1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
import itertools
import warnings
import numpy as np
from .. import Qt, colormap
from .. import functions as fn
from ..Qt import QtCore, QtGui
from .GradientEditorItem import Gradients # List of colormaps
from .GraphicsObject import GraphicsObject
__all__ = ['PColorMeshItem']
if Qt.QT_LIB.startswith('PyQt'):
wrapinstance = Qt.sip.wrapinstance
else:
wrapinstance = Qt.shiboken.wrapInstance
class QuadInstances:
def __init__(self):
self.polys = []
def alloc(self, size):
self.polys.clear()
# 2 * (size + 1) vertices, (x, y)
arr = np.empty((2 * (size + 1), 2), dtype=np.float64)
ptrs = list(map(wrapinstance,
itertools.count(arr.ctypes.data, arr.strides[0]),
itertools.repeat(QtCore.QPointF, arr.shape[0])))
# arrange into 2 rows, (size + 1) vertices
points = [ptrs[:len(ptrs)//2], ptrs[len(ptrs)//2:]]
self.arr = arr.reshape((2, -1, 2))
# pre-create quads from those 2 rows of QPointF(s)
for j in range(size):
bl, tl = points[0][j:j+2]
br, tr = points[1][j:j+2]
poly = (bl, br, tr, tl)
self.polys.append(poly)
def array(self, size):
if size != len(self.polys):
self.alloc(size)
return self.arr
def instances(self):
return self.polys
class PColorMeshItem(GraphicsObject):
"""
**Bases:** :class:`GraphicsObject <pyqtgraph.GraphicsObject>`
"""
def __init__(self, *args, **kwargs):
"""
Create a pseudocolor plot with convex polygons.
Call signature:
``PColorMeshItem([x, y,] z, **kwargs)``
x and y can be used to specify the corners of the quadrilaterals.
z must be used to specified to color of the quadrilaterals.
Parameters
----------
x, y : np.ndarray, optional, default None
2D array containing the coordinates of the polygons
z : np.ndarray
2D array containing the value which will be mapped into the polygons
colors.
If x and y is None, the polygons will be displaced on a grid
otherwise x and y will be used as polygons vertices coordinates as::
(x[i+1, j], y[i+1, j]) (x[i+1, j+1], y[i+1, j+1])
+---------+
| z[i, j] |
+---------+
(x[i, j], y[i, j]) (x[i, j+1], y[i, j+1])
"ASCII from: <https://matplotlib.org/3.2.1/api/_as_gen/matplotlib.pyplot.pcolormesh.html>".
colorMap : pyqtgraph.ColorMap
Colormap used to map the z value to colors.
default ``pyqtgraph.colormap.get('viridis')``
edgecolors : dict, optional
The color of the edges of the polygons.
Default None means no edges.
The dict may contains any arguments accepted by :func:`mkColor() <pyqtgraph.mkColor>`.
Example: ``mkPen(color='w', width=2)``
antialiasing : bool, default False
Whether to draw edgelines with antialiasing.
Note that if edgecolors is None, antialiasing is always False.
"""
GraphicsObject.__init__(self)
self.qpicture = None ## rendered picture for display
self.x = None
self.y = None
self.z = None
self.edgecolors = kwargs.get('edgecolors', None)
self.antialiasing = kwargs.get('antialiasing', False)
if 'colorMap' in kwargs:
cmap = kwargs.get('colorMap')
if not isinstance(cmap, colormap.ColorMap):
raise ValueError('colorMap argument must be a ColorMap instance')
self.cmap = cmap
elif 'cmap' in kwargs:
# legacy unadvertised argument for backwards compatibility.
# this will only use colormaps from Gradients.
# Note that the colors will be wrong for the hsv colormaps.
warnings.warn(
"The parameter 'cmap' will be removed in a version of PyQtGraph released after Nov 2022.",
DeprecationWarning, stacklevel=2
)
cmap = kwargs.get('cmap')
if not isinstance(cmap, str) or cmap not in Gradients:
raise NameError('Undefined colormap, should be one of the following: '+', '.join(['"'+i+'"' for i in Gradients.keys()])+'.')
pos, color = zip(*Gradients[cmap]['ticks'])
self.cmap = colormap.ColorMap(pos, color)
else:
self.cmap = colormap.get('viridis')
lut_qcolor = self.cmap.getLookupTable(nPts=256, mode=self.cmap.QCOLOR)
self.lut_qbrush = [QtGui.QBrush(x) for x in lut_qcolor]
self.quads = QuadInstances()
# If some data have been sent we directly display it
if len(args)>0:
self.setData(*args)
def _prepareData(self, args):
"""
Check the shape of the data.
Return a set of 2d array x, y, z ready to be used to draw the picture.
"""
# User didn't specified data
if len(args)==0:
self.x = None
self.y = None
self.z = None
# User only specified z
elif len(args)==1:
# If x and y is None, the polygons will be displaced on a grid
x = np.arange(0, args[0].shape[0]+1, 1)
y = np.arange(0, args[0].shape[1]+1, 1)
self.x, self.y = np.meshgrid(x, y, indexing='ij')
self.z = args[0]
# User specified x, y, z
elif len(args)==3:
# Shape checking
if args[0].shape[0] != args[2].shape[0]+1 or args[0].shape[1] != args[2].shape[1]+1:
raise ValueError('The dimension of x should be one greater than the one of z')
if args[1].shape[0] != args[2].shape[0]+1 or args[1].shape[1] != args[2].shape[1]+1:
raise ValueError('The dimension of y should be one greater than the one of z')
self.x = args[0]
self.y = args[1]
self.z = args[2]
else:
ValueError('Data must been sent as (z) or (x, y, z)')
def setData(self, *args):
"""
Set the data to be drawn.
Parameters
----------
x, y : np.ndarray, optional, default None
2D array containing the coordinates of the polygons
z : np.ndarray
2D array containing the value which will be mapped into the polygons
colors.
If x and y is None, the polygons will be displaced on a grid
otherwise x and y will be used as polygons vertices coordinates as::
(x[i+1, j], y[i+1, j]) (x[i+1, j+1], y[i+1, j+1])
+---------+
| z[i, j] |
+---------+
(x[i, j], y[i, j]) (x[i, j+1], y[i, j+1])
"ASCII from: <https://matplotlib.org/3.2.1/api/_as_gen/
matplotlib.pyplot.pcolormesh.html>".
"""
# Has the view bounds changed
shapeChanged = False
if self.qpicture is None:
shapeChanged = True
elif len(args)==1:
if args[0].shape[0] != self.x[:,1][-1] or args[0].shape[1] != self.y[0][-1]:
shapeChanged = True
elif len(args)==3:
if np.any(self.x != args[0]) or np.any(self.y != args[1]):
shapeChanged = True
# Prepare data
self._prepareData(args)
self.qpicture = QtGui.QPicture()
painter = QtGui.QPainter(self.qpicture)
# We set the pen of all polygons once
if self.edgecolors is None:
painter.setPen(QtCore.Qt.PenStyle.NoPen)
else:
painter.setPen(fn.mkPen(self.edgecolors))
if self.antialiasing:
painter.setRenderHint(QtGui.QPainter.RenderHint.Antialiasing)
## Prepare colormap
# First we get the LookupTable
lut = self.lut_qbrush
# Second we associate each z value, that we normalize, to the lut
scale = len(lut) - 1
z_min = self.z.min()
z_max = self.z.max()
rng = z_max - z_min
if rng == 0:
rng = 1
norm = fn.rescaleData(self.z, scale / rng, z_min,
dtype=int, clip=(0, len(lut)-1))
if Qt.QT_LIB.startswith('PyQt'):
drawConvexPolygon = lambda x : painter.drawConvexPolygon(*x)
else:
drawConvexPolygon = painter.drawConvexPolygon
memory = self.quads.array(self.z.shape[1])
polys = self.quads.instances()
# Go through all the data and draw the polygons accordingly
for i in range(self.z.shape[0]):
# populate 2 rows of values into points
memory[..., 0] = self.x[i:i+2, :]
memory[..., 1] = self.y[i:i+2, :]
brushes = [lut[z] for z in norm[i].tolist()]
for brush, poly in zip(brushes, polys):
painter.setBrush(brush)
drawConvexPolygon(poly)
painter.end()
self.update()
self.prepareGeometryChange()
if shapeChanged:
self.informViewBoundsChanged()
def paint(self, p, *args):
if self.z is None:
return
p.drawPicture(0, 0, self.qpicture)
def setBorder(self, b):
self.border = fn.mkPen(b)
self.update()
def width(self):
if self.x is None:
return None
return np.max(self.x)
def height(self):
if self.y is None:
return None
return np.max(self.y)
def boundingRect(self):
if self.qpicture is None:
return QtCore.QRectF(0., 0., 0., 0.)
return QtCore.QRectF(self.qpicture.boundingRect())
|