File: MetaArray.py

package info (click to toggle)
python-pyqtgraph 0.13.1-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,520 kB
  • sloc: python: 52,773; makefile: 115; ansic: 40; sh: 2
file content (1367 lines) | stat: -rw-r--r-- 51,795 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
"""
MetaArray.py -  Class encapsulating ndarray with meta data
Copyright 2010  Luke Campagnola
Distributed under MIT/X11 license. See license.txt for more information.

MetaArray is an array class based on numpy.ndarray that allows storage of per-axis meta data
such as axis values, names, units, column names, etc. It also enables several
new methods for slicing and indexing the array based on this meta data. 
More info at http://www.scipy.org/Cookbook/MetaArray
"""

import copy
import os
import pickle
import warnings

import numpy as np

## By default, the library will use HDF5 when writing files.
## This can be overridden by setting USE_HDF5 = False
USE_HDF5 = True
try:
    import h5py

    # Older h5py versions tucked Group and Dataset deeper inside the library:
    if not hasattr(h5py, 'Group'):
        import h5py.highlevel
        h5py.Group = h5py.highlevel.Group
        h5py.Dataset = h5py.highlevel.Dataset
        
    HAVE_HDF5 = True
except:
    USE_HDF5 = False
    HAVE_HDF5 = False


def axis(name=None, cols=None, values=None, units=None):
    """Convenience function for generating axis descriptions when defining MetaArrays"""
    ax = {}
    cNameOrder = ['name', 'units', 'title']
    if name is not None:
        ax['name'] = name
    if values is not None:
        ax['values'] = values
    if units is not None:
        ax['units'] = units
    if cols is not None:
        ax['cols'] = []
        for c in cols:
            if type(c) != list and type(c) != tuple:
                c = [c]
            col = {}
            for i in range(0,len(c)):
                col[cNameOrder[i]] = c[i]
            ax['cols'].append(col)
    return ax

class sliceGenerator(object):
    """Just a compact way to generate tuples of slice objects."""
    def __getitem__(self, arg):
        return arg
    def __getslice__(self, arg):
        return arg
SLICER = sliceGenerator()
    

class MetaArray(object):
    """N-dimensional array with meta data such as axis titles, units, and column names.
  
    May be initialized with a file name, a tuple representing the dimensions of the array,
    or any arguments that could be passed on to numpy.array()
  
    The info argument sets the metadata for the entire array. It is composed of a list
    of axis descriptions where each axis may have a name, title, units, and a list of column 
    descriptions. An additional dict at the end of the axis list may specify parameters
    that apply to values in the entire array.
  
    For example:
        A 2D array of altitude values for a topographical map might look like
            info=[
        {'name': 'lat', 'title': 'Lattitude'}, 
        {'name': 'lon', 'title': 'Longitude'}, 
        {'title': 'Altitude', 'units': 'm'}
      ]
        In this case, every value in the array represents the altitude in feet at the lat, lon
        position represented by the array index. All of the following return the 
        value at lat=10, lon=5:
            array[10, 5]
            array['lon':5, 'lat':10]
            array['lat':10][5]
        Now suppose we want to combine this data with another array of equal dimensions that
        represents the average rainfall for each location. We could easily store these as two 
        separate arrays or combine them into a 3D array with this description:
            info=[
        {'name': 'vals', 'cols': [
          {'name': 'altitude', 'units': 'm'}, 
          {'name': 'rainfall', 'units': 'cm/year'}
        ]},
        {'name': 'lat', 'title': 'Lattitude'}, 
        {'name': 'lon', 'title': 'Longitude'}
      ]
        We can now access the altitude values with array[0] or array['altitude'], and the
        rainfall values with array[1] or array['rainfall']. All of the following return
        the rainfall value at lat=10, lon=5:
            array[1, 10, 5]
            array['lon':5, 'lat':10, 'val': 'rainfall']
            array['rainfall', 'lon':5, 'lat':10]
        Notice that in the second example, there is no need for an extra (4th) axis description
        since the actual values are described (name and units) in the column info for the first axis.
    """
  
    version = u'2'

    # Default hdf5 compression to use when writing
    #   'gzip' is widely available and somewhat slow
    #   'lzf' is faster, but generally not available outside h5py
    #   'szip' is also faster, but lacks write support on windows
    # (so by default, we use no compression)
    # May also be a tuple (filter, opts), such as ('gzip', 3)
    defaultCompression = None
    
    ## Types allowed as axis or column names
    nameTypes = [str, tuple]
    @staticmethod
    def isNameType(var):
        return any(isinstance(var, t) for t in MetaArray.nameTypes)
        
        
    ## methods to wrap from embedded ndarray / HDF5 
    wrapMethods = set(['__eq__', '__ne__', '__le__', '__lt__', '__ge__', '__gt__'])
  
    def __init__(self, data=None, info=None, dtype=None, file=None, copy=False, **kwargs):
        object.__init__(self)
        warnings.warn(
            'MetaArray is deprecated and will be removed in 0.14. '
            'Available though https://pypi.org/project/MetaArray/ as its own package.',
            DeprecationWarning, stacklevel=2
        )    
        self._isHDF = False
        
        if file is not None:
            self._data = None
            self.readFile(file, **kwargs)
            if kwargs.get("readAllData", True) and self._data is None:
                raise Exception("File read failed: %s" % file)
        else:
            self._info = info
            if (hasattr(data, 'implements') and data.implements('MetaArray')):
                self._info = data._info
                self._data = data.asarray()
            elif isinstance(data, tuple):  ## create empty array with specified shape
                self._data = np.empty(data, dtype=dtype)
            else:
                self._data = np.array(data, dtype=dtype, copy=copy)

        ## run sanity checks on info structure
        self.checkInfo()
    
    def checkInfo(self):
        info = self._info
        if info is None:
            if self._data is None:
                return
            else:
                self._info = [{} for i in range(self.ndim + 1)]
                return
        else:
            try:
                info = list(info)
            except:
                raise Exception("Info must be a list of axis specifications")
            if len(info) < self.ndim+1:
                info.extend([{}]*(self.ndim+1-len(info)))
            elif len(info) > self.ndim+1:
                raise Exception("Info parameter must be list of length ndim+1 or less.")
            for i in range(len(info)):
                if not isinstance(info[i], dict):
                    if info[i] is None:
                        info[i] = {}
                    else:
                        raise Exception("Axis specification must be Dict or None")
                if i < self.ndim and 'values' in info[i]:
                    if type(info[i]['values']) is list:
                        info[i]['values'] = np.array(info[i]['values'])
                    elif type(info[i]['values']) is not np.ndarray:
                        raise Exception("Axis values must be specified as list or ndarray")
                    if info[i]['values'].ndim != 1 or info[i]['values'].shape[0] != self.shape[i]:
                        raise Exception("Values array for axis %d has incorrect shape. (given %s, but should be %s)" %
                                        (i, str(info[i]['values'].shape), str((self.shape[i],))))
                if i < self.ndim and 'cols' in info[i]:
                    if not isinstance(info[i]['cols'], list):
                        info[i]['cols'] = list(info[i]['cols'])
                    if len(info[i]['cols']) != self.shape[i]:
                        raise Exception('Length of column list for axis %d does not match data. (given %d, but should be %d)' %
                                        (i, len(info[i]['cols']), self.shape[i]))
            self._info = info

    def implements(self, name=None):
        ## Rather than isinstance(obj, MetaArray) use object.implements('MetaArray')
        if name is None:
            return ['MetaArray']
        else:
            return name == 'MetaArray'
  
    def __getitem__(self, ind):
        nInd = self._interpretIndexes(ind)

        a = self._data[nInd]
        if len(nInd) == self.ndim:
            if np.all([not isinstance(ind, (slice, np.ndarray)) for ind in nInd]):  ## no slices; we have requested a single value from the array
                return a
        
        ## indexing returned a sub-array; generate new info array to go with it
        info = []
        extraInfo = self._info[-1].copy()
        for i in range(0, len(nInd)):   ## iterate over all axes
            if type(nInd[i]) in [slice, list] or isinstance(nInd[i], np.ndarray):  ## If the axis is sliced, keep the info but chop if necessary
                info.append(self._axisSlice(i, nInd[i]))
            else: ## If the axis is indexed, then move the information from that single index to the last info dictionary
                newInfo = self._axisSlice(i, nInd[i])
                name = None
                colName = None
                for k in newInfo:
                    if k == 'cols':
                        if 'cols' not in extraInfo:
                            extraInfo['cols'] = []
                        extraInfo['cols'].append(newInfo[k])
                        if 'units' in newInfo[k]:
                            extraInfo['units'] = newInfo[k]['units']
                        if 'name' in newInfo[k]:
                            colName = newInfo[k]['name']
                    elif k == 'name':
                        name = newInfo[k]
                    else:
                        if k not in extraInfo:
                            extraInfo[k] = newInfo[k]
                        extraInfo[k] = newInfo[k]
                if 'name' not in extraInfo:
                    if name is None:
                        if colName is not None:
                            extraInfo['name'] = colName
                    else:
                        if colName is not None:
                            extraInfo['name'] = str(name) + ': ' + str(colName)
                        else:
                            extraInfo['name'] = name
                        
        info.append(extraInfo)
        
        return MetaArray(a, info=info)
  
    @property
    def ndim(self):
        return len(self.shape)  ## hdf5 objects do not have ndim property.
            
    @property
    def shape(self):
        return self._data.shape
        
    @property
    def dtype(self):
        return self._data.dtype
        
    def __len__(self):
        return len(self._data)
        
    def __getslice__(self, *args):
        return self.__getitem__(slice(*args))
  
    def __setitem__(self, ind, val):
        nInd = self._interpretIndexes(ind)
        try:
            self._data[nInd] = val
        except:
            print(self, nInd, val)
            raise
        
    def __getattr__(self, attr):
        if attr in self.wrapMethods:
            return getattr(self._data, attr)
        else:
            raise AttributeError(attr)
        
    def __eq__(self, b):
        return self._binop('__eq__', b)
        
    def __ne__(self, b):
        return self._binop('__ne__', b)
        
    def __sub__(self, b):
        return self._binop('__sub__', b)

    def __add__(self, b):
        return self._binop('__add__', b)

    def __mul__(self, b):
        return self._binop('__mul__', b)
        
    def __div__(self, b):
        return self._binop('__div__', b)
        
    def __truediv__(self, b):
        return self._binop('__truediv__', b)
        
    def _binop(self, op, b):
        if isinstance(b, MetaArray):
            b = b.asarray()
        a = self.asarray()
        c = getattr(a, op)(b)
        if c.shape != a.shape:
            raise Exception("Binary operators with MetaArray must return an array of the same shape (this shape is %s, result shape was %s)" % (a.shape, c.shape))
        return MetaArray(c, info=self.infoCopy())
        
    def asarray(self):
        if isinstance(self._data, np.ndarray):
            return self._data
        else:
            return np.array(self._data)
            
    def __array__(self, dtype=None):
        ## supports np.array(metaarray_instance) 
        if dtype is None:
            return self.asarray()
        else:
            return self.asarray().astype(dtype)
  
    def axisValues(self, axis):
        """Return the list of values for an axis"""
        ax = self._interpretAxis(axis)
        if 'values' in self._info[ax]:
            return self._info[ax]['values']
        else:
            raise Exception('Array axis %s (%d) has no associated values.' % (str(axis), ax))
  
    def xvals(self, axis):
        """Synonym for axisValues()"""
        return self.axisValues(axis)
        
    def axisHasValues(self, axis):
        ax = self._interpretAxis(axis)
        return 'values' in self._info[ax]
        
    def axisHasColumns(self, axis):
        ax = self._interpretAxis(axis)
        return 'cols' in self._info[ax]
  
    def axisUnits(self, axis):
        """Return the units for axis"""
        ax = self._info[self._interpretAxis(axis)]
        if 'units' in ax:
            return ax['units']
        
    def hasColumn(self, axis, col):
        ax = self._info[self._interpretAxis(axis)]
        if 'cols' in ax:
            for c in ax['cols']:
                if c['name'] == col:
                    return True
        return False
        
    def listColumns(self, axis=None):
        """Return a list of column names for axis. If axis is not specified, then return a dict of {axisName: (column names), ...}."""
        if axis is None:
            ret = {}
            for i in range(self.ndim):
                if 'cols' in self._info[i]:
                    cols = [c['name'] for c in self._info[i]['cols']]
                else:
                    cols = []
                ret[self.axisName(i)] = cols
            return ret
        else:
            axis = self._interpretAxis(axis)
            return [c['name'] for c in self._info[axis]['cols']]
        
    def columnName(self, axis, col):
        ax = self._info[self._interpretAxis(axis)]
        return ax['cols'][col]['name']
        
    def axisName(self, n):
        return self._info[n].get('name', n)
        
    def columnUnits(self, axis, column):
        """Return the units for column in axis"""
        ax = self._info[self._interpretAxis(axis)]
        if 'cols' in ax:
            for c in ax['cols']:
                if c['name'] == column:
                    return c['units']
            raise Exception("Axis %s has no column named %s" % (str(axis), str(column)))
        else:
            raise Exception("Axis %s has no column definitions" % str(axis))
  
    def rowsort(self, axis, key=0):
        """Return this object with all records sorted along axis using key as the index to the values to compare. Does not yet modify meta info."""
        ## make sure _info is copied locally before modifying it!
    
        keyList = self[key]
        order = keyList.argsort()
        if type(axis) == int:
            ind = [slice(None)]*axis
            ind.append(order)
        elif isinstance(axis, str):
            ind = (slice(axis, order),)
        else:
            raise TypeError("axis must be type (int, str)")
        return self[tuple(ind)]
  
    def append(self, val, axis):
        """Return this object with val appended along axis. Does not yet combine meta info."""
        ## make sure _info is copied locally before modifying it!
    
        s = list(self.shape)
        axis = self._interpretAxis(axis)
        s[axis] += 1
        n = MetaArray(tuple(s), info=self._info, dtype=self.dtype)
        ind = [slice(None)]*self.ndim
        ind[axis] = slice(None,-1)
        n[tuple(ind)] = self
        ind[axis] = -1
        n[tuple(ind)] = val
        return n
  
    def extend(self, val, axis):
        """Return the concatenation along axis of this object and val. Does not yet combine meta info."""
        ## make sure _info is copied locally before modifying it!
    
        axis = self._interpretAxis(axis)
        return MetaArray(np.concatenate(self, val, axis), info=self._info)
  
    def infoCopy(self, axis=None):
        """Return a deep copy of the axis meta info for this object"""
        if axis is None:
            return copy.deepcopy(self._info)
        else:
            return copy.deepcopy(self._info[self._interpretAxis(axis)])
  
    def copy(self):
        return MetaArray(self._data.copy(), info=self.infoCopy())
  
  
    def _interpretIndexes(self, ind):
        #print "interpret", ind
        if not isinstance(ind, tuple):
            ## a list of slices should be interpreted as a tuple of slices.
            if isinstance(ind, list) and len(ind) > 0 and isinstance(ind[0], slice):
                ind = tuple(ind)
            ## everything else can just be converted to a length-1 tuple
            else:
                ind = (ind,)
                
        nInd = [slice(None)]*self.ndim
        numOk = True  ## Named indices not started yet; numbered sill ok
        for i in range(0,len(ind)):
            (axis, index, isNamed) = self._interpretIndex(ind[i], i, numOk)
            nInd[axis] = index
            if isNamed:
                numOk = False
        return tuple(nInd)
      
    def _interpretAxis(self, axis):
        if isinstance(axis, (str, tuple)):
            return self._getAxis(axis)
        else:
            return axis
  
    def _interpretIndex(self, ind, pos, numOk):
        #print "Interpreting index", ind, pos, numOk
        
        ## should probably check for int first to speed things up..
        if type(ind) is int:
            if not numOk:
                raise Exception("string and integer indexes may not follow named indexes")
            #print "  normal numerical index"
            return (pos, ind, False)
        if MetaArray.isNameType(ind):
            if not numOk:
                raise Exception("string and integer indexes may not follow named indexes")
            #print "  String index, column is ", self._getIndex(pos, ind)
            return (pos, self._getIndex(pos, ind), False)
        elif type(ind) is slice:
            #print "  Slice index"
            if MetaArray.isNameType(ind.start) or MetaArray.isNameType(ind.stop):  ## Not an actual slice!
                #print "    ..not a real slice"
                axis = self._interpretAxis(ind.start)
                #print "    axis is", axis
                
                ## x[Axis:Column]
                if MetaArray.isNameType(ind.stop):
                    #print "    column name, column is ", self._getIndex(axis, ind.stop)
                    index = self._getIndex(axis, ind.stop)
                    
                ## x[Axis:min:max]
                elif (isinstance(ind.stop, float) or isinstance(ind.step, float)) and ('values' in self._info[axis]):
                    #print "    axis value range"
                    if ind.stop is None:
                        mask = self.xvals(axis) < ind.step
                    elif ind.step is None:
                        mask = self.xvals(axis) >= ind.stop
                    else:
                        mask = (self.xvals(axis) >= ind.stop) * (self.xvals(axis) < ind.step)
                    ##print "mask:", mask
                    index = mask
                    
                ## x[Axis:columnIndex]
                elif isinstance(ind.stop, int) or isinstance(ind.step, int):
                    #print "    normal slice after named axis"
                    if ind.step is None:
                        index = ind.stop
                    else:
                        index = slice(ind.stop, ind.step)
                    
                ## x[Axis: [list]]
                elif type(ind.stop) is list:
                    #print "    list of indexes from named axis"
                    index = []
                    for i in ind.stop:
                        if type(i) is int:
                            index.append(i)
                        elif MetaArray.isNameType(i):
                            index.append(self._getIndex(axis, i))
                        else:
                            ## unrecognized type, try just passing on to array
                            index = ind.stop
                            break
                
                else:
                    #print "    other type.. forward on to array for handling", type(ind.stop)
                    index = ind.stop
                #print "Axis %s (%s) : %s" % (ind.start, str(axis), str(type(index)))
                #if type(index) is np.ndarray:
                    #print "    ", index.shape
                return (axis, index, True)
            else:
                #print "  Looks like a real slice, passing on to array"
                return (pos, ind, False)
        elif type(ind) is list:
            #print "  List index., interpreting each element individually"
            indList = [self._interpretIndex(i, pos, numOk)[1] for i in ind]
            return (pos, indList, False)
        else:
            if not numOk:
                raise Exception("string and integer indexes may not follow named indexes")
            #print "  normal numerical index"
            return (pos, ind, False)
  
    def _getAxis(self, name):
        for i in range(0, len(self._info)):
            axis = self._info[i]
            if 'name' in axis and axis['name'] == name:
                return i
        raise Exception("No axis named %s.\n  info=%s" % (name, self._info))
  
    def _getIndex(self, axis, name):
        ax = self._info[axis]
        if ax is not None and 'cols' in ax:
            for i in range(0, len(ax['cols'])):
                if 'name' in ax['cols'][i] and ax['cols'][i]['name'] == name:
                    return i
        raise Exception("Axis %d has no column named %s.\n  info=%s" % (axis, name, self._info))
  
    def _axisCopy(self, i):
        return copy.deepcopy(self._info[i])
  
    def _axisSlice(self, i, cols):
        #print "axisSlice", i, cols
        if 'cols' in self._info[i] or 'values' in self._info[i]:
            ax = self._axisCopy(i)
            if 'cols' in ax:
                #print "  slicing columns..", array(ax['cols']), cols
                sl = np.array(ax['cols'])[cols]
                if isinstance(sl, np.ndarray):
                    sl = list(sl)
                ax['cols'] = sl
                #print "  result:", ax['cols']
            if 'values' in ax:
                ax['values'] = np.array(ax['values'])[cols]
        else:
            ax = self._info[i]
        #print "     ", ax
        return ax
  
    def prettyInfo(self):
        s = ''
        titles = []
        maxl = 0
        for i in range(len(self._info)-1):
            ax = self._info[i]
            axs = ''
            if 'name' in ax:
                axs += '"%s"' % str(ax['name'])
            else:
                axs += "%d" % i
            if 'units' in ax:
                axs += " (%s)" % str(ax['units'])
            titles.append(axs)
            if len(axs) > maxl:
                maxl = len(axs)
        
        for i in range(min(self.ndim, len(self._info) - 1)):
            ax = self._info[i]
            axs = titles[i]
            axs += '%s[%d] :' % (' ' * (maxl - len(axs) + 5 - len(str(self.shape[i]))), self.shape[i])
            if 'values' in ax:
                if self.shape[i] > 0:
                    v0 = ax['values'][0]
                    axs += "  values: [%g" % (v0)
                    if self.shape[i] > 1:
                        v1 = ax['values'][-1]
                        axs += " ... %g] (step %g)" % (v1, (v1 - v0) / (self.shape[i] - 1))
                    else:
                        axs += "]"
                else:
                    axs += "  values: []"
            if 'cols' in ax:
                axs += " columns: "
                colstrs = []
                for c in range(len(ax['cols'])):
                    col = ax['cols'][c]
                    cs = str(col.get('name', c))
                    if 'units' in col:
                        cs += " (%s)" % col['units']
                    colstrs.append(cs)
                axs += '[' + ', '.join(colstrs) + ']'
            s += axs + "\n"
        s += str(self._info[-1])
        return s
  
    def __repr__(self):
        return "%s\n-----------------------------------------------\n%s" % (self.view(np.ndarray).__repr__(), self.prettyInfo())

    def __str__(self):
        return self.__repr__()

    def axisCollapsingFn(self, fn, axis=None, *args, **kargs):
        fn = getattr(self._data, fn)
        if axis is None:
            return fn(axis, *args, **kargs)
        else:
            info = self.infoCopy()
            axis = self._interpretAxis(axis)
            info.pop(axis)
            return MetaArray(fn(axis, *args, **kargs), info=info)

    def mean(self, axis=None, *args, **kargs):
        return self.axisCollapsingFn('mean', axis, *args, **kargs)
            

    def min(self, axis=None, *args, **kargs):
        return self.axisCollapsingFn('min', axis, *args, **kargs)

    def max(self, axis=None, *args, **kargs):
        return self.axisCollapsingFn('max', axis, *args, **kargs)

    def transpose(self, *args):
        if len(args) == 1 and hasattr(args[0], '__iter__'):
            order = args[0]
        else:
            order = args
        
        order = [self._interpretAxis(ax) for ax in order]
        infoOrder = order  + list(range(len(order), len(self._info)))
        info = [self._info[i] for i in infoOrder]
        order = order + list(range(len(order), self.ndim))
        
        try:
            if self._isHDF:
                return MetaArray(np.array(self._data).transpose(order), info=info)
            else:
                return MetaArray(self._data.transpose(order), info=info)
        except:
            print(order)
            raise

    #### File I/O Routines
    def readFile(self, filename, **kwargs):
        """Load the data and meta info stored in *filename*
        Different arguments are allowed depending on the type of file.
        For HDF5 files:
        
            *writable* (bool) if True, then any modifications to data in the array will be stored to disk.
            *readAllData* (bool) if True, then all data in the array is immediately read from disk
                          and the file is closed (this is the default for files < 500MB). Otherwise, the file will
                          be left open and data will be read only as requested (this is 
                          the default for files >= 500MB).
        
        
        """
        ## decide which read function to use
        with open(filename, 'rb') as fd:
            magic = fd.read(8)
            if magic == b'\x89HDF\r\n\x1a\n':
                fd.close()
                self._readHDF5(filename, **kwargs)
                self._isHDF = True
            else:
                fd.seek(0)
                meta = MetaArray._readMeta(fd)
                if not kwargs.get("readAllData", True):
                    self._data = np.empty(meta['shape'], dtype=meta['type'])
                if 'version' in meta:
                    ver = meta['version']
                else:
                    ver = 1
                rFuncName = '_readData%s' % str(ver)
                if not hasattr(MetaArray, rFuncName):
                    raise Exception("This MetaArray library does not support array version '%s'" % ver)
                rFunc = getattr(self, rFuncName)
                rFunc(fd, meta, **kwargs)
                self._isHDF = False

    @staticmethod
    def _readMeta(fd):
        """Read meta array from the top of a file. Read lines until a blank line is reached.
        This function should ideally work for ALL versions of MetaArray.
        """
        meta = u''
        ## Read meta information until the first blank line
        while True:
            line = fd.readline().strip()
            if line == '':
                break
            meta += line
        ret = eval(meta)
        #print ret
        return ret
    
    def _readData1(self, fd, meta, mmap=False, **kwds):
        ## Read array data from the file descriptor for MetaArray v1 files
        ## read in axis values for any axis that specifies a length
        frameSize = 1
        for ax in meta['info']:
            if 'values_len' in ax:
                ax['values'] = np.frombuffer(fd.read(ax['values_len']), dtype=ax['values_type'])
                frameSize *= ax['values_len']
                del ax['values_len']
                del ax['values_type']
        self._info = meta['info']
        if not kwds.get("readAllData", True):
            return
        ## the remaining data is the actual array
        if mmap:
            subarr = np.memmap(fd, dtype=meta['type'], mode='r', shape=meta['shape'])
        else:
            subarr = np.frombuffer(fd.read(), dtype=meta['type'])
            subarr.shape = meta['shape']
        self._data = subarr
            
    def _readData2(self, fd, meta, mmap=False, subset=None, **kwds):
        ## read in axis values
        dynAxis = None
        frameSize = 1
        ## read in axis values for any axis that specifies a length
        for i in range(len(meta['info'])):
            ax = meta['info'][i]
            if 'values_len' in ax:
                if ax['values_len'] == 'dynamic':
                    if dynAxis is not None:
                        raise Exception("MetaArray has more than one dynamic axis! (this is not allowed)")
                    dynAxis = i
                else:
                    ax['values'] = np.frombuffer(fd.read(ax['values_len']), dtype=ax['values_type'])
                    frameSize *= ax['values_len']
                    del ax['values_len']
                    del ax['values_type']
        self._info = meta['info']
        if not kwds.get("readAllData", True):
            return

        ## No axes are dynamic, just read the entire array in at once
        if dynAxis is None:
            if meta['type'] == 'object':
                if mmap:
                    raise Exception('memmap not supported for arrays with dtype=object')
                subarr = pickle.loads(fd.read())
            else:
                if mmap:
                    subarr = np.memmap(fd, dtype=meta['type'], mode='r', shape=meta['shape'])
                else:
                    subarr = np.frombuffer(fd.read(), dtype=meta['type'])
            subarr.shape = meta['shape']
        ## One axis is dynamic, read in a frame at a time
        else:
            if mmap:
                raise Exception('memmap not supported for non-contiguous arrays. Use rewriteContiguous() to convert.')
            ax = meta['info'][dynAxis]
            xVals = []
            frames = []
            frameShape = list(meta['shape'])
            frameShape[dynAxis] = 1
            frameSize = np.prod(frameShape)
            n = 0
            while True:
                ## Extract one non-blank line
                while True:
                    line = fd.readline()
                    if line != '\n':
                        break
                if line == '':
                    break
                    
                ## evaluate line
                inf = eval(line)
                
                ## read data block
                #print "read %d bytes as %s" % (inf['len'], meta['type'])
                if meta['type'] == 'object':
                    data = pickle.loads(fd.read(inf['len']))
                else:
                    data = np.frombuffer(fd.read(inf['len']), dtype=meta['type'])
                
                if data.size != frameSize * inf['numFrames']:
                    #print data.size, frameSize, inf['numFrames']
                    raise Exception("Wrong frame size in MetaArray file! (frame %d)" % n)
                    
                ## read in data block
                shape = list(frameShape)
                shape[dynAxis] = inf['numFrames']
                data.shape = shape
                if subset is not None:
                    dSlice = subset[dynAxis]
                    if dSlice.start is None:
                        dStart = 0
                    else:
                        dStart = max(0, dSlice.start - n)
                    if dSlice.stop is None:
                        dStop = data.shape[dynAxis]
                    else:
                        dStop = min(data.shape[dynAxis], dSlice.stop - n)
                    newSubset = list(subset[:])
                    newSubset[dynAxis] = slice(dStart, dStop)
                    if dStop > dStart:
                        frames.append(data[tuple(newSubset)].copy())
                else:
                    frames.append(data)
                
                n += inf['numFrames']
                if 'xVals' in inf:
                    xVals.extend(inf['xVals'])
            subarr = np.concatenate(frames, axis=dynAxis)
            if len(xVals)> 0:
                ax['values'] = np.array(xVals, dtype=ax['values_type'])
            del ax['values_len']
            del ax['values_type']
        self._info = meta['info']
        self._data = subarr

    def _readHDF5(self, fileName, readAllData=None, writable=False, **kargs):
        if 'close' in kargs and readAllData is None: ## for backward compatibility
            readAllData = kargs['close']
       
        if readAllData is True and writable is True:
            raise Exception("Incompatible arguments: readAllData=True and writable=True")
        
        if not HAVE_HDF5:
            try:
                assert writable==False
                assert readAllData != False
                self._readHDF5Remote(fileName)
                return
            except:
                raise Exception("The file '%s' is HDF5-formatted, but the HDF5 library (h5py) was not found." % fileName)
        
        ## by default, readAllData=True for files < 500MB
        if readAllData is None:
            size = os.stat(fileName).st_size
            readAllData = (size < 500e6)
        
        if writable is True:
            mode = 'r+'
        else:
            mode = 'r'
        f = h5py.File(fileName, mode)
        
        ver = f.attrs['MetaArray']
        try:
            ver = ver.decode('utf-8')
        except:
            pass
        if ver > MetaArray.version:
            print("Warning: This file was written with MetaArray version %s, but you are using version %s. (Will attempt to read anyway)" % (str(ver), str(MetaArray.version)))
        meta = MetaArray.readHDF5Meta(f['info'])
        self._info = meta
        
        if writable or not readAllData:  ## read all data, convert to ndarray, close file
            self._data = f['data']
            self._openFile = f
        else:
            self._data = f['data'][:]
            f.close()
            
    def _readHDF5Remote(self, fileName):
        ## Used to read HDF5 files via remote process.
        ## This is needed in the case that HDF5 is not importable due to the use of python-dbg.
        proc = getattr(MetaArray, '_hdf5Process', None)
        
        if proc == False:
            raise Exception('remote read failed')
        if proc is None:
            from .. import multiprocess as mp

            #print "new process"
            proc = mp.Process(executable='/usr/bin/python')
            proc.setProxyOptions(deferGetattr=True)
            MetaArray._hdf5Process = proc
            MetaArray._h5py_metaarray = proc._import('pyqtgraph.metaarray')
        ma = MetaArray._h5py_metaarray.MetaArray(file=fileName)
        self._data = ma.asarray()._getValue()
        self._info = ma._info._getValue()

    @staticmethod
    def mapHDF5Array(data, writable=False):
        off = data.id.get_offset()
        if writable:
            mode = 'r+'
        else:
            mode = 'r'
        if off is None:
            raise Exception("This dataset uses chunked storage; it can not be memory-mapped. (store using mappable=True)")
        return np.memmap(filename=data.file.filename, offset=off, dtype=data.dtype, shape=data.shape, mode=mode)

    @staticmethod
    def readHDF5Meta(root, mmap=False):
        data = {}
        
        ## Pull list of values from attributes and child objects
        for k in root.attrs:
            val = root.attrs[k]
            if isinstance(val, bytes):
                val = val.decode()
            if isinstance(val, str):  ## strings need to be re-evaluated to their original types
                try:
                    val = eval(val)
                except:
                    raise Exception('Can not evaluate string: "%s"' % val)
            data[k] = val
        for k in root:
            obj = root[k]
            if isinstance(obj, h5py.Group):
                val = MetaArray.readHDF5Meta(obj)
            elif isinstance(obj, h5py.Dataset):
                if mmap:
                    val = MetaArray.mapHDF5Array(obj)
                else:
                    val = obj[:]
            else:
                raise Exception("Don't know what to do with type '%s'" % str(type(obj)))
            data[k] = val
        
        typ = root.attrs['_metaType_']
        try:
            typ = typ.decode('utf-8')
        except:
            pass
        del data['_metaType_']
        
        if typ == 'dict':
            return data
        elif typ == 'list' or typ == 'tuple':
            d2 = [None]*len(data)
            for k in data:
                d2[int(k)] = data[k]
            if typ == 'tuple':
                d2 = tuple(d2)
            return d2
        else:
            raise Exception("Don't understand metaType '%s'" % typ)

    def write(self, fileName, **opts):
        """Write this object to a file. The object can be restored by calling MetaArray(file=fileName)
        opts:
            appendAxis: the name (or index) of the appendable axis. Allows the array to grow.
            appendKeys: a list of keys (other than "values") for metadata to append to on the appendable axis.
            compression: None, 'gzip' (good compression), 'lzf' (fast compression), etc.
            chunks: bool or tuple specifying chunk shape
        """        
        if USE_HDF5 is False:
            return self.writeMa(fileName, **opts)
        elif HAVE_HDF5 is True:
            return self.writeHDF5(fileName, **opts)
        else:
            raise Exception("h5py is required for writing .ma hdf5 files, but it could not be imported.")

    def writeMeta(self, fileName):
        """Used to re-write meta info to the given file.
        This feature is only available for HDF5 files."""
        f = h5py.File(fileName, 'r+')
        if f.attrs['MetaArray'] != MetaArray.version:
            raise Exception("The file %s was created with a different version of MetaArray. Will not modify." % fileName)
        del f['info']
        
        self.writeHDF5Meta(f, 'info', self._info)
        f.close()

    def writeHDF5(self, fileName, **opts):
        ## default options for writing datasets
        comp = self.defaultCompression
        if isinstance(comp, tuple):
            comp, copts = comp
        else:
            copts = None

        dsOpts = {  
            'compression': comp,
            'chunks': True,
        }
        if copts is not None:
            dsOpts['compression_opts'] = copts
        
        ## if there is an appendable axis, then we can guess the desired chunk shape (optimized for appending)
        appAxis = opts.get('appendAxis', None)
        if appAxis is not None:
            appAxis = self._interpretAxis(appAxis)
            cs = [min(100000, x) for x in self.shape]
            cs[appAxis] = 1
            dsOpts['chunks'] = tuple(cs)
            
        ## if there are columns, then we can guess a different chunk shape
        ## (read one column at a time)
        else:
            cs = [min(100000, x) for x in self.shape]
            for i in range(self.ndim):
                if 'cols' in self._info[i]:
                    cs[i] = 1
            dsOpts['chunks'] = tuple(cs)
        
        ## update options if they were passed in
        for k in dsOpts:
            if k in opts:
                dsOpts[k] = opts[k]        
        
        ## If mappable is in options, it disables chunking/compression
        if opts.get('mappable', False):
            dsOpts = {
                'chunks': None,
                'compression': None
            }
            
        ## set maximum shape to allow expansion along appendAxis
        append = False
        if appAxis is not None:
            maxShape = list(self.shape)
            ax = self._interpretAxis(appAxis)
            maxShape[ax] = None
            if os.path.exists(fileName):
                append = True
            dsOpts['maxshape'] = tuple(maxShape)
        else:
            dsOpts['maxshape'] = None
            
        if append:
            f = h5py.File(fileName, 'r+')
            if f.attrs['MetaArray'] != MetaArray.version:
                raise Exception("The file %s was created with a different version of MetaArray. Will not modify." % fileName)
            
            ## resize data and write in new values
            data = f['data']
            shape = list(data.shape)
            shape[ax] += self.shape[ax]
            data.resize(tuple(shape))
            sl = [slice(None)] * len(data.shape)
            sl[ax] = slice(-self.shape[ax], None)
            data[tuple(sl)] = self.view(np.ndarray)
            
            ## add axis values if they are present.
            axKeys = ["values"]
            axKeys.extend(opts.get("appendKeys", []))
            axInfo = f['info'][str(ax)]
            for key in axKeys:
                if key in axInfo:
                    v = axInfo[key]
                    v2 = self._info[ax][key]
                    shape = list(v.shape)
                    shape[0] += v2.shape[0]
                    v.resize(shape)
                    v[-v2.shape[0]:] = v2
                else:
                    raise TypeError('Cannot append to axis info key "%s"; this key is not present in the target file.' % key)
            f.close()
        else:
            f = h5py.File(fileName, 'w')
            f.attrs['MetaArray'] = MetaArray.version
            #print dsOpts
            f.create_dataset('data', data=self.view(np.ndarray), **dsOpts)
            
            ## dsOpts is used when storing meta data whenever an array is encountered
            ## however, 'chunks' will no longer be valid for these arrays if it specifies a chunk shape.
            ## 'maxshape' is right-out.
            if isinstance(dsOpts['chunks'], tuple):
                dsOpts['chunks'] = True
                if 'maxshape' in dsOpts:
                    del dsOpts['maxshape']
            self.writeHDF5Meta(f, 'info', self._info, **dsOpts)
            f.close()

    def writeHDF5Meta(self, root, name, data, **dsOpts):
        if isinstance(data, np.ndarray):
            dsOpts['maxshape'] = (None,) + data.shape[1:]
            root.create_dataset(name, data=data, **dsOpts)
        elif isinstance(data, list) or isinstance(data, tuple):
            gr = root.create_group(name)
            if isinstance(data, list):
                gr.attrs['_metaType_'] = 'list'
            else:
                gr.attrs['_metaType_'] = 'tuple'
            #n = int(np.log10(len(data))) + 1
            for i in range(len(data)):
                self.writeHDF5Meta(gr, str(i), data[i], **dsOpts)
        elif isinstance(data, dict):
            gr = root.create_group(name)
            gr.attrs['_metaType_'] = 'dict'
            for k, v in data.items():
                self.writeHDF5Meta(gr, k, v, **dsOpts)
        elif isinstance(data, int) or isinstance(data, float) or isinstance(data, np.integer) or isinstance(data, np.floating):
            root.attrs[name] = data
        else:
            try:   ## strings, bools, None are stored as repr() strings
                root.attrs[name] = repr(data)
            except:
                print("Can not store meta data of type '%s' in HDF5. (key is '%s')" % (str(type(data)), str(name)))
                raise 

        
    def writeMa(self, fileName, appendAxis=None, newFile=False):
        """Write an old-style .ma file"""
        meta = {'shape':self.shape, 'type':str(self.dtype), 'info':self.infoCopy(), 'version':MetaArray.version}
        axstrs = []
        
        ## copy out axis values for dynamic axis if requested
        if appendAxis is not None:
            if MetaArray.isNameType(appendAxis):
                appendAxis = self._interpretAxis(appendAxis)
            
            
            ax = meta['info'][appendAxis]
            ax['values_len'] = 'dynamic'
            if 'values' in ax:
                ax['values_type'] = str(ax['values'].dtype)
                dynXVals = ax['values']
                del ax['values']
            else:
                dynXVals = None
                
        ## Generate axis data string, modify axis info so we know how to read it back in later
        for ax in meta['info']:
            if 'values' in ax:
                axstrs.append(ax['values'].tostring())
                ax['values_len'] = len(axstrs[-1])
                ax['values_type'] = str(ax['values'].dtype)
                del ax['values']
                
        ## Decide whether to output the meta block for a new file
        if not newFile:
            ## If the file does not exist or its size is 0, then we must write the header
            newFile = (not os.path.exists(fileName))  or  (os.stat(fileName).st_size == 0)
        
        ## write data to file
        if appendAxis is None or newFile:
            fd = open(fileName, 'wb')
            fd.write(str(meta) + '\n\n')
            for ax in axstrs:
                fd.write(ax)
        else:
            fd = open(fileName, 'ab')
        
        if self.dtype != object:
            dataStr = self.view(np.ndarray).tostring()
        else:
            dataStr = pickle.dumps(self.view(np.ndarray))
        #print self.size, len(dataStr), self.dtype
        if appendAxis is not None:
            frameInfo = {'len':len(dataStr), 'numFrames':self.shape[appendAxis]}
            if dynXVals is not None:
                frameInfo['xVals'] = list(dynXVals)
            fd.write('\n'+str(frameInfo)+'\n')
        fd.write(dataStr)
        fd.close()
        
    def writeCsv(self, fileName=None):
        """Write 2D array to CSV file or return the string if no filename is given"""
        if self.ndim > 2:
            raise Exception("CSV Export is only for 2D arrays")
        if fileName is not None:
            file = open(fileName, 'w')
        ret = ''
        if 'cols' in self._info[0]:
            s = ','.join([x['name'] for x in self._info[0]['cols']]) + '\n'
            if fileName is not None:
                file.write(s)
            else:
                ret += s
        for row in range(0, self.shape[1]):
            s = ','.join(["%g" % x for x in self[:, row]]) + '\n'
            if fileName is not None:
                file.write(s)
            else:
                ret += s
        if fileName is not None:
            file.close()
        else:
            return ret
  
  
if __name__ == '__main__':
    ## Create an array with every option possible
    
    arr = np.zeros((2, 5, 3, 5), dtype=int)
    for i in range(arr.shape[0]):
        for j in range(arr.shape[1]):
            for k in range(arr.shape[2]):
                for l in range(arr.shape[3]):
                    arr[i,j,k,l] = (i+1)*1000 + (j+1)*100 + (k+1)*10 + (l+1)
        
    info = [
        axis('Axis1'), 
        axis('Axis2', values=[1,2,3,4,5]), 
        axis('Axis3', cols=[
            ('Ax3Col1'),
            ('Ax3Col2', 'mV', 'Axis3 Column2'),
            (('Ax3','Col3'), 'A', 'Axis3 Column3')]),
        {'name': 'Axis4', 'values': np.array([1.1, 1.2, 1.3, 1.4, 1.5]), 'units': 's'},
        {'extra': 'info'}
    ]
    
    ma = MetaArray(arr, info=info)
    
    print("====  Original Array =======")
    print(ma)
    print("\n\n")
    
    #### Tests follow:
    
    
    #### Index/slice tests: check that all values and meta info are correct after slice
    print("\n -- normal integer indexing\n")
    
    print("\n  ma[1]")
    print(ma[1])
    
    print("\n  ma[1, 2:4]")
    print(ma[1, 2:4])
    
    print("\n  ma[1, 1:5:2]")
    print(ma[1, 1:5:2])
    
    print("\n -- named axis indexing\n")
    
    print("\n  ma['Axis2':3]")
    print(ma['Axis2':3])
    
    print("\n  ma['Axis2':3:5]")
    print(ma['Axis2':3:5])
    
    print("\n  ma[1, 'Axis2':3]")
    print(ma[1, 'Axis2':3])
    
    print("\n  ma[:, 'Axis2':3]")
    print(ma[:, 'Axis2':3])
    
    print("\n  ma['Axis2':3, 'Axis4':0:2]")
    print(ma['Axis2':3, 'Axis4':0:2])
    
    
    print("\n -- column name indexing\n")
    
    print("\n  ma['Axis3':'Ax3Col1']")
    print(ma['Axis3':'Ax3Col1'])
    
    print("\n  ma['Axis3':('Ax3','Col3')]")
    print(ma['Axis3':('Ax3','Col3')])
    
    print("\n  ma[:, :, 'Ax3Col2']")
    print(ma[:, :, 'Ax3Col2'])
    
    print("\n  ma[:, :, ('Ax3','Col3')]")
    print(ma[:, :, ('Ax3','Col3')])
    
    
    print("\n -- axis value range indexing\n")
    
    print("\n  ma['Axis2':1.5:4.5]")
    print(ma['Axis2':1.5:4.5])
    
    print("\n  ma['Axis4':1.15:1.45]")
    print(ma['Axis4':1.15:1.45])
    
    print("\n  ma['Axis4':1.15:1.25]")
    print(ma['Axis4':1.15:1.25])
    
    
    
    print("\n -- list indexing\n")
    
    print("\n  ma[:, [0,2,4]]")
    print(ma[:, [0,2,4]])
    
    print("\n  ma['Axis4':[0,2,4]]")
    print(ma['Axis4':[0,2,4]])
    
    print("\n  ma['Axis3':[0, ('Ax3','Col3')]]")
    print(ma['Axis3':[0, ('Ax3','Col3')]])
    
    
    
    print("\n -- boolean indexing\n")
    
    print("\n  ma[:, array([True, True, False, True, False])]")
    print(ma[:, np.array([True, True, False, True, False])])
    
    print("\n  ma['Axis4':array([True, False, False, False])]")
    print(ma['Axis4':np.array([True, False, False, False])])
    
    
    
    
    
    #### Array operations 
    #  - Concatenate
    #  - Append
    #  - Extend
    #  - Rowsort
    
    
    
    
    #### File I/O tests
    
    print("\n================  File I/O Tests  ===================\n")
    tf = 'test.ma'
    # write whole array
    
    print("\n  -- write/read test")
    ma.write(tf)
    ma2 = MetaArray(file=tf)
    
    #print ma2
    print("\nArrays are equivalent:", (ma == ma2).all())
    #print "Meta info is equivalent:", ma.infoCopy() == ma2.infoCopy()
    os.remove(tf)
    
    # CSV write
    
    # append mode
    
    
    print("\n================append test (%s)===============" % tf)
    ma['Axis2':0:2].write(tf, appendAxis='Axis2')
    for i in range(2,ma.shape[1]):
        ma['Axis2':[i]].write(tf, appendAxis='Axis2')
    
    ma2 = MetaArray(file=tf)
    
    #print ma2
    print("\nArrays are equivalent:", (ma == ma2).all())
    #print "Meta info is equivalent:", ma.infoCopy() == ma2.infoCopy()
    
    os.remove(tf)    
    
    
    
    ## memmap test
    print("\n==========Memmap test============")
    ma.write(tf, mappable=True)
    ma2 = MetaArray(file=tf, mmap=True)
    print("\nArrays are equivalent:", (ma == ma2).all())
    os.remove(tf)