtWidgets.QMenu()
            self.menu.setTitle(translate("ImageItem", "Image"))
            remAct = QtGui.QAction(translate("ImageItem", "Remove image"), self.menu)
            remAct.triggered.connect(self.removeClicked)
            self.menu.addAction(remAct)
            self.menu.remAct = remAct
        return self.menu

    def hoverEvent(self, ev):
        if not ev.isExit() and self.drawKernel is not None and ev.acceptDrags(QtCore.Qt.MouseButton.LeftButton):
            ev.acceptClicks(QtCore.Qt.MouseButton.LeftButton) ## we don't use the click, but we also don't want anyone else to use it.
            ev.acceptClicks(QtCore.Qt.MouseButton.RightButton)
        elif not ev.isExit() and self.removable:
            ev.acceptClicks(QtCore.Qt.MouseButton.RightButton)  ## accept context menu clicks

    def tabletEvent(self, ev):
        pass
        #print(ev.device())
        #print(ev.pointerType())
        #print(ev.pressure())

    def drawAt(self, pos, ev=None):
        if self.axisOrder == "col-major":
            pos = [int(pos.x()), int(pos.y())]
        else:
            pos = [int(pos.y()), int(pos.x())]
        dk = self.drawKernel
        kc = self.drawKernelCenter
        sx = [0,dk.shape[0]]
        sy = [0,dk.shape[1]]
        tx = [pos[0] - kc[0], pos[0] - kc[0]+ dk.shape[0]]
        ty = [pos[1] - kc[1], pos[1] - kc[1]+ dk.shape[1]]

        for i in [0,1]:
            dx1 = -min(0, tx[i])
            dx2 = min(0, self.image.shape[0]-tx[i])
            tx[i] += dx1+dx2
            sx[i] += dx1+dx2

            dy1 = -min(0, ty[i])
            dy2 = min(0, self.image.shape[1]-ty[i])
            ty[i] += dy1+dy2
            sy[i] += dy1+dy2

        ts = (slice(tx[0],tx[1]), slice(ty[0],ty[1]))
        ss = (slice(sx[0],sx[1]), slice(sy[0],sy[1]))
        mask = self.drawMask
        src = dk

        if isinstance(self.drawMode, Callable):
            self.drawMode(dk, self.image, mask, ss, ts, ev)
        else:
            src = src[ss]
            if self.drawMode == 'set':
                if mask is not None:
                    mask = mask[ss]
                    self.image[ts] = self.image[ts] * (1-mask) + src * mask
                else:
                    self.image[ts] = src
            elif self.drawMode == 'add':
                self.image[ts] += src
            else:
                raise Exception("Unknown draw mode '%s'" % self.drawMode)
            self.updateImage()

    def setDrawKernel(self, kernel=None, mask=None, center=(0,0), mode='set'):
        self.drawKernel = kernel
        self.drawKernelCenter = center
        self.drawMode = mode
        self.drawMask = mask

    def removeClicked(self):
        ## Send remove event only after we have exited the menu event handler
        self.removeTimer = QtCore.QTimer()
        self.removeTimer.timeout.connect(self.emitRemoveRequested)
        self.removeTimer.start(0)

    def emitRemoveRequested(self):
        self.removeTimer.timeout.disconnect(self.emitRemoveRequested)
        self.sigRemoveRequested.emit(self)