File: ScatterPlot.py

package info (click to toggle)
python-pyqtgraph 0.13.7-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 8,068 kB
  • sloc: python: 54,043; makefile: 129; ansic: 40; sh: 2
file content (133 lines) | stat: -rw-r--r-- 4,255 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""
Example demonstrating a variety of scatter plot features.
"""

from collections import namedtuple

import numpy as np

import pyqtgraph as pg
from pyqtgraph.Qt import QtGui, QtWidgets

app = pg.mkQApp("Scatter Plot Item Example") 
mw = QtWidgets.QMainWindow()
mw.resize(800,800)
view = pg.GraphicsLayoutWidget()  ## GraphicsView with GraphicsLayout inserted by default
mw.setCentralWidget(view)
mw.show()
mw.setWindowTitle('pyqtgraph example: ScatterPlot')

## create four areas to add plots
w1 = view.addPlot()
w2 = view.addViewBox()
w2.setAspectLocked(True)
view.nextRow()
w3 = view.addPlot()
w4 = view.addPlot()
print("Generating data, this takes a few seconds...")

## Make all plots clickable
clickedPen = pg.mkPen('b', width=2)
lastClicked = []
def clicked(plot, points):
    global lastClicked
    for p in lastClicked:
        p.resetPen()
    print("clicked points", points)
    for p in points:
        p.setPen(clickedPen)
    lastClicked = points


## There are a few different ways we can draw scatter plots; each is optimized for different types of data:

## 1) All spots identical and transform-invariant (top-left plot).
## In this case we can get a huge performance boost by pre-rendering the spot
## image and just drawing that image repeatedly.

n = 300
s1 = pg.ScatterPlotItem(size=10, pen=pg.mkPen(None), brush=pg.mkBrush(255, 255, 255, 120))
pos = np.random.normal(size=(2,n), scale=1e-5)
spots = [{'pos': pos[:,i], 'data': 1} for i in range(n)] + [{'pos': [0,0], 'data': 1}]
s1.addPoints(spots)
w1.addItem(s1)
s1.sigClicked.connect(clicked)


## 2) Spots are transform-invariant, but not identical (top-right plot).
## In this case, drawing is almsot as fast as 1), but there is more startup
## overhead and memory usage since each spot generates its own pre-rendered
## image.

TextSymbol = namedtuple("TextSymbol", "label symbol scale")

def createLabel(label, angle):
    symbol = QtGui.QPainterPath()
    #symbol.addText(0, 0, QFont("San Serif", 10), label)
    f = QtGui.QFont()
    f.setPointSize(10)
    symbol.addText(0, 0, f, label)
    br = symbol.boundingRect()
    scale = min(1. / br.width(), 1. / br.height())
    tr = QtGui.QTransform()
    tr.scale(scale, scale)
    tr.rotate(angle)
    tr.translate(-br.x() - br.width()/2., -br.y() - br.height()/2.)
    return TextSymbol(label, tr.map(symbol), 0.1 / scale)

random_str = lambda : (''.join([chr(np.random.randint(ord('A'),ord('z'))) for i in range(np.random.randint(1,5))]), np.random.randint(0, 360))

s2 = pg.ScatterPlotItem(size=10, pen=pg.mkPen('w'), pxMode=True)
pos = np.random.normal(size=(2,n), scale=1e-5)
spots = [{'pos': pos[:,i], 'data': 1, 'brush':pg.intColor(i, n), 'symbol': i%10, 'size': 5+i/10.} for i in range(n)]
s2.addPoints(spots)
spots = [{'pos': pos[:,i], 'data': 1, 'brush':pg.intColor(i, n), 'symbol': label[1], 'size': label[2]*(5+i/10.)} for (i, label) in [(i, createLabel(*random_str())) for i in range(n)]]
s2.addPoints(spots)
w2.addItem(s2)
s2.sigClicked.connect(clicked)


## 3) Spots are not transform-invariant, not identical (bottom-left).
## This is the slowest case, since all spots must be completely re-drawn
## every time because their apparent transformation may have changed.

s3 = pg.ScatterPlotItem(
    pxMode=False,  # Set pxMode=False to allow spots to transform with the view
    hoverable=True,
    hoverPen=pg.mkPen('g'),
    hoverSize=1e-6
)
spots3 = []
for i in range(10):
    for j in range(10):
        spots3.append({'pos': (1e-6*i, 1e-6*j), 'size': 1e-6, 'pen': {'color': 'w', 'width': 2}, 'brush':pg.intColor(i*10+j, 100)})
s3.addPoints(spots3)
w3.addItem(s3)
s3.sigClicked.connect(clicked)

## Test performance of large scatterplots

s4 = pg.ScatterPlotItem(
    size=10,
    pen=pg.mkPen(None),
    brush=pg.mkBrush(255, 255, 255, 20),
    hoverable=True,
    hoverSymbol='s',
    hoverSize=15,
    hoverPen=pg.mkPen('r', width=2),
    hoverBrush=pg.mkBrush('g'),
)
n = 10000
pos = np.random.normal(size=(2, n), scale=1e-9)
s4.addPoints(
    x=pos[0],
    y=pos[1],
    # size=(np.random.random(n) * 20.).astype(int),
    # brush=[pg.mkBrush(x) for x in np.random.randint(0, 256, (n, 3))],
    data=np.arange(n)
)
w4.addItem(s4)
s4.sigClicked.connect(clicked)

if __name__ == '__main__':
    pg.exec()