File: functions.py

package info (click to toggle)
python-pyqtgraph 0.13.7-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 8,068 kB
  • sloc: python: 54,043; makefile: 129; ansic: 40; sh: 2
file content (3148 lines) | stat: -rw-r--r-- 117,681 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
"""
functions.py -  Miscellaneous functions with no other home
Copyright 2010  Luke Campagnola
Distributed under MIT/X11 license. See license.txt for more information.
"""

import decimal
import math
import re
import struct
import sys
import warnings
from collections import OrderedDict

import numpy as np

from . import Qt, debug, getConfigOption, reload
from .metaarray import MetaArray
from .Qt import QT_LIB, QtCore, QtGui
from .util.cupy_helper import getCupy
from .util.numba_helper import getNumbaFunctions

# in order of appearance in this file.
# add new functions to this list only if they are to reside in pg namespace.
__all__ = [
    'siScale', 'siFormat', 'siParse', 'siEval', 'siApply',
    'Color', 'mkColor', 'mkBrush', 'mkPen', 'hsvColor',
    'CIELabColor', 'colorCIELab', 'colorDistance',
    'colorTuple', 'colorStr', 'intColor', 'glColor',
    'makeArrowPath', 'eq',
    'affineSliceCoords', 'affineSlice',
    'interweaveArrays', 'interpolateArray', 'subArray',
    'transformToArray', 'transformCoordinates',
    'solve3DTransform', 'solveBilinearTransform',
    'clip_scalar', 'clip_array', 'rescaleData', 'applyLookupTable',
    'makeRGBA', 'makeARGB',
    # 'ndarray_to_qimage',
    'makeQImage',
    # 'ndarray_from_qimage',
    'imageToArray', 'colorToAlpha',
    'gaussianFilter', 'downsample', 'arrayToQPath',
    # 'ndarray_from_qpolygonf', 'create_qpolygonf', 'arrayToQPolygonF',
    'isocurve', 'traceImage', 'isosurface',
    'invertQTransform',
    'pseudoScatter', 'toposort', 'disconnect', 'SignalBlock']


Colors = {
    'b': QtGui.QColor(0,0,255,255),
    'g': QtGui.QColor(0,255,0,255),
    'r': QtGui.QColor(255,0,0,255),
    'c': QtGui.QColor(0,255,255,255),
    'm': QtGui.QColor(255,0,255,255),
    'y': QtGui.QColor(255,255,0,255),
    'k': QtGui.QColor(0,0,0,255),
    'w': QtGui.QColor(255,255,255,255),
    'd': QtGui.QColor(150,150,150,255),
    'l': QtGui.QColor(200,200,200,255),
    's': QtGui.QColor(100,100,150,255),
}  

SI_PREFIXES = 'yzafpnµm kMGTPEZY'
SI_PREFIXES_ASCII = 'yzafpnum kMGTPEZY'
SI_PREFIX_EXPONENTS = dict([(SI_PREFIXES[i], (i-8)*3) for i in range(len(SI_PREFIXES))])
SI_PREFIX_EXPONENTS['u'] = -6

FLOAT_REGEX = re.compile(r'(?P<number>[+-]?((((\d+(\.\d*)?)|(\d*\.\d+))([eE][+-]?\d+)?)|((?i:nan)|(inf))))\s*((?P<siPrefix>[u' + SI_PREFIXES + r']?)(?P<suffix>\w.*))?$')
INT_REGEX = re.compile(r'(?P<number>[+-]?\d+)\s*(?P<siPrefix>[u' + SI_PREFIXES + r']?)(?P<suffix>.*)$')


def siScale(x, minVal=1e-25, allowUnicode=True):
    """
    Return the recommended scale factor and SI prefix string for x.
    
    Example::
    
        siScale(0.0001)   # returns (1e6, 'μ')
        # This indicates that the number 0.0001 is best represented as 0.0001 * 1e6 = 100 μUnits
    """
    
    if isinstance(x, decimal.Decimal):
        x = float(x)
    try:
        if not math.isfinite(x):
            return(1, '')
    except:
        raise
    if abs(x) < minVal:
        m = 0
    else:
        m = int(clip_scalar(math.floor(math.log(abs(x))/math.log(1000)), -9.0, 9.0))
    if m == 0:
        pref = ''
    elif m < -8 or m > 8:
        pref = 'e%d' % (m*3)
    else:
        if allowUnicode:
            pref = SI_PREFIXES[m+8]
        else:
            pref = SI_PREFIXES_ASCII[m+8]
    m1 = -3*m
    p = 10.**m1
    return (p, pref)


def siFormat(x, precision=3, suffix='', space=True, error=None, minVal=1e-25, allowUnicode=True):
    """
    Return the number x formatted in engineering notation with SI prefix.
    
    Example::
        siFormat(0.0001, suffix='V')  # returns "100 μV"
    """
    
    if space is True:
        space = ' '
    if space is False:
        space = ''
        
    
    (p, pref) = siScale(x, minVal, allowUnicode)
    if not (len(pref) > 0 and pref[0] == 'e'):
        pref = space + pref
    
    if error is None:
        fmt = "%." + str(precision) + "g%s%s"
        return fmt % (x*p, pref, suffix)
    else:
        if allowUnicode:
            plusminus = space + "±" + space
        else:
            plusminus = " +/- "
        fmt = "%." + str(precision) + "g%s%s%s%s"
        return fmt % (x*p, pref, suffix, plusminus, siFormat(error, precision=precision, suffix=suffix, space=space, minVal=minVal))


def siParse(s, regex=FLOAT_REGEX, suffix=None):
    """Convert a value written in SI notation to a tuple (number, si_prefix, suffix).

    Example::

        siParse('100 µV")  # returns ('100', 'µ', 'V')

    Note that in the above example, the µ symbol is the "micro sign" (UTF-8
    0xC2B5), as opposed to the Greek letter mu (UTF-8 0xCEBC).

    Parameters
    ----------
    s : str
        The string to parse.
    regex : re.Pattern, optional
        Compiled regular expression object for parsing. The default is a
        general-purpose regex for parsing floating point expressions,
        potentially containing an SI prefix and a suffix.
    suffix : str, optional
        Suffix to check for in ``s``. The default (None) indicates there may or
        may not be a suffix contained in the string and it is returned if
        found. An empty string ``""`` is handled differently: if the string
        contains a suffix, it is discarded. This enables interpreting
        characters following the numerical value as an SI prefix.
    """
    s = s.strip()
    if suffix is not None and len(suffix) > 0:
        if s[-len(suffix):] != suffix:
            raise ValueError("String '%s' does not have the expected suffix '%s'" % (s, suffix))
        s = s[:-len(suffix)] + 'X'  # add a fake suffix so the regex still picks up the si prefix

    # special case: discard any extra characters if suffix is explicitly empty
    if suffix == "":
        s += 'X'

    m = regex.match(s)
    if m is None:
        raise ValueError('Cannot parse number "%s"' % s)

    try:
        sip = m.group('siPrefix')
    except IndexError:
        sip = ''

    if suffix is None:
        try:
            suf = m.group('suffix')
        except IndexError:
            suf = ''
    else:
        suf = suffix

    return m.group('number'), '' if sip is None else sip, '' if suf is None else suf


def siEval(s, typ=float, regex=FLOAT_REGEX, suffix=None):
    """
    Convert a value written in SI notation to its equivalent prefixless value.

    Example::
    
        siEval("100 μV")  # returns 0.0001
    """
    val, siprefix, suffix = siParse(s, regex, suffix=suffix)
    v = typ(val)
    return siApply(v, siprefix)

    
def siApply(val, siprefix):
    """
    """
    n = SI_PREFIX_EXPONENTS[siprefix] if siprefix != '' else 0
    if n > 0:
        return val * 10**n
    elif n < 0:
        # this case makes it possible to use Decimal objects here
        return val / 10**-n
    else:
        return val
    

class Color(QtGui.QColor):
    def __init__(self, *args):
        QtGui.QColor.__init__(self, mkColor(*args))
        
    def glColor(self):
        """Return (r,g,b,a) normalized for use in opengl"""
        return self.getRgbF()
        
    def __getitem__(self, ind):
        return (self.red, self.green, self.blue, self.alpha)[ind]()
        
    
def mkColor(*args):
    """
    Convenience function for constructing QColor from a variety of argument 
    types. Accepted arguments are:
    
    ================ ================================================
     'c'             one of: r, g, b, c, m, y, k, w or an SVG color keyword
     R, G, B, [A]    integers 0-255
     (R, G, B, [A])  tuple of integers 0-255
     float           greyscale, 0.0-1.0
     int             see :func:`intColor() <pyqtgraph.intColor>`
     (int, hues)     see :func:`intColor() <pyqtgraph.intColor>`
     "#RGB"         
     "#RGBA"         
     "#RRGGBB"       
     "#RRGGBBAA"     
     QColor          QColor instance; makes a copy.
    ================ ================================================
    """
    err = 'Not sure how to make a color from "%s"' % str(args)
    if len(args) == 1:
        if isinstance(args[0], str):
            c = args[0]
            if len(c) == 1:
                try:
                    return QtGui.QColor(Colors[c])  # return copy
                except KeyError:
                    raise ValueError('No color named "%s"' % c) from None
            if c[0] == "#" and len(c) < 10:
                # match hex color codes
                c = c[1:]
                if len(c) < 6:
                    # convert RGBA to RRGGBBAA
                    c = "".join([x + x for x in c])
                return QtGui.QColor(*bytes.fromhex(c))
            else:
                # 'c' might be an SVG color keyword
                qcol = QtGui.QColor(c)
                if qcol.isValid():
                    return qcol
                raise ValueError(f"Unable to convert {c} to QColor")
        elif isinstance(args[0], QtGui.QColor):
            return QtGui.QColor(args[0])
        elif np.issubdtype(type(args[0]), np.floating):
            r = g = b = int(args[0] * 255)
            a = 255
        elif hasattr(args[0], '__len__'):
            if len(args[0]) == 3:
                r, g, b = args[0]
                a = 255
            elif len(args[0]) == 4:
                r, g, b, a = args[0]
            elif len(args[0]) == 2:
                return intColor(*args[0])
            else:
                raise TypeError(err)
        elif np.issubdtype(type(args[0]), np.integer):
            return intColor(args[0])
        else:
            raise TypeError(err)
    elif len(args) == 3:
        r, g, b = args
        a = 255
    elif len(args) == 4:
        r, g, b, a = args
    else:
        raise TypeError(err)
    args = [int(a) if np.isfinite(a) else 0 for a in (r, g, b, a)]
    return QtGui.QColor(*args)


def mkBrush(*args, **kwds):
    """
    | Convenience function for constructing Brush.
    | This function always constructs a solid brush and accepts the same arguments as :func:`mkColor() <pyqtgraph.mkColor>`
    | Calling mkBrush(None) returns an invisible brush.
    """
    if 'color' in kwds:
        color = kwds['color']
    elif len(args) == 1:
        arg = args[0]
        if arg is None:
            return QtGui.QBrush(QtCore.Qt.BrushStyle.NoBrush)
        elif isinstance(arg, QtGui.QBrush):
            return QtGui.QBrush(arg)
        else:
            color = arg
    elif len(args) > 1:
        color = args
    return QtGui.QBrush(mkColor(color))


def mkPen(*args, **kargs):
    """
    Convenience function for constructing QPen. 
    
    Examples::
    
        mkPen(color)
        mkPen(color, width=2)
        mkPen(cosmetic=False, width=4.5, color='r')
        mkPen({'color': "#FF0", width: 2})
        mkPen(None)   # (no pen)
    
    In these examples, *color* may be replaced with any arguments accepted by :func:`mkColor() <pyqtgraph.mkColor>`    """
    color = kargs.get('color', None)
    width = kargs.get('width', 1)
    style = kargs.get('style', None)
    dash = kargs.get('dash', None)
    cosmetic = kargs.get('cosmetic', True)
    hsv = kargs.get('hsv', None)
    
    if len(args) == 1:
        arg = args[0]
        if isinstance(arg, dict):
            return mkPen(**arg)
        if isinstance(arg, QtGui.QPen):
            return QtGui.QPen(arg)  ## return a copy of this pen
        elif arg is None:
            style = QtCore.Qt.PenStyle.NoPen
        else:
            color = arg
    if len(args) > 1:
        color = args
        
    if color is None:
        color = mkColor('l')
    if hsv is not None:
        color = hsvColor(*hsv)
    else:
        color = mkColor(color)
        
    pen = QtGui.QPen(QtGui.QBrush(color), width)
    pen.setCosmetic(cosmetic)
    if style is not None:
        pen.setStyle(style)
    if dash is not None:
        pen.setDashPattern(dash)

    # for width > 1.0, we are drawing many short segments to emulate a
    # single polyline. the default SquareCap style causes artifacts.
    # these artifacts can be avoided by using RoundCap.
    # this does have a performance penalty, so enable it only
    # for thicker line widths where the artifacts are visible.
    if width > 4.0:
        pen.setCapStyle(QtCore.Qt.PenCapStyle.RoundCap)

    return pen


def hsvColor(hue, sat=1.0, val=1.0, alpha=1.0):
    """Generate a QColor from HSVa values. (all arguments are float 0.0-1.0)"""
    return QtGui.QColor.fromHsvF(hue, sat, val, alpha)
    
# Matrices and math taken from "CIELab Color Space" by Gernot Hoffmann
# http://docs-hoffmann.de/cielab03022003.pdf
MATRIX_XYZ_FROM_RGB = np.array( (
    ( 0.4124, 0.3576, 0.1805),
    ( 0.2126, 0.7152, 0.0722),
    ( 0.0193, 0.1192, 0.9505) ) )
    
MATRIX_RGB_FROM_XYZ = np.array( (
    ( 3.2410,-1.5374,-0.4985),
    (-0.9692, 1.8760, 0.0416),
    ( 0.0556,-0.2040, 1.0570) ) )

VECTOR_XYZn = np.array( ( 0.9505, 1.0000, 1.0891) ) # white reference at illuminant D65

def CIELabColor(L, a, b, alpha=1.0):
    """
    Generates as QColor from CIE L*a*b* values.
    
    Parameters
    ----------
        L: float
            Lightness value ranging from 0 to 100
        a, b: float
            (green/red) and (blue/yellow) coordinates, typically -127 to +127.
        alpha: float, optional
            Opacity, ranging from 0 to 1

    Notes
    -----
    The CIE L*a*b* color space parametrizes color in terms of a luminance `L` 
    and the `a` and `b` coordinates that locate the hue in terms of
    a "green to red" and a "blue to yellow" axis.
    
    These coordinates seek to parametrize human color preception in such a way
    that the Euclidean distance between the coordinates of two colors represents
    the visual difference between these colors. In particular, the difference
    
    ΔE = sqrt( (L1-L2)² + (a1-a2)² + (b1-b2)² ) = 2.3
    
    is considered the smallest "just noticeable difference" between colors.
    
    This simple equation represents the CIE76 standard. Later standards CIE94
    and CIE2000 refine the difference calculation ΔE, while maintaining the 
    L*a*b* coordinates.
    
    Alternative (and arguably more accurate) methods exist to quantify color
    difference, but the CIELab color space remains a convenient approximation.
    
    Under a known illumination, assumed to be white standard illuminant D65 
    here, a CIELab color induces a response in the human eye
    that is described by the tristimulus value XYZ. Once this is known, an
    sRGB color can be calculated to induce the same response.
    
    More information and underlying mathematics can be found in e.g.
    "CIELab Color Space" by Gernot Hoffmann, available at
    http://docs-hoffmann.de/cielab03022003.pdf .
    
    Also see :func:`colorDistance() <pyqtgraph.colorDistance>`.
    """ 
    # convert to tristimulus XYZ values
    vec_XYZ = np.full(3, ( L +16)/116 )  # Y1 = (L+16)/116
    vec_XYZ[0] += a / 500                # X1 = (L+16)/116 + a/500
    vec_XYZ[2] -= b / 200                # Z1 = (L+16)/116 - b/200 
    for idx, val in enumerate(vec_XYZ):
        if val > 0.20689:
            vec_XYZ[idx] = vec_XYZ[idx]**3
        else:
            vec_XYZ[idx] = (vec_XYZ[idx] - 16/116) / 7.787
    vec_XYZ = VECTOR_XYZn * vec_XYZ # apply white reference
    # print(f'XYZ: {vec_XYZ}')

    # convert XYZ to linear RGB
    vec_RGB =  MATRIX_RGB_FROM_XYZ @ vec_XYZ
    # gamma-encode linear RGB
    arr_sRGB = np.zeros(3)
    for idx, val in enumerate( vec_RGB[:3] ):
        if val > 0.0031308: # (t) RGB value for linear/exponential transition
            arr_sRGB[idx] = 1.055 * val**(1/2.4) - 0.055
        else:
            arr_sRGB[idx] = 12.92 * val # (s)
    arr_sRGB = clip_array( arr_sRGB, 0.0, 1.0 ) # avoid QColor errors
    return QtGui.QColor.fromRgbF( *arr_sRGB, alpha )

def colorCIELab(qcol):
    """
    Describes a QColor by an array of CIE L*a*b* values.
    Also see :func:`CIELabColor() <pyqtgraph.CIELabColor>` .

    Parameters
    ----------
    qcol: QColor
        QColor to be converted

    Returns
    -------
    np.ndarray 
        Color coordinates `[L, a, b]`.
    """
    srgb = qcol.getRgbF()[:3] # get sRGB values from QColor
    # convert gamma-encoded sRGB to linear:
    vec_RGB = np.zeros(3)
    for idx, val in enumerate( srgb ):
        if val > (12.92 * 0.0031308): # coefficients (s) * (t)
            vec_RGB[idx] = ((val+0.055)/1.055)**2.4
        else:
            vec_RGB[idx] = val / 12.92 # (s) coefficient
    # converted linear RGB to tristimulus XYZ:
    vec_XYZ = MATRIX_XYZ_FROM_RGB @ vec_RGB
    # normalize with white reference and convert to L*a*b* values
    vec_XYZ1 = vec_XYZ / VECTOR_XYZn 
    for idx, val in enumerate(vec_XYZ1):
        if val > 0.008856:
            vec_XYZ1[idx] = vec_XYZ1[idx]**(1/3)
        else:
            vec_XYZ1[idx] = 7.787*vec_XYZ1[idx] + 16/116
    vec_Lab = np.array([
        116 * vec_XYZ1[1] - 16,              # Y1
        500 * (vec_XYZ1[0] - vec_XYZ1[1]),   # X1 - Y1
        200 * (vec_XYZ1[1] - vec_XYZ1[2])] ) # Y1 - Z1
    return vec_Lab

def colorDistance(colors, metric='CIE76'):
    """
    Returns the perceptual distances between a sequence of QColors.
    See :func:`CIELabColor() <pyqtgraph.CIELabColor>` for more information.

    Parameters
    ----------
        colors: list of QColor
            Two or more colors to calculate the distances between.
        metric: str, optional
            Metric used to determined the difference. Only 'CIE76' is supported at this time,
            where a distance of 2.3 is considered a "just noticeable difference".
            The default may change as more metrics become available.
    
    Returns 
    -------
    List
        The `N-1` sequential distances between `N` colors.
    """
    metric = metric.upper()
    if len(colors) < 1: return np.array([], dtype=float)
    if metric == 'CIE76':
        dist = []
        lab1 = None
        for col in colors:
            lab2 = colorCIELab(col)
            if lab1 is None: #initialize on first element
                lab1 = lab2 
                continue
            dE = math.sqrt( np.sum( (lab1-lab2)**2 ) )
            dist.append(dE)
            lab1 = lab2
        return np.array(dist)
    raise ValueError(f'Metric {metric} is not available.')

def colorTuple(c):
    """Return a tuple (R,G,B,A) from a QColor"""
    return c.getRgb()

def colorStr(c):
    """Generate a hex string code from a QColor"""
    return ('%02x'*4) % colorTuple(c)


def intColor(index, hues=9, values=1, maxValue=255, minValue=150, maxHue=360, minHue=0, sat=255, alpha=255):
    """
    Creates a QColor from a single index. Useful for stepping through a predefined list of colors.
    
    The argument *index* determines which color from the set will be returned. All other arguments determine what the set of predefined colors will be
     
    Colors are chosen by cycling across hues while varying the value (brightness). 
    By default, this selects from a list of 9 hues."""
    hues = int(hues)
    values = int(values)
    ind = int(index) % (hues * values)
    indh = ind % hues
    indv = ind // hues
    if values > 1:
        v = minValue + indv * ((maxValue-minValue) // (values-1))
    else:
        v = maxValue
    h = minHue + (indh * (maxHue-minHue)) // hues
    
    return QtGui.QColor.fromHsv(h, sat, v, alpha)


def glColor(*args, **kargs):
    """
    Convert a color to OpenGL color format (r,g,b,a) floats 0.0-1.0
    Accepts same arguments as :func:`mkColor <pyqtgraph.mkColor>`.
    """
    c = mkColor(*args, **kargs)
    return c.getRgbF()

    

def makeArrowPath(headLen=20, headWidth=None, tipAngle=20, tailLen=20, tailWidth=3, baseAngle=0):
    """
    Construct a path outlining an arrow with the given dimensions.
    The arrow points in the -x direction with tip positioned at 0,0.
    If *headWidth* is supplied, it overrides *tipAngle* (in degrees).
    If *tailLen* is None, no tail will be drawn.
    """
    if headWidth is None:
        headWidth = headLen * math.tan(math.radians(tipAngle * 0.5))
    path = QtGui.QPainterPath()
    path.moveTo(0,0)
    path.lineTo(headLen, -headWidth)
    if tailLen is None:
        innerY = headLen - headWidth * math.tan(math.radians(baseAngle))
        path.lineTo(innerY, 0)
    else:
        tailWidth *= 0.5
        innerY = headLen - (headWidth-tailWidth) * math.tan(math.radians(baseAngle))
        path.lineTo(innerY, -tailWidth)
        path.lineTo(headLen + tailLen, -tailWidth)
        path.lineTo(headLen + tailLen, tailWidth)
        path.lineTo(innerY, tailWidth)
    path.lineTo(headLen, headWidth)
    path.lineTo(0,0)
    return path
    

def eq(a, b):
    """The great missing equivalence function: Guaranteed evaluation to a single bool value.
    
    This function has some important differences from the == operator:
    
    1. Returns True if a IS b, even if a==b still evaluates to False.
    2. While a is b will catch the case with np.nan values, special handling is done for distinct
       float('nan') instances using math.isnan.
    3. Tests for equivalence using ==, but silently ignores some common exceptions that can occur
       (AtrtibuteError, ValueError).
    4. When comparing arrays, returns False if the array shapes are not the same.
    5. When comparing arrays of the same shape, returns True only if all elements are equal (whereas
       the == operator would return a boolean array).
    6. Collections (dict, list, etc.) must have the same type to be considered equal. One
       consequence is that comparing a dict to an OrderedDict will always return False.
    """
    if a is b:
        return True

    # The above catches np.nan, but not float('nan')
    if isinstance(a, float) and isinstance(b, float):
        if math.isnan(a) and math.isnan(b):
            return True

    # Avoid comparing large arrays against scalars; this is expensive and we know it should return False.
    aIsArr = isinstance(a, (np.ndarray, MetaArray))
    bIsArr = isinstance(b, (np.ndarray, MetaArray))
    if (aIsArr or bIsArr) and type(a) != type(b):
        return False

    # If both inputs are arrays, we can speeed up comparison if shapes / dtypes don't match
    # NOTE: arrays of dissimilar type should be considered unequal even if they are numerically
    # equal because they may behave differently when computed on.
    if aIsArr and bIsArr and (a.shape != b.shape or a.dtype != b.dtype):
        return False

    # Recursively handle common containers
    if isinstance(a, dict) and isinstance(b, dict):
        if type(a) != type(b) or len(a) != len(b):
            return False
        if set(a.keys()) != set(b.keys()):
            return False
        for k, v in a.items():
            if not eq(v, b[k]):
                return False
        if isinstance(a, OrderedDict) or sys.version_info >= (3, 7):
            for a_item, b_item in zip(a.items(), b.items()):
                if not eq(a_item, b_item):
                    return False
        return True
    if isinstance(a, (list, tuple)) and isinstance(b, (list, tuple)):
        if type(a) != type(b) or len(a) != len(b):
            return False
        for v1,v2 in zip(a, b):
            if not eq(v1, v2):
                return False
        return True

    # Test for equivalence. 
    # If the test raises a recognized exception, then return Falase
    try:
        try:
            # Sometimes running catch_warnings(module=np) generates AttributeError ???
            catcher =  warnings.catch_warnings(module=np)  # ignore numpy futurewarning (numpy v. 1.10)
            catcher.__enter__()
        except Exception:
            catcher = None
        e = a==b
    except (ValueError, AttributeError): 
        return False
    except:
        print('failed to evaluate equivalence for:')
        print("  a:", str(type(a)), str(a))
        print("  b:", str(type(b)), str(b))
        raise
    finally:
        if catcher is not None:
            catcher.__exit__(None, None, None)
    
    t = type(e)
    if t is bool:
        return e
    elif t is np.bool_:
        return bool(e)
    elif isinstance(e, np.ndarray) or (hasattr(e, 'implements') and e.implements('MetaArray')):
        try:   ## disaster: if a is an empty array and b is not, then e.all() is True
            if a.shape != b.shape:
                return False
        except:
            return False
        if (hasattr(e, 'implements') and e.implements('MetaArray')):
            return e.asarray().all()
        else:
            return e.all()
    else:
        raise TypeError("== operator returned type %s" % str(type(e)))


def affineSliceCoords(shape, origin, vectors, axes):
    """Return the array of coordinates used to sample data arrays in affineSlice().
    """
    # sanity check
    if len(shape) != len(vectors):
        raise Exception("shape and vectors must have same length.")
    if len(origin) != len(axes):
        raise Exception("origin and axes must have same length.")
    for v in vectors:
        if len(v) != len(axes):
            raise Exception("each vector must be same length as axes.")
        
    shape = list(map(np.ceil, shape))

    ## make sure vectors are arrays
    if not isinstance(vectors, np.ndarray):
        vectors = np.array(vectors)
    if not isinstance(origin, np.ndarray):
        origin = np.array(origin)
    origin.shape = (len(axes),) + (1,)*len(shape)

    ## Build array of sample locations. 
    grid = np.mgrid[tuple([slice(0,x) for x in shape])]  ## mesh grid of indexes
    x = (grid[np.newaxis,...] * vectors.transpose()[(Ellipsis,) + (np.newaxis,)*len(shape)]).sum(axis=1)  ## magic
    x += origin

    return x

    
def affineSlice(data, shape, origin, vectors, axes, order=1, returnCoords=False, **kargs):
    """
    Take a slice of any orientation through an array. This is useful for extracting sections of multi-dimensional arrays
    such as MRI images for viewing as 1D or 2D data.
    
    The slicing axes are aribtrary; they do not need to be orthogonal to the original data or even to each other. It is
    possible to use this function to extract arbitrary linear, rectangular, or parallelepiped shapes from within larger
    datasets. The original data is interpolated onto a new array of coordinates using either interpolateArray if order<2
    or scipy.ndimage.map_coordinates otherwise.
    
    For a graphical interface to this function, see :func:`ROI.getArrayRegion <pyqtgraph.ROI.getArrayRegion>`
    
    ==============  ====================================================================================================
    **Arguments:**
    *data*          (ndarray) the original dataset
    *shape*         the shape of the slice to take (Note the return value may have more dimensions than len(shape))
    *origin*        the location in the original dataset that will become the origin of the sliced data.
    *vectors*       list of unit vectors which point in the direction of the slice axes. Each vector must have the same 
                    length as *axes*. If the vectors are not unit length, the result will be scaled relative to the 
                    original data. If the vectors are not orthogonal, the result will be sheared relative to the 
                    original data.
    *axes*          The axes in the original dataset which correspond to the slice *vectors*
    *order*         The order of spline interpolation. Default is 1 (linear). See scipy.ndimage.map_coordinates
                    for more information.
    *returnCoords*  If True, return a tuple (result, coords) where coords is the array of coordinates used to select
                    values from the original dataset.
    *All extra keyword arguments are passed to scipy.ndimage.map_coordinates.*
    --------------------------------------------------------------------------------------------------------------------
    ==============  ====================================================================================================
    
    Note the following must be true: 
        
        | len(shape) == len(vectors) 
        | len(origin) == len(axes) == len(vectors[i])
        
    Example: start with a 4D fMRI data set, take a diagonal-planar slice out of the last 3 axes
        
        * data = array with dims (time, x, y, z) = (100, 40, 40, 40)
        * The plane to pull out is perpendicular to the vector (x,y,z) = (1,1,1) 
        * The origin of the slice will be at (x,y,z) = (40, 0, 0)
        * We will slice a 20x20 plane from each timepoint, giving a final shape (100, 20, 20)
        
    The call for this example would look like::
        
        affineSlice(data, shape=(20,20), origin=(40,0,0), vectors=((-1, 1, 0), (-1, 0, 1)), axes=(1,2,3))
    
    """
    x = affineSliceCoords(shape, origin, vectors, axes)

    ## transpose data so slice axes come first
    trAx = list(range(data.ndim))
    for ax in axes:
        trAx.remove(ax)
    tr1 = tuple(axes) + tuple(trAx)
    data = data.transpose(tr1)
    #print "tr1:", tr1
    ## dims are now [(slice axes), (other axes)]

    if order > 1:
        try:
            import scipy.ndimage
        except ImportError:
            raise ImportError("Interpolating with order > 1 requires the scipy.ndimage module, but it could not be imported.")

        # iterate manually over unused axes since map_coordinates won't do it for us
        extraShape = data.shape[len(axes):]
        output = np.empty(tuple(shape) + extraShape, dtype=data.dtype)
        for inds in np.ndindex(*extraShape):
            ind = (Ellipsis,) + inds
            output[ind] = scipy.ndimage.map_coordinates(data[ind], x, order=order, **kargs)
    else:
        # map_coordinates expects the indexes as the first axis, whereas
        # interpolateArray expects indexes at the last axis. 
        tr = tuple(range(1, x.ndim)) + (0,)
        output = interpolateArray(data, x.transpose(tr), order=order)
    
    tr = list(range(output.ndim))
    trb = []
    for i in range(min(axes)):
        ind = tr1.index(i) + (len(shape)-len(axes))
        tr.remove(ind)
        trb.append(ind)
    tr2 = tuple(trb+tr)

    ## Untranspose array before returning
    output = output.transpose(tr2)
    if returnCoords:
        return (output, x)
    else:
        return output


def interweaveArrays(*args):
    """
    Parameters
    ----------

    args : numpy.ndarray
           series of 1D numpy arrays of the same length and dtype
    
    Returns
    -------
    numpy.ndarray
        A numpy array with all the input numpy arrays interwoven

    Examples
    --------

    >>> result = interweaveArrays(numpy.ndarray([0, 2, 4]), numpy.ndarray([1, 3, 5]))
    >>> result
    array([0, 1, 2, 3, 4, 5])
    """

    size = sum(x.size for x in args)
    result = np.empty((size,), dtype=args[0].dtype)
    n = len(args)
    for index, array in enumerate(args):
        result[index::n] = array
    return result


def interpolateArray(data, x, default=0.0, order=1):
    """
    N-dimensional interpolation similar to scipy.ndimage.map_coordinates.
    
    This function returns linearly-interpolated values sampled from a regular
    grid of data. It differs from `ndimage.map_coordinates` by allowing broadcasting
    within the input array.
    
    ==============  ===========================================================================================
    **Arguments:**
    *data*          Array of any shape containing the values to be interpolated.
    *x*             Array with (shape[-1] <= data.ndim) containing the locations within *data* to interpolate.
                    (note: the axes for this argument are transposed relative to the same argument for
                    `ndimage.map_coordinates`).
    *default*       Value to return for locations in *x* that are outside the bounds of *data*.
    *order*         Order of interpolation: 0=nearest, 1=linear.
    ==============  ===========================================================================================
    
    Returns array of shape (x.shape[:-1] + data.shape[x.shape[-1]:])
    
    For example, assume we have the following 2D image data::
    
        >>> data = np.array([[1,   2,   4  ],
                             [10,  20,  40 ],
                             [100, 200, 400]])
        
    To compute a single interpolated point from this data::
        
        >>> x = np.array([(0.5, 0.5)])
        >>> interpolateArray(data, x)
        array([ 8.25])
        
    To compute a 1D list of interpolated locations:: 
        
        >>> x = np.array([(0.5, 0.5),
                          (1.0, 1.0),
                          (1.0, 2.0),
                          (1.5, 0.0)])
        >>> interpolateArray(data, x)
        array([  8.25,  20.  ,  40.  ,  55.  ])
        
    To compute a 2D array of interpolated locations::
    
        >>> x = np.array([[(0.5, 0.5), (1.0, 2.0)],
                          [(1.0, 1.0), (1.5, 0.0)]])
        >>> interpolateArray(data, x)
        array([[  8.25,  40.  ],
               [ 20.  ,  55.  ]])
               
    ..and so on. The *x* argument may have any shape as long as 
    ```x.shape[-1] <= data.ndim```. In the case that 
    ```x.shape[-1] < data.ndim```, then the remaining axes are simply 
    broadcasted as usual. For example, we can interpolate one location
    from an entire row of the data::
    
        >>> x = np.array([[0.5]])
        >>> interpolateArray(data, x)
        array([[  5.5,  11. ,  22. ]])

    This is useful for interpolating from arrays of colors, vertexes, etc.
    """
    if order not in (0, 1):
        raise ValueError("interpolateArray requires order=0 or 1 (got %s)" % order)

    prof = debug.Profiler()

    nd = data.ndim
    md = x.shape[-1]
    if md > nd:
        raise TypeError("x.shape[-1] must be less than or equal to data.ndim")

    totalMask = np.ones(x.shape[:-1], dtype=bool) # keep track of out-of-bound indexes
    if order == 0:
        xinds = np.round(x).astype(int)  # NOTE: for 0.5 this rounds to the nearest *even* number
        for ax in range(md):
            mask = (xinds[...,ax] >= 0) & (xinds[...,ax] <= data.shape[ax]-1) 
            xinds[...,ax][~mask] = 0
            # keep track of points that need to be set to default
            totalMask &= mask
        result = data[tuple([xinds[...,i] for i in range(xinds.shape[-1])])]
        
    elif order == 1:
        # First we generate arrays of indexes that are needed to 
        # extract the data surrounding each point
        fields = np.mgrid[(slice(0,order+1),) * md]
        xmin = np.floor(x).astype(int)
        xmax = xmin + 1
        indexes = np.concatenate([xmin[np.newaxis, ...], xmax[np.newaxis, ...]])
        fieldInds = []
        for ax in range(md):
            mask = (xmin[...,ax] >= 0) & (x[...,ax] <= data.shape[ax]-1) 
            # keep track of points that need to be set to default
            totalMask &= mask
            
            # ..and keep track of indexes that are out of bounds 
            # (note that when x[...,ax] == data.shape[ax], then xmax[...,ax] will be out
            #  of bounds, but the interpolation will work anyway)
            mask &= (xmax[...,ax] < data.shape[ax])
            axisIndex = indexes[...,ax][fields[ax]]
            axisIndex[axisIndex < 0] = 0
            axisIndex[axisIndex >= data.shape[ax]] = 0
            fieldInds.append(axisIndex)
        prof()

        # Get data values surrounding each requested point
        fieldData = data[tuple(fieldInds)]
        prof()
    
        ## Interpolate
        s = np.empty((md,) + fieldData.shape, dtype=float)
        dx = x - xmin
        # reshape fields for arithmetic against dx
        for ax in range(md):
            f1 = fields[ax].reshape(fields[ax].shape + (1,)*(dx.ndim-1))
            sax = f1 * dx[...,ax] + (1-f1) * (1-dx[...,ax])
            sax = sax.reshape(sax.shape + (1,) * (s.ndim-1-sax.ndim))
            s[ax] = sax
        s = np.prod(s, axis=0)
        result = fieldData * s
        for i in range(md):
            result = result.sum(axis=0)

    prof()

    if totalMask.ndim > 0:
        result[~totalMask] = default
    else:
        if totalMask is False:
            result[:] = default

    prof()
    return result


def subArray(data, offset, shape, stride):
    """
    Unpack a sub-array from *data* using the specified offset, shape, and stride.
    
    Note that *stride* is specified in array elements, not bytes.
    For example, we have a 2x3 array packed in a 1D array as follows::
    
        data = [_, _, 00, 01, 02, _, 10, 11, 12, _]
        
    Then we can unpack the sub-array with this call::
    
        subArray(data, offset=2, shape=(2, 3), stride=(4, 1))
        
    ..which returns::
    
        [[00, 01, 02],
         [10, 11, 12]]
         
    This function operates only on the first axis of *data*. So changing 
    the input in the example above to have shape (10, 7) would cause the
    output to have shape (2, 3, 7).
    """
    data = np.ascontiguousarray(data)[offset:]
    shape = tuple(shape)
    extraShape = data.shape[1:]

    strides = list(data.strides[::-1])
    itemsize = strides[-1]
    for s in stride[1::-1]:
        strides.append(itemsize * s)
    strides = tuple(strides[::-1])
    
    return np.ndarray(buffer=data, shape=shape+extraShape, strides=strides, dtype=data.dtype)


def transformToArray(tr):
    """
    Given a QTransform, return a 3x3 numpy array.
    Given a QMatrix4x4, return a 4x4 numpy array.
    
    Example: map an array of x,y coordinates through a transform::
    
        ## coordinates to map are (1,5), (2,6), (3,7), and (4,8)
        coords = np.array([[1,2,3,4], [5,6,7,8], [1,1,1,1]])  # the extra '1' coordinate is needed for translation to work
        
        ## Make an example transform
        tr = QtGui.QTransform()
        tr.translate(3,4)
        tr.scale(2, 0.1)
        
        ## convert to array
        m = pg.transformToArray()[:2]  # ignore the perspective portion of the transformation
        
        ## map coordinates through transform
        mapped = np.dot(m, coords)
    """
    #return np.array([[tr.m11(), tr.m12(), tr.m13()],[tr.m21(), tr.m22(), tr.m23()],[tr.m31(), tr.m32(), tr.m33()]])
    ## The order of elements given by the method names m11..m33 is misleading--
    ## It is most common for x,y translation to occupy the positions 1,3 and 2,3 in
    ## a transformation matrix. However, with QTransform these values appear at m31 and m32.
    ## So the correct interpretation is transposed:
    if isinstance(tr, QtGui.QTransform):
        return np.array([[tr.m11(), tr.m21(), tr.m31()], [tr.m12(), tr.m22(), tr.m32()], [tr.m13(), tr.m23(), tr.m33()]])
    elif isinstance(tr, QtGui.QMatrix4x4):
        return np.array(tr.copyDataTo()).reshape(4,4)
    else:
        raise Exception("Transform argument must be either QTransform or QMatrix4x4.")

def transformCoordinates(tr, coords, transpose=False):
    """
    Map a set of 2D or 3D coordinates through a QTransform or QMatrix4x4.
    The shape of coords must be (2,...) or (3,...)
    The mapping will _ignore_ any perspective transformations.
    
    For coordinate arrays with ndim=2, this is basically equivalent to matrix multiplication.
    Most arrays, however, prefer to put the coordinate axis at the end (eg. shape=(...,3)). To 
    allow this, use transpose=True.
    
    """
    
    if transpose:
        ## move last axis to beginning. This transposition will be reversed before returning the mapped coordinates.
        coords = coords.transpose((coords.ndim-1,) + tuple(range(0,coords.ndim-1)))
    
    nd = coords.shape[0]
    if isinstance(tr, np.ndarray):
        m = tr
    else:
        m = transformToArray(tr)
        m = m[:m.shape[0]-1]  # remove perspective
    
    ## If coords are 3D and tr is 2D, assume no change for Z axis
    if m.shape == (2,3) and nd == 3:
        m2 = np.zeros((3,4))
        m2[:2, :2] = m[:2,:2]
        m2[:2, 3] = m[:2,2]
        m2[2,2] = 1
        m = m2
    
    ## if coords are 2D and tr is 3D, ignore Z axis
    if m.shape == (3,4) and nd == 2:
        m2 = np.empty((2,3))
        m2[:,:2] = m[:2,:2]
        m2[:,2] = m[:2,3]
        m = m2
    
    ## reshape tr and coords to prepare for multiplication
    m = m.reshape(m.shape + (1,)*(coords.ndim-1))
    coords = coords[np.newaxis, ...]
    
    # separate scale/rotate and translation    
    translate = m[:,-1]  
    m = m[:, :-1]
    
    ## map coordinates and return
    # nan or inf points will not plot, but should not generate warnings
    with warnings.catch_warnings():
        warnings.simplefilter("ignore", RuntimeWarning)
        mapped = (m*coords).sum(axis=1)  ## apply scale/rotate
    mapped += translate
    
    if transpose:
        ## move first axis to end.
        mapped = mapped.transpose(tuple(range(1,mapped.ndim)) + (0,))
    return mapped
    
    

    
def solve3DTransform(points1, points2):
    """
    Find a 3D transformation matrix that maps points1 onto points2.
    Points must be specified as either lists of 4 Vectors or 
    (4, 3) arrays.
    """
    import numpy.linalg
    pts = []
    for inp in (points1, points2):
        if isinstance(inp, np.ndarray):
            A = np.empty((4,4), dtype=float)
            A[:,:3] = inp[:,:3]
            A[:,3] = 1.0
        else:
            A = np.array([[inp[i].x(), inp[i].y(), inp[i].z(), 1] for i in range(4)])
        pts.append(A)
    
    ## solve 3 sets of linear equations to determine transformation matrix elements
    matrix = np.zeros((4,4))
    for i in range(3):
        ## solve Ax = B; x is one row of the desired transformation matrix
        matrix[i] = numpy.linalg.solve(pts[0], pts[1][:,i])  
    
    return matrix
    
def solveBilinearTransform(points1, points2):
    """
    Find a bilinear transformation matrix (2x4) that maps points1 onto points2.
    Points must be specified as a list of 4 Vector, Point, QPointF, etc.
    
    To use this matrix to map a point [x,y]::
    
        mapped = np.dot(matrix, [x*y, x, y, 1])
    """
    import numpy.linalg

    ## A is 4 rows (points) x 4 columns (xy, x, y, 1)
    ## B is 4 rows (points) x 2 columns (x, y)
    A = np.array([[points1[i].x()*points1[i].y(), points1[i].x(), points1[i].y(), 1] for i in range(4)])
    B = np.array([[points2[i].x(), points2[i].y()] for i in range(4)])
    
    ## solve 2 sets of linear equations to determine transformation matrix elements
    matrix = np.zeros((2,4))
    for i in range(2):
        matrix[i] = numpy.linalg.solve(A, B[:,i])  ## solve Ax = B; x is one row of the desired transformation matrix
    
    return matrix

def clip_scalar(val, vmin, vmax):
    """ convenience function to avoid using np.clip for scalar values """
    return vmin if val < vmin else vmax if val > vmax else val


def clip_array(arr, vmin, vmax, out=None):
    # replacement for np.clip due to regression in
    # performance since numpy 1.17
    # https://github.com/numpy/numpy/issues/14281

    if vmin is None and vmax is None:
        # let np.clip handle the error
        return np.clip(arr, vmin, vmax, out=out)

    if vmin is None:
        return np.core.umath.minimum(arr, vmax, out=out)
    elif vmax is None:
        return np.core.umath.maximum(arr, vmin, out=out)
    else:
        return np.core.umath.clip(arr, vmin, vmax, out=out)

if tuple(map(int, np.__version__.split(".")[:2])) >= (1, 25):
    # The linked issue above has been closed as of 2023/04/25
    # and states that the issue has been fixed.
    # And furthermore, because NumPy 2.0 has made np.core private,
    # we will just use the native np.clip
    clip_array = np.clip


def _rescaleData_nditer(data_in, scale, offset, work_dtype, out_dtype, clip):
    """Refer to documentation for rescaleData()"""
    data_out = np.empty_like(data_in, dtype=out_dtype)

    it = np.nditer([data_in, data_out],
            flags=['external_loop', 'buffered'],
            op_flags=[['readonly'], ['writeonly', 'no_broadcast']],
            op_dtypes=[None, work_dtype],
            casting='unsafe',
            buffersize=32768)

    with it:
        for x, y in it:
            y[...] = x
            y -= offset
            y *= scale

            # Clip before converting dtype to avoid overflow
            if clip is not None:
                clip_array(y, clip[0], clip[1], out=y)

    return data_out


def rescaleData(data, scale, offset, dtype=None, clip=None):
    """Return data rescaled and optionally cast to a new dtype.

    The scaling operation is::

        data => (data-offset) * scale
    """
    if dtype is None:
        out_dtype = data.dtype
    else:
        out_dtype = np.dtype(dtype)

    if out_dtype.kind in 'ui':
        lim = np.iinfo(out_dtype)
        if clip is None:
            # don't let rescale cause integer overflow
            clip = lim.min, lim.max
        clip = max(clip[0], lim.min), min(clip[1], lim.max)

        # make clip limits integer-valued (no need to cast to int)
        # this improves performance, especially on Windows
        clip = [math.trunc(x) for x in clip]

    if np.can_cast(data, np.float32):
        work_dtype = np.float32
    else:
        work_dtype = np.float64

    # from: https://numpy.org/devdocs/numpy_2_0_migration_guide.html#changes-to-numpy-data-type-promotion
    #   np.array([3], dtype=np.float32) + np.float64(3) will now return a float64 array.
    #   (The higher precision of the scalar is not ignored.)
    # this affects us even though we are performing in-place operations.
    # a solution mentioned in the link above is to convert to a Python scalar.
    offset = float(offset)
    scale = float(scale)

    cp = getCupy()
    if cp and cp.get_array_module(data) == cp:
        # Cupy does not support nditer
        # https://github.com/cupy/cupy/issues/5021

        data_out = data.astype(work_dtype, copy=True)
        data_out -= offset
        data_out *= scale

        # Clip before converting dtype to avoid overflow
        if clip is not None:
            clip_array(data_out, clip[0], clip[1], out=data_out)

        # don't copy if no change in dtype
        return data_out.astype(out_dtype, copy=False)

    numba_fn = getNumbaFunctions()
    if numba_fn and clip is not None:
        # if we got here by makeARGB(), clip will not be None at this point
        return numba_fn.rescaleData(data, scale, offset, out_dtype, clip)

    return _rescaleData_nditer(data, scale, offset, work_dtype, out_dtype, clip)


def applyLookupTable(data, lut):
    """
    Uses values in *data* as indexes to select values from *lut*.
    The returned data has shape data.shape + lut.shape[1:]
    
    Note: color gradient lookup tables can be generated using GradientWidget.

    Parameters
    ----------
    data : np.ndarray
    lut : np.ndarray
        Either cupy or numpy arrays are accepted, though this function has only
        consistently behaved correctly on windows with cuda toolkit version >= 11.1.
    """
    if data.dtype.kind not in ('i', 'u'):
        data = data.astype(int)

    cp = getCupy()
    if cp and cp.get_array_module(data) == cp:
        # cupy.take only supports "wrap" mode
        return cp.take(lut, cp.clip(data, 0, lut.shape[0] - 1), axis=0)
    else:
        return np.take(lut, data, axis=0, mode='clip')
    

def makeRGBA(*args, **kwds):
    """Equivalent to makeARGB(..., useRGBA=True)"""
    kwds['useRGBA'] = True
    return makeARGB(*args, **kwds)


def makeARGB(data, lut=None, levels=None, scale=None, useRGBA=False, maskNans=True, output=None):
    """
    Convert an array of values into an ARGB array suitable for building QImages,
    OpenGL textures, etc.
    
    Returns the ARGB array (unsigned byte) and a boolean indicating whether
    there is alpha channel data. This is a two stage process:
    
        1) Rescale the data based on the values in the *levels* argument (min, max).
        2) Determine the final output by passing the rescaled values through a
           lookup table.
   
    Both stages are optional.
    
    ============== ==================================================================================
    **Arguments:**
    data           numpy array of int/float types. If 
    levels         List [min, max]; optionally rescale data before converting through the
                   lookup table. The data is rescaled such that min->0 and max->*scale*::
                   
                      rescaled = (clip(data, min, max) - min) * (*scale* / (max - min))
                   
                   It is also possible to use a 2D (N,2) array of values for levels. In this case,
                   it is assumed that each pair of min,max values in the levels array should be 
                   applied to a different subset of the input data (for example, the input data may 
                   already have RGB values and the levels are used to independently scale each 
                   channel). The use of this feature requires that levels.shape[0] == data.shape[-1].
    scale          The maximum value to which data will be rescaled before being passed through the 
                   lookup table (or returned if there is no lookup table). By default this will
                   be set to the length of the lookup table, or 255 if no lookup table is provided.
    lut            Optional lookup table (array with dtype=ubyte).
                   Values in data will be converted to color by indexing directly from lut.
                   The output data shape will be input.shape + lut.shape[1:].
                   Lookup tables can be built using ColorMap or GradientWidget.
    useRGBA        If True, the data is returned in RGBA order (useful for building OpenGL textures). 
                   The default is False, which returns in ARGB order for use with QImage 
                   (Note that 'ARGB' is a term used by the Qt documentation; the *actual* order 
                   is BGRA).
    maskNans       Enable or disable masking NaNs as transparent. Converting NaN values to ints is
                   undefined behavior per the C-standard, results may vary across platforms. Highly
                   recommend leaving this option to the default value of True.
    ============== ==================================================================================
    """
    cp = getCupy()
    xp = cp.get_array_module(data) if cp else np
    profile = debug.Profiler()
    if data.ndim not in (2, 3):
        raise TypeError("data must be 2D or 3D")
    if data.ndim == 3 and data.shape[2] > 4:
        raise TypeError("data.shape[2] must be <= 4")
    
    if lut is not None and not isinstance(lut, xp.ndarray):
        lut = xp.array(lut)

    if levels is None:
        # automatically decide levels based on data dtype
        if data.dtype.kind == 'u':
            levels = xp.array([0, 2**(data.itemsize*8)-1])
        elif data.dtype.kind == 'i':
            s = 2**(data.itemsize*8 - 1)
            levels = xp.array([-s, s-1])
        elif data.dtype.kind == 'b':
            levels = xp.array([0,1])
        else:
            raise Exception('levels argument is required for float input types')
    if not isinstance(levels, xp.ndarray):
        levels = xp.array(levels)
    levels = levels.astype(xp.float64)
    if levels.ndim == 1:
        if levels.shape[0] != 2:
            raise Exception('levels argument must have length 2')
    elif levels.ndim == 2:
        if lut is not None and lut.ndim > 1:
            raise Exception('Cannot make ARGB data when both levels and lut have ndim > 2')
        if levels.shape != (data.shape[-1], 2):
            raise Exception('levels must have shape (data.shape[-1], 2)')
    else:
        raise Exception("levels argument must be 1D or 2D (got shape=%s)." % repr(levels.shape))

    profile('check inputs')

    # Decide on maximum scaled value
    if scale is None:
        if lut is not None:
            scale = lut.shape[0]
        else:
            scale = 255.

    # Decide on the dtype we want after scaling
    if lut is None:
        dtype = xp.ubyte
    else:
        dtype = xp.min_scalar_type(lut.shape[0]-1)

    # awkward, but fastest numpy native nan evaluation
    nanMask = None
    if maskNans and data.dtype.kind == 'f' and xp.isnan(data.min()):
        nanMask = xp.isnan(data)
        if data.ndim > 2:
            nanMask = xp.any(nanMask, axis=-1)

    # Apply levels if given
    if levels is not None:
        if isinstance(levels, xp.ndarray) and levels.ndim == 2:
            # we are going to rescale each channel independently
            if levels.shape[0] != data.shape[-1]:
                raise Exception("When rescaling multi-channel data, there must be the same number of levels as channels (data.shape[-1] == levels.shape[0])")
            newData = xp.empty(data.shape, dtype=int)
            for i in range(data.shape[-1]):
                minVal, maxVal = levels[i]
                if minVal == maxVal:
                    maxVal = xp.nextafter(maxVal, 2*maxVal)
                rng = maxVal-minVal
                rng = 1 if rng == 0 else rng
                newData[...,i] = rescaleData(data[...,i], scale / rng, minVal, dtype=dtype)
            data = newData
        else:
            # Apply level scaling unless it would have no effect on the data
            minVal, maxVal = levels
            if minVal != 0 or maxVal != scale:
                if minVal == maxVal:
                    maxVal = xp.nextafter(maxVal, 2*maxVal)
                rng = maxVal-minVal
                rng = 1 if rng == 0 else rng
                data = rescaleData(data, scale/rng, minVal, dtype=dtype)

    profile('apply levels')

    # apply LUT if given
    if lut is not None:
        data = applyLookupTable(data, lut)
    else:
        if data.dtype != xp.ubyte:
            data = xp.clip(data, 0, 255).astype(xp.ubyte)

    profile('apply lut')

    # this will be the final image array
    if output is None:
        imgData = xp.empty(data.shape[:2]+(4,), dtype=xp.ubyte)
    else:
        imgData = output

    profile('allocate')

    # decide channel order
    if useRGBA:
        dst_order = [0, 1, 2, 3]    # R,G,B,A
    elif sys.byteorder == 'little':
        dst_order = [2, 1, 0, 3]    # B,G,R,A (ARGB32 little endian)
    else:
        dst_order = [1, 2, 3, 0]    # A,R,G,B (ARGB32 big endian)

    if data.ndim == 2:
        # This is tempting:
        #   imgData[..., :3] = data[..., xp.newaxis]
        # ..but it turns out this is faster:
        for i in range(3):
            imgData[..., dst_order[i]] = data
    elif data.shape[2] == 1:
        for i in range(3):
            imgData[..., dst_order[i]] = data[..., 0]
    else:
        for i in range(0, data.shape[2]):
            imgData[..., dst_order[i]] = data[..., i]

    profile('reorder channels')

    # add opaque alpha channel if needed
    if data.ndim == 3 and data.shape[2] == 4:
        alpha = True
    else:
        alpha = False
        imgData[..., dst_order[3]] = 255

    # apply nan mask through alpha channel
    if nanMask is not None:
        alpha = True
        # Workaround for https://github.com/cupy/cupy/issues/4693, fixed in cupy 10.0.0
        if xp == cp and tuple(map(int, cp.__version__.split("."))) < (10, 0):
            imgData[nanMask, :, dst_order[3]] = 0
        else:
            imgData[nanMask, dst_order[3]] = 0

    profile('alpha channel')
    return imgData, alpha


def ndarray_to_qimage(arr, fmt):
    """
    Low level function to encapsulate QImage creation differences between bindings.
    "arr" is assumed to be C-contiguous. 
    """

    # C++ QImage has two kind of constructors
    # - QImage(const uchar*, ...)
    # - QImage(uchar*, ...)
    # If the const constructor is used, subsequently calling any non-const method
    # will trigger the COW mechanism, i.e. a copy is made under the hood.

    if QT_LIB.startswith('PyQt'):
        # PyQt5          -> non-const
        # PyQt6 >= 6.0.1 -> non-const
        img_ptr = int(Qt.sip.voidptr(arr))  # or arr.ctypes.data
    else:
        # bindings that support ndarray
        # PyQt5          -> const
        # PyQt6 >= 6.0.1 -> const
        # PySide2        -> non-const
        # PySide6        -> non-const
        img_ptr = arr

    h, w = arr.shape[:2]
    bytesPerLine = arr.strides[0]
    qimg = QtGui.QImage(img_ptr, w, h, bytesPerLine, fmt)
    qimg.data = arr
    return qimg


def makeQImage(imgData, alpha=None, copy=True, transpose=True):
    """
    Turn an ARGB array into QImage.
    By default, the data is copied; changes to the array will not
    be reflected in the image. The image will be given a 'data' attribute
    pointing to the array which shares its data to prevent python
    freeing that memory while the image is in use.
    
    ============== ===================================================================
    **Arguments:**
    imgData        Array of data to convert. Must have shape (height, width),
                   (height, width, 3), or (height, width, 4). If transpose is
                   True, then the first two axes are swapped. The array dtype
                   must be ubyte. For 2D arrays, the value is interpreted as 
                   greyscale. For 3D arrays, the order of values in the 3rd
                   axis must be (b, g, r, a). 
    alpha          If the input array is 3D and *alpha* is True, the QImage 
                   returned will have format ARGB32. If False,
                   the format will be RGB32. By default, _alpha_ is True if
                   array.shape[2] == 4.
    copy           If True, the data is copied before converting to QImage.
                   If False, the new QImage points directly to the data in the array.
                   Note that the array must be contiguous for this to work
                   (see numpy.ascontiguousarray).
    transpose      If True (the default), the array x/y axes are transposed before 
                   creating the image. Note that Qt expects the axes to be in 
                   (height, width) order whereas pyqtgraph usually prefers the 
                   opposite.
    ============== ===================================================================    
    """
    ## create QImage from buffer
    profile = debug.Profiler()
    
    copied = False
    if imgData.ndim == 2:
        imgFormat = QtGui.QImage.Format.Format_Grayscale8
    elif imgData.ndim == 3:
        # If we didn't explicitly specify alpha, check the array shape.
        if alpha is None:
            alpha = (imgData.shape[2] == 4)
            
        if imgData.shape[2] == 3:  # need to make alpha channel (even if alpha==False; QImage requires 32 bpp)
            if copy is True:
                d2 = np.empty(imgData.shape[:2] + (4,), dtype=imgData.dtype)
                d2[:,:,:3] = imgData
                d2[:,:,3] = 255
                imgData = d2
                copied = True
            else:
                raise Exception('Array has only 3 channels; cannot make QImage without copying.')
        
        profile("add alpha channel")
        
        if alpha:
            imgFormat = QtGui.QImage.Format.Format_ARGB32
        else:
            imgFormat = QtGui.QImage.Format.Format_RGB32
    else:
        raise TypeError("Image array must have ndim = 2 or 3.")
        
    if transpose:
        imgData = imgData.transpose((1, 0, 2))  # QImage expects row-major order

    if not imgData.flags['C_CONTIGUOUS']:
        if copy is False:
            extra = ' (try setting transpose=False)' if transpose else ''
            raise Exception('Array is not contiguous; cannot make QImage without copying.'+extra)
        imgData = np.ascontiguousarray(imgData)
        copied = True
        
    profile("ascontiguousarray")
    
    if copy is True and copied is False:
        imgData = imgData.copy()
        
    profile("copy")

    return ndarray_to_qimage(imgData, imgFormat)


def ndarray_from_qimage(qimg):
    img_ptr = qimg.bits()

    if img_ptr is None:
        raise ValueError("Null QImage not supported")

    h, w = qimg.height(), qimg.width()
    bpl = qimg.bytesPerLine()
    depth = qimg.depth()
    logical_bpl = w * depth // 8

    if QT_LIB.startswith('PyQt'):
        # sizeInBytes() was introduced in Qt 5.10
        # however PyQt5 5.12 will fail with:
        #   "TypeError: QImage.sizeInBytes() is a private method"
        # note that sizeInBytes() works fine with:
        #   PyQt5 5.15, PySide2 5.12, PySide2 5.15
        img_ptr.setsize(h * bpl)

    memory = np.frombuffer(img_ptr, dtype=np.ubyte).reshape((h, bpl))
    memory = memory[:, :logical_bpl]

    if depth in (8, 24, 32):
        dtype = np.uint8
        nchan = depth // 8
    elif depth in (16, 64):
        dtype = np.uint16
        nchan = depth // 16
    else:
        raise ValueError("Unsupported Image Type")

    shape = h, w
    if nchan != 1:
        shape = shape + (nchan,)
    arr = memory.view(dtype).reshape(shape)
    return arr


def imageToArray(img, copy=False, transpose=True):
    """
    Convert a QImage into numpy array. The image must have format RGB32, ARGB32, or ARGB32_Premultiplied.
    By default, the image is not copied; changes made to the array will appear in the QImage as well (beware: if
    the QImage is collected before the array, there may be trouble).
    The array will have shape (width, height, (b,g,r,a)).
    """
    arr = ndarray_from_qimage(img)

    fmt = img.format()
    if fmt == img.Format.Format_RGB32:
        arr[...,3] = 255
    
    if copy:
        arr = arr.copy()
        
    if transpose:
        return arr.transpose((1,0,2))
    else:
        return arr
    
def colorToAlpha(data, color):
    """
    Given an RGBA image in *data*, convert *color* to be transparent. 
    *data* must be an array (w, h, 3 or 4) of ubyte values and *color* must be 
    an array (3) of ubyte values.
    This is particularly useful for use with images that have a black or white background.
    
    Algorithm is taken from Gimp's color-to-alpha function in plug-ins/common/colortoalpha.c
    Credit:
        /*
        * Color To Alpha plug-in v1.0 by Seth Burgess, sjburges@gimp.org 1999/05/14
        *  with algorithm by clahey
        */
    
    """
    data = data.astype(float)
    if data.shape[-1] == 3:  ## add alpha channel if needed
        d2 = np.empty(data.shape[:2]+(4,), dtype=data.dtype)
        d2[...,:3] = data
        d2[...,3] = 255
        data = d2
    
    color = color.astype(float)
    alpha = np.zeros(data.shape[:2]+(3,), dtype=float)
    output = data.copy()
    
    for i in [0,1,2]:
        d = data[...,i]
        c = color[i]
        mask = d > c
        alpha[...,i][mask] = (d[mask] - c) / (255. - c)
        imask = d < c
        alpha[...,i][imask] = (c - d[imask]) / c
    
    output[...,3] = alpha.max(axis=2) * 255.
    
    mask = output[...,3] >= 1.0  ## avoid zero division while processing alpha channel
    correction = 255. / output[...,3][mask]  ## increase value to compensate for decreased alpha
    for i in [0,1,2]:
        output[...,i][mask] = ((output[...,i][mask]-color[i]) * correction) + color[i]
        output[...,3][mask] *= data[...,3][mask] / 255.  ## combine computed and previous alpha values
    
    #raise Exception()
    return np.clip(output, 0, 255).astype(np.ubyte)

def gaussianFilter(data, sigma):
    """
    Drop-in replacement for scipy.ndimage.gaussian_filter.
    
    (note: results are only approximately equal to the output of
     gaussian_filter)
    """
    cp = getCupy()
    xp = cp.get_array_module(data) if cp else np
    if xp.isscalar(sigma):
        sigma = (sigma,) * data.ndim
        
    baseline = data.mean()
    filtered = data - baseline
    for ax in range(data.ndim):
        s = sigma[ax]
        if s == 0:
            continue
        
        # generate 1D gaussian kernel
        ksize = int(s * 6)
        x = xp.arange(-ksize, ksize)
        kernel = xp.exp(-x**2 / (2*s**2))
        kshape = [1,] * data.ndim
        kshape[ax] = len(kernel)
        kernel = kernel.reshape(kshape)
        
        # convolve as product of FFTs
        shape = data.shape[ax] + ksize
        scale = 1.0 / (abs(s) * (2*xp.pi)**0.5)
        filtered = scale * xp.fft.irfft(xp.fft.rfft(filtered, shape, axis=ax) *
                                        xp.fft.rfft(kernel, shape, axis=ax),
                                        axis=ax)
        
        # clip off extra data
        sl = [slice(None)] * data.ndim
        sl[ax] = slice(filtered.shape[ax]-data.shape[ax],None,None)
        filtered = filtered[tuple(sl)]
    return filtered + baseline
    
    
def downsample(data, n, axis=0, xvals='subsample'):
    """Downsample by averaging points together across axis.
    If multiple axes are specified, runs once per axis.
    If a metaArray is given, then the axis values can be either subsampled
    or downsampled to match.
    """
    ma = None
    if (hasattr(data, 'implements') and data.implements('MetaArray')):
        ma = data
        data = data.view(np.ndarray)
        
    
    if hasattr(axis, '__len__'):
        if not hasattr(n, '__len__'):
            n = [n]*len(axis)
        for i in range(len(axis)):
            data = downsample(data, n[i], axis[i])
        return data
    
    if n <= 1:
        return data
    nPts = int(data.shape[axis] / n)
    s = list(data.shape)
    s[axis] = nPts
    s.insert(axis+1, n)
    sl = [slice(None)] * data.ndim
    sl[axis] = slice(0, nPts*n)
    d1 = data[tuple(sl)]
    #print d1.shape, s
    d1.shape = tuple(s)
    d2 = d1.mean(axis+1)
    
    if ma is None:
        return d2
    else:
        info = ma.infoCopy()
        if 'values' in info[axis]:
            if xvals == 'subsample':
                info[axis]['values'] = info[axis]['values'][::n][:nPts]
            elif xvals == 'downsample':
                info[axis]['values'] = downsample(info[axis]['values'], n)
        return MetaArray(d2, info=info)


def _compute_backfill_indices(isfinite):
    # the presence of inf/nans result in an empty QPainterPath being generated
    # this behavior started in Qt 5.12.3 and was introduced in this commit
    # https://github.com/qt/qtbase/commit/c04bd30de072793faee5166cff866a4c4e0a9dd7
    # We therefore replace non-finite values

    # credit: Divakar https://stackoverflow.com/a/41191127/643629
    mask = ~isfinite
    idx = np.arange(len(isfinite))
    idx[mask] = -1
    np.maximum.accumulate(idx, out=idx)
    first = np.searchsorted(idx, 0)
    if first < len(isfinite):
        # Replace all non-finite entries from beginning of arr with the first finite one
        idx[:first] = first
        return idx
    else:
        return None


def _arrayToQPath_all(x, y, finiteCheck):
    n = x.shape[0]
    if n == 0:
        return QtGui.QPainterPath()

    finite_idx = None
    if finiteCheck:
        isfinite = np.isfinite(x) & np.isfinite(y)
        if not isfinite.all():
            finite_idx = isfinite.nonzero()[0]
            n = len(finite_idx)

    if n < 2:
        return QtGui.QPainterPath()

    chunksize = 10000
    numchunks = (n + chunksize - 1) // chunksize
    minchunks = 3

    if numchunks < minchunks:
        # too few chunks, batching would be a pessimization
        poly = create_qpolygonf(n)
        arr = ndarray_from_qpolygonf(poly)

        if finite_idx is None:
            arr[:, 0] = x
            arr[:, 1] = y
        else:
            arr[:, 0] = x[finite_idx]
            arr[:, 1] = y[finite_idx]

        path = QtGui.QPainterPath()
        if hasattr(path, 'reserve'):    # Qt 5.13
            path.reserve(n)
        path.addPolygon(poly)
        return path

    # at this point, we have numchunks >= minchunks

    path = QtGui.QPainterPath()
    if hasattr(path, 'reserve'):    # Qt 5.13
        path.reserve(n)
    subpoly = QtGui.QPolygonF()
    subpath = None
    for idx in range(numchunks):
        sl = slice(idx*chunksize, min((idx+1)*chunksize, n))
        currsize = sl.stop - sl.start
        if currsize != subpoly.size():
            if hasattr(subpoly, 'resize'):
                subpoly.resize(currsize)
            else:
                subpoly.fill(QtCore.QPointF(), currsize)
        subarr = ndarray_from_qpolygonf(subpoly)
        if finite_idx is None:
            subarr[:, 0] = x[sl]
            subarr[:, 1] = y[sl]
        else:
            fiv = finite_idx[sl]  # view
            subarr[:, 0] = x[fiv]
            subarr[:, 1] = y[fiv]
        if subpath is None:
            subpath = QtGui.QPainterPath()
        subpath.addPolygon(subpoly)
        path.connectPath(subpath)
        if hasattr(subpath, 'clear'):   # Qt 5.13
            subpath.clear()
        else:
            subpath = None
    return path


def _arrayToQPath_finite(x, y, isfinite=None):
    n = x.shape[0]
    if n == 0:
        return QtGui.QPainterPath()

    if isfinite is None:
        isfinite = np.isfinite(x) & np.isfinite(y)

    path = QtGui.QPainterPath()
    if hasattr(path, 'reserve'):    # Qt 5.13
        path.reserve(n)

    sidx = np.nonzero(~isfinite)[0] + 1
    # note: the chunks are views
    xchunks = np.split(x, sidx)
    ychunks = np.split(y, sidx)
    chunks = list(zip(xchunks, ychunks))

    # create a single polygon able to hold the largest chunk
    maxlen = max(len(chunk) for chunk in xchunks)
    subpoly = create_qpolygonf(maxlen)
    subarr = ndarray_from_qpolygonf(subpoly)

    # resize and fill do not change the capacity
    if hasattr(subpoly, 'resize'):
        subpoly_resize = subpoly.resize
    else:
        # PyQt will be less efficient
        subpoly_resize = lambda n, v=QtCore.QPointF() : subpoly.fill(v, n)

    # notes:
    # - we backfill the non-finite in order to get the same image as the
    #   old codepath on the CI. somehow P1--P2 gets rendered differently
    #   from P1--P2--P2
    # - we do not generate MoveTo(s) that are not followed by a LineTo,
    #   thus the QPainterPath can be different from the old codepath's

    # all chunks except the last chunk have a trailing non-finite
    for xchunk, ychunk in chunks[:-1]:
        lc = len(xchunk)
        if lc <= 1:
            # len 1 means we have a string of non-finite
            continue
        subpoly_resize(lc)
        subarr[:lc, 0] = xchunk
        subarr[:lc, 1] = ychunk
        subarr[lc-1] = subarr[lc-2] # fill non-finite with its neighbour
        path.addPolygon(subpoly)

    # handle last chunk, which is either all-finite or empty
    for xchunk, ychunk in chunks[-1:]:
        lc = len(xchunk)
        if lc <= 1:
            # can't draw a line with just 1 point
            continue
        subpoly_resize(lc)
        subarr[:lc, 0] = xchunk
        subarr[:lc, 1] = ychunk
        path.addPolygon(subpoly)

    return path


def arrayToQPath(x, y, connect='all', finiteCheck=True):
    """
    Convert an array of x,y coordinates to QPainterPath as efficiently as
    possible. The *connect* argument may be 'all', indicating that each point
    should be connected to the next; 'pairs', indicating that each pair of
    points should be connected, or an array of int32 values (0 or 1) indicating
    connections.
    
    Parameters
    ----------
    x : np.ndarray
        x-values to be plotted of shape (N,)
    y : np.ndarray
        y-values to be plotted, must be same length as `x` of shape (N,)
    connect : {'all', 'pairs', 'finite', (N,) ndarray}, optional
        Argument detailing how to connect the points in the path. `all` will 
        have sequential points being connected.  `pairs` generates lines
        between every other point.  `finite` only connects points that are
        finite.  If an ndarray is passed, containing int32 values of 0 or 1,
        only values with 1 will connect to the previous point.  Def
    finiteCheck : bool, default True
        When false, the check for finite values will be skipped, which can
        improve performance. If nonfinite values are present in `x` or `y`,
        an empty QPainterPath will be generated.
    
    Returns
    -------
    QPainterPath
        QPainterPath object to be drawn
    
    Raises
    ------
    ValueError
        Raised when the connect argument has an invalid value placed within.

    Notes
    -----
    A QPainterPath is generated through one of two ways.  When the connect
    parameter is 'all', a QPolygonF object is created, and
    ``QPainterPath.addPolygon()`` is called.  For other connect parameters
    a ``QDataStream`` object is created and the QDataStream >> QPainterPath
    operator is used to pass the data.  The memory format is as follows

    numVerts(i4)
    0(i4)   x(f8)   y(f8)    <-- 0 means this vertex does not connect
    1(i4)   x(f8)   y(f8)    <-- 1 means this vertex connects to the previous vertex
    ...
    cStart(i4)   fillRule(i4)
    
    see: https://github.com/qt/qtbase/blob/dev/src/gui/painting/qpainterpath.cpp

    All values are big endian--pack using struct.pack('>d') or struct.pack('>i')
    This binary format may change in future versions of Qt
    """

    n = x.shape[0]
    if n == 0:
        return QtGui.QPainterPath()

    connect_array = None
    if isinstance(connect, np.ndarray):
        # make connect argument contain only str type
        connect_array, connect = connect, 'array'

    isfinite = None

    if connect == 'finite':
        if not finiteCheck:
            # if user specified to skip finite check, then we skip the heuristic
            return _arrayToQPath_finite(x, y)

        # otherwise use a heuristic
        # if non-finite aren't that many, then use_qpolyponf
        isfinite = np.isfinite(x) & np.isfinite(y)
        nonfinite_cnt = n - np.sum(isfinite)
        all_isfinite = nonfinite_cnt == 0
        if all_isfinite:
            # delegate to connect='all'
            connect = 'all'
            finiteCheck = False
        elif nonfinite_cnt / n < 2 / 100:
            return _arrayToQPath_finite(x, y, isfinite)
        else:
            # delegate to connect=ndarray
            # finiteCheck=True, all_isfinite=False
            connect = 'array'
            connect_array = isfinite

    if connect == 'all':
        return _arrayToQPath_all(x, y, finiteCheck)

    path = QtGui.QPainterPath()
    if hasattr(path, 'reserve'):    # Qt 5.13
        path.reserve(n)

    if hasattr(path, 'reserve') and getConfigOption('enableExperimental'):
        backstore = None
        arr = Qt.internals.get_qpainterpath_element_array(path, n)
    else:
        backstore = QtCore.QByteArray()
        backstore.resize(4 + n*20 + 8)      # contents uninitialized
        backstore.replace(0, 4, struct.pack('>i', n))
        # cStart, fillRule (Qt.FillRule.OddEvenFill)
        backstore.replace(4+n*20, 8, struct.pack('>ii', 0, 0))
        arr = np.frombuffer(backstore, dtype=[('c', '>i4'), ('x', '>f8'), ('y', '>f8')],
            count=n, offset=4)

    backfill_idx = None
    if finiteCheck:
        if isfinite is None:
            isfinite = np.isfinite(x) & np.isfinite(y)
            all_isfinite = np.all(isfinite)
        if not all_isfinite:
            backfill_idx = _compute_backfill_indices(isfinite)

    if backfill_idx is None:
        arr['x'] = x
        arr['y'] = y
    else:
        arr['x'] = x[backfill_idx]
        arr['y'] = y[backfill_idx]

    # decide which points are connected by lines
    if connect == 'pairs':
        arr['c'][0::2] = 0
        arr['c'][1::2] = 1  # connect every 2nd point to every 1st one
    elif connect == 'array':
        # Let's call a point with either x or y being nan is an invalid point.
        # A point will anyway not connect to an invalid point regardless of the
        # 'c' value of the invalid point. Therefore, we should set 'c' to 0 for
        # the next point of an invalid point.
        arr['c'][:1] = 0  # the first vertex has no previous vertex to connect
        arr['c'][1:] = connect_array[:-1]
    else:
        raise ValueError('connect argument must be "all", "pairs", "finite", or array')

    if isinstance(backstore, QtCore.QByteArray):
        ds = QtCore.QDataStream(backstore)
        ds >> path
    return path

def ndarray_from_qpolygonf(polyline):
    # polyline.data() will be None if the pointer was null.
    # voidptr(None) is the same as voidptr(0).
    vp = Qt.compat.voidptr(polyline.data(), len(polyline)*2*8, True)
    return np.frombuffer(vp, dtype=np.float64).reshape((-1, 2))

def create_qpolygonf(size):
    polyline = QtGui.QPolygonF()
    if hasattr(polyline, 'resize'):
        # (PySide) and (PyQt6 >= 6.3.1)
        polyline.resize(size)
    else:
        polyline.fill(QtCore.QPointF(), size)
    return polyline

def arrayToQPolygonF(x, y):
    """
    Utility function to convert two 1D-NumPy arrays representing curve data
    (X-axis, Y-axis data) into a single open polygon (QtGui.PolygonF) object.
    
    Thanks to PythonQwt for making this code available
    
    License/copyright: MIT License © Pierre Raybaut 2020.

    Parameters
    ----------
    x : np.array
        x-axis coordinates for data to be plotted, must have have ndim of 1
    y : np.array
        y-axis coordinates for data to be plotted, must have ndim of 1 and 
        be the same length as x
    
    Returns
    -------
    QPolygonF
        Open QPolygonF object that represents the path looking to be plotted
    
    Raises
    ------
    ValueError
        When xdata or ydata does not meet the required criteria
    """
    if not (
        x.size == y.size == x.shape[0] == y.shape[0]
    ):
        raise ValueError("Arguments must be 1D and the same size")
    size = x.size
    polyline = create_qpolygonf(size)
    memory = ndarray_from_qpolygonf(polyline)
    memory[:, 0] = x
    memory[:, 1] = y
    return polyline

#def isosurface(data, level):
    #"""
    #Generate isosurface from volumetric data using marching tetrahedra algorithm.
    #See Paul Bourke, "Polygonising a Scalar Field Using Tetrahedrons"  (http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/)
    
    #*data*   3D numpy array of scalar values
    #*level*  The level at which to generate an isosurface
    #"""
    
    #facets = []
    
    ### mark everything below the isosurface level
    #mask = data < level
    
    #### make eight sub-fields 
    #fields = np.empty((2,2,2), dtype=object)
    #slices = [slice(0,-1), slice(1,None)]
    #for i in [0,1]:
        #for j in [0,1]:
            #for k in [0,1]:
                #fields[i,j,k] = mask[slices[i], slices[j], slices[k]]
    
    
    
    ### split each cell into 6 tetrahedra
    ### these all have the same 'orienation'; points 1,2,3 circle 
    ### clockwise around point 0
    #tetrahedra = [
        #[(0,1,0), (1,1,1), (0,1,1), (1,0,1)],
        #[(0,1,0), (0,1,1), (0,0,1), (1,0,1)],
        #[(0,1,0), (0,0,1), (0,0,0), (1,0,1)],
        #[(0,1,0), (0,0,0), (1,0,0), (1,0,1)],
        #[(0,1,0), (1,0,0), (1,1,0), (1,0,1)],
        #[(0,1,0), (1,1,0), (1,1,1), (1,0,1)]
    #]
    
    ### each tetrahedron will be assigned an index
    ### which determines how to generate its facets.
    ### this structure is: 
    ###    facets[index][facet1, facet2, ...]
    ### where each facet is triangular and its points are each 
    ### interpolated between two points on the tetrahedron
    ###    facet = [(p1a, p1b), (p2a, p2b), (p3a, p3b)]
    ### facet points always circle clockwise if you are looking 
    ### at them from below the isosurface.
    #indexFacets = [
        #[],  ## all above
        #[[(0,1), (0,2), (0,3)]],  # 0 below
        #[[(1,0), (1,3), (1,2)]],   # 1 below
        #[[(0,2), (1,3), (1,2)], [(0,2), (0,3), (1,3)]],   # 0,1 below
        #[[(2,0), (2,1), (2,3)]],   # 2 below
        #[[(0,3), (1,2), (2,3)], [(0,3), (0,1), (1,2)]],   # 0,2 below
        #[[(1,0), (2,3), (2,0)], [(1,0), (1,3), (2,3)]],   # 1,2 below
        #[[(3,0), (3,1), (3,2)]],   # 3 above
        #[[(3,0), (3,2), (3,1)]],   # 3 below
        #[[(1,0), (2,0), (2,3)], [(1,0), (2,3), (1,3)]],   # 0,3 below
        #[[(0,3), (2,3), (1,2)], [(0,3), (1,2), (0,1)]],   # 1,3 below
        #[[(2,0), (2,3), (2,1)]], # 0,1,3 below
        #[[(0,2), (1,2), (1,3)], [(0,2), (1,3), (0,3)]],   # 2,3 below
        #[[(1,0), (1,2), (1,3)]], # 0,2,3 below
        #[[(0,1), (0,3), (0,2)]], # 1,2,3 below
        #[]  ## all below
    #]
    
    #for tet in tetrahedra:
        
        ### get the 4 fields for this tetrahedron
        #tetFields = [fields[c] for c in tet]
        
        ### generate an index for each grid cell
        #index = tetFields[0] + tetFields[1]*2 + tetFields[2]*4 + tetFields[3]*8
        
        ### add facets
        #for i in range(index.shape[0]):                 # data x-axis
            #for j in range(index.shape[1]):             # data y-axis
                #for k in range(index.shape[2]):         # data z-axis
                    #for f in indexFacets[index[i,j,k]]:  # faces to generate for this tet
                        #pts = []
                        #for l in [0,1,2]:      # points in this face
                            #p1 = tet[f[l][0]]  # tet corner 1
                            #p2 = tet[f[l][1]]  # tet corner 2
                            #pts.append([(p1[x]+p2[x])*0.5+[i,j,k][x]+0.5 for x in [0,1,2]]) ## interpolate between tet corners
                        #facets.append(pts)

    #return facets
    

def isocurve(data, level, connected=False, extendToEdge=False, path=False):
    """
    Generate isocurve from 2D data using marching squares algorithm.
    
    ============== =========================================================
    **Arguments:**
    data           2D numpy array of scalar values
    level          The level at which to generate an isosurface
    connected      If False, return a single long list of point pairs
                   If True, return multiple long lists of connected point 
                   locations. (This is slower but better for drawing 
                   continuous lines)
    extendToEdge   If True, extend the curves to reach the exact edges of 
                   the data. 
    path           if True, return a QPainterPath rather than a list of 
                   vertex coordinates. This forces connected=True.
    ============== =========================================================
    
    This function is SLOW; plenty of room for optimization here.
    """    
    
    if path is True:
        connected = True
    
    if extendToEdge:
        d2 = np.empty((data.shape[0]+2, data.shape[1]+2), dtype=data.dtype)
        d2[1:-1, 1:-1] = data
        d2[0, 1:-1] = data[0]
        d2[-1, 1:-1] = data[-1]
        d2[1:-1, 0] = data[:, 0]
        d2[1:-1, -1] = data[:, -1]
        d2[0,0] = d2[0,1]
        d2[0,-1] = d2[1,-1]
        d2[-1,0] = d2[-1,1]
        d2[-1,-1] = d2[-1,-2]
        data = d2
    
    sideTable = [
        [],
        [0,1],
        [1,2],
        [0,2],
        [0,3],
        [1,3],
        [0,1,2,3],
        [2,3],
        [2,3],
        [0,1,2,3],
        [1,3],
        [0,3],
        [0,2],
        [1,2],
        [0,1],
        []
        ]
    
    edgeKey=[
        [(0,1), (0,0)],
        [(0,0), (1,0)],
        [(1,0), (1,1)],
        [(1,1), (0,1)]
        ]
    
    
    lines = []
    
    ## mark everything below the isosurface level
    mask = data < level
    
    ### make four sub-fields and compute indexes for grid cells
    index = np.zeros([x-1 for x in data.shape], dtype=np.ubyte)
    fields = np.empty((2,2), dtype=object)
    slices = [slice(0,-1), slice(1,None)]
    for i in [0,1]:
        for j in [0,1]:
            fields[i,j] = mask[slices[i], slices[j]]
            #vertIndex = i - 2*j*i + 3*j + 4*k  ## this is just to match Bourk's vertex numbering scheme
            vertIndex = i+2*j
            #print i,j,k," : ", fields[i,j,k], 2**vertIndex
            np.add(index, fields[i,j] * 2**vertIndex, out=index, casting='unsafe')
            #print index
    #print index
    
    ## add lines
    for i in range(index.shape[0]):                 # data x-axis
        for j in range(index.shape[1]):             # data y-axis     
            sides = sideTable[index[i,j]]
            for l in range(0, len(sides), 2):     ## faces for this grid cell
                edges = sides[l:l+2]
                pts = []
                for m in [0,1]:      # points in this face
                    p1 = edgeKey[edges[m]][0] # p1, p2 are points at either side of an edge
                    p2 = edgeKey[edges[m]][1]
                    v1 = data[i+p1[0], j+p1[1]] # v1 and v2 are the values at p1 and p2
                    v2 = data[i+p2[0], j+p2[1]]
                    f = (level-v1) / (v2-v1)
                    fi = 1.0 - f
                    p = (    ## interpolate between corners
                        p1[0]*fi + p2[0]*f + i + 0.5, 
                        p1[1]*fi + p2[1]*f + j + 0.5
                        )
                    if extendToEdge:
                        ## check bounds
                        p = (
                            min(data.shape[0]-2, max(0, p[0]-1)),
                            min(data.shape[1]-2, max(0, p[1]-1)),                        
                        )
                    if connected:
                        gridKey = i + (1 if edges[m]==2 else 0), j + (1 if edges[m]==3 else 0), edges[m]%2
                        pts.append((p, gridKey))  ## give the actual position and a key identifying the grid location (for connecting segments)
                    else:
                        pts.append(p)
                
                lines.append(pts)

    if not connected:
        return lines
                
    ## turn disjoint list of segments into continuous lines

    #lines = [[2,5], [5,4], [3,4], [1,3], [6,7], [7,8], [8,6], [11,12], [12,15], [11,13], [13,14]]
    #lines = [[(float(a), a), (float(b), b)] for a,b in lines]
    points = {}  ## maps each point to its connections
    for a,b in lines:
        if a[1] not in points:
            points[a[1]] = []
        points[a[1]].append([a,b])
        if b[1] not in points:
            points[b[1]] = []
        points[b[1]].append([b,a])

    ## rearrange into chains
    for k in list(points.keys()):
        try:
            chains = points[k]
        except KeyError:   ## already used this point elsewhere
            continue
        #print "===========", k
        for chain in chains:
            #print "  chain:", chain
            x = None
            while True:
                if x == chain[-1][1]:
                    break ## nothing left to do on this chain
                    
                x = chain[-1][1]
                if x == k:  
                    break ## chain has looped; we're done and can ignore the opposite chain
                y = chain[-2][1]
                connects = points[x]
                for conn in connects[:]:
                    if conn[1][1] != y:
                        #print "    ext:", conn
                        chain.extend(conn[1:])
                #print "    del:", x
                del points[x]
            if chain[0][1] == chain[-1][1]:  # looped chain; no need to continue the other direction
                chains.pop()
                break
                

    ## extract point locations 
    lines = []
    for chain in points.values():
        if len(chain) == 2:
            chain = chain[1][1:][::-1] + chain[0]  # join together ends of chain
        else:
            chain = chain[0]
        lines.append([p[0] for p in chain])
    
    if not path:
        return lines ## a list of pairs of points
    
    path = QtGui.QPainterPath()
    for line in lines:
        path.moveTo(*line[0])
        for p in line[1:]:
            path.lineTo(*p)
    
    return path
    
    
def traceImage(image, values, smooth=0.5):
    """
    Convert an image to a set of QPainterPath curves.
    One curve will be generated for each item in *values*; each curve outlines the area
    of the image that is closer to its value than to any others.
    
    If image is RGB or RGBA, then the shape of values should be (nvals, 3/4)
    The parameter *smooth* is expressed in pixels.
    """
    if values.ndim == 2:
        values = values.T
    values = values[np.newaxis, np.newaxis, ...].astype(float)
    image = image[..., np.newaxis].astype(float)
    diff = np.abs(image-values)
    if values.ndim == 4:
        diff = diff.sum(axis=2)
        
    labels = np.argmin(diff, axis=2)
    
    paths = []
    for i in range(diff.shape[-1]):    
        d = (labels==i).astype(float)
        d = gaussianFilter(d, (smooth, smooth))
        lines = isocurve(d, 0.5, connected=True, extendToEdge=True)
        path = QtGui.QPainterPath()
        for line in lines:
            path.moveTo(*line[0])
            for p in line[1:]:
                path.lineTo(*p)
        
        paths.append(path)
    return paths
    
    
    
IsosurfaceDataCache = None
def isosurface(data, level):
    """
    Generate isosurface from volumetric data using marching cubes algorithm.
    See Paul Bourke, "Polygonising a Scalar Field"  
    (http://paulbourke.net/geometry/polygonise/)
    
    *data*   3D numpy array of scalar values. Must be contiguous.
    *level*  The level at which to generate an isosurface
    
    Returns an array of vertex coordinates (Nv, 3) and an array of 
    per-face vertex indexes (Nf, 3)    
    """
    ## For improvement, see:
    ## 
    ## Efficient implementation of Marching Cubes' cases with topological guarantees.
    ## Thomas Lewiner, Helio Lopes, Antonio Wilson Vieira and Geovan Tavares.
    ## Journal of Graphics Tools 8(2): pp. 1-15 (december 2003)
    
    ## Precompute lookup tables on the first run
    global IsosurfaceDataCache
    if IsosurfaceDataCache is None:
        ## map from grid cell index to edge index.
        ## grid cell index tells us which corners are below the isosurface,
        ## edge index tells us which edges are cut by the isosurface.
        ## (Data stolen from Bourk; see above.)
        edgeTable = np.array([
            0x0  , 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c,
            0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00,
            0x190, 0x99 , 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c,
            0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90,
            0x230, 0x339, 0x33 , 0x13a, 0x636, 0x73f, 0x435, 0x53c,
            0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30,
            0x3a0, 0x2a9, 0x1a3, 0xaa , 0x7a6, 0x6af, 0x5a5, 0x4ac,
            0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0,
            0x460, 0x569, 0x663, 0x76a, 0x66 , 0x16f, 0x265, 0x36c,
            0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60,
            0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff , 0x3f5, 0x2fc,
            0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0,
            0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55 , 0x15c,
            0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950,
            0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc ,
            0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0,
            0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc,
            0xcc , 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0,
            0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c,
            0x15c, 0x55 , 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650,
            0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc,
            0x2fc, 0x3f5, 0xff , 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0,
            0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c,
            0x36c, 0x265, 0x16f, 0x66 , 0x76a, 0x663, 0x569, 0x460,
            0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac,
            0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa , 0x1a3, 0x2a9, 0x3a0,
            0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c,
            0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33 , 0x339, 0x230,
            0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c,
            0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99 , 0x190,
            0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c,
            0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0   
            ], dtype=np.uint16)
        
        ## Table of triangles to use for filling each grid cell.
        ## Each set of three integers tells us which three edges to
        ## draw a triangle between.
        ## (Data stolen from Bourk; see above.)
        triTable = [
            [],
            [0, 8, 3],
            [0, 1, 9],
            [1, 8, 3, 9, 8, 1],
            [1, 2, 10],
            [0, 8, 3, 1, 2, 10],
            [9, 2, 10, 0, 2, 9],
            [2, 8, 3, 2, 10, 8, 10, 9, 8],
            [3, 11, 2],
            [0, 11, 2, 8, 11, 0],
            [1, 9, 0, 2, 3, 11],
            [1, 11, 2, 1, 9, 11, 9, 8, 11],
            [3, 10, 1, 11, 10, 3],
            [0, 10, 1, 0, 8, 10, 8, 11, 10],
            [3, 9, 0, 3, 11, 9, 11, 10, 9],
            [9, 8, 10, 10, 8, 11],
            [4, 7, 8],
            [4, 3, 0, 7, 3, 4],
            [0, 1, 9, 8, 4, 7],
            [4, 1, 9, 4, 7, 1, 7, 3, 1],
            [1, 2, 10, 8, 4, 7],
            [3, 4, 7, 3, 0, 4, 1, 2, 10],
            [9, 2, 10, 9, 0, 2, 8, 4, 7],
            [2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4],
            [8, 4, 7, 3, 11, 2],
            [11, 4, 7, 11, 2, 4, 2, 0, 4],
            [9, 0, 1, 8, 4, 7, 2, 3, 11],
            [4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1],
            [3, 10, 1, 3, 11, 10, 7, 8, 4],
            [1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4],
            [4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3],
            [4, 7, 11, 4, 11, 9, 9, 11, 10],
            [9, 5, 4],
            [9, 5, 4, 0, 8, 3],
            [0, 5, 4, 1, 5, 0],
            [8, 5, 4, 8, 3, 5, 3, 1, 5],
            [1, 2, 10, 9, 5, 4],
            [3, 0, 8, 1, 2, 10, 4, 9, 5],
            [5, 2, 10, 5, 4, 2, 4, 0, 2],
            [2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8],
            [9, 5, 4, 2, 3, 11],
            [0, 11, 2, 0, 8, 11, 4, 9, 5],
            [0, 5, 4, 0, 1, 5, 2, 3, 11],
            [2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5],
            [10, 3, 11, 10, 1, 3, 9, 5, 4],
            [4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10],
            [5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3],
            [5, 4, 8, 5, 8, 10, 10, 8, 11],
            [9, 7, 8, 5, 7, 9],
            [9, 3, 0, 9, 5, 3, 5, 7, 3],
            [0, 7, 8, 0, 1, 7, 1, 5, 7],
            [1, 5, 3, 3, 5, 7],
            [9, 7, 8, 9, 5, 7, 10, 1, 2],
            [10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3],
            [8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2],
            [2, 10, 5, 2, 5, 3, 3, 5, 7],
            [7, 9, 5, 7, 8, 9, 3, 11, 2],
            [9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11],
            [2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7],
            [11, 2, 1, 11, 1, 7, 7, 1, 5],
            [9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11],
            [5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0],
            [11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0],
            [11, 10, 5, 7, 11, 5],
            [10, 6, 5],
            [0, 8, 3, 5, 10, 6],
            [9, 0, 1, 5, 10, 6],
            [1, 8, 3, 1, 9, 8, 5, 10, 6],
            [1, 6, 5, 2, 6, 1],
            [1, 6, 5, 1, 2, 6, 3, 0, 8],
            [9, 6, 5, 9, 0, 6, 0, 2, 6],
            [5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8],
            [2, 3, 11, 10, 6, 5],
            [11, 0, 8, 11, 2, 0, 10, 6, 5],
            [0, 1, 9, 2, 3, 11, 5, 10, 6],
            [5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11],
            [6, 3, 11, 6, 5, 3, 5, 1, 3],
            [0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6],
            [3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9],
            [6, 5, 9, 6, 9, 11, 11, 9, 8],
            [5, 10, 6, 4, 7, 8],
            [4, 3, 0, 4, 7, 3, 6, 5, 10],
            [1, 9, 0, 5, 10, 6, 8, 4, 7],
            [10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4],
            [6, 1, 2, 6, 5, 1, 4, 7, 8],
            [1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7],
            [8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6],
            [7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9],
            [3, 11, 2, 7, 8, 4, 10, 6, 5],
            [5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11],
            [0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6],
            [9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6],
            [8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6],
            [5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11],
            [0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7],
            [6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9],
            [10, 4, 9, 6, 4, 10],
            [4, 10, 6, 4, 9, 10, 0, 8, 3],
            [10, 0, 1, 10, 6, 0, 6, 4, 0],
            [8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10],
            [1, 4, 9, 1, 2, 4, 2, 6, 4],
            [3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4],
            [0, 2, 4, 4, 2, 6],
            [8, 3, 2, 8, 2, 4, 4, 2, 6],
            [10, 4, 9, 10, 6, 4, 11, 2, 3],
            [0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6],
            [3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10],
            [6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1],
            [9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3],
            [8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1],
            [3, 11, 6, 3, 6, 0, 0, 6, 4],
            [6, 4, 8, 11, 6, 8],
            [7, 10, 6, 7, 8, 10, 8, 9, 10],
            [0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10],
            [10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0],
            [10, 6, 7, 10, 7, 1, 1, 7, 3],
            [1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7],
            [2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9],
            [7, 8, 0, 7, 0, 6, 6, 0, 2],
            [7, 3, 2, 6, 7, 2],
            [2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7],
            [2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7],
            [1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11],
            [11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1],
            [8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6],
            [0, 9, 1, 11, 6, 7],
            [7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0],
            [7, 11, 6],
            [7, 6, 11],
            [3, 0, 8, 11, 7, 6],
            [0, 1, 9, 11, 7, 6],
            [8, 1, 9, 8, 3, 1, 11, 7, 6],
            [10, 1, 2, 6, 11, 7],
            [1, 2, 10, 3, 0, 8, 6, 11, 7],
            [2, 9, 0, 2, 10, 9, 6, 11, 7],
            [6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8],
            [7, 2, 3, 6, 2, 7],
            [7, 0, 8, 7, 6, 0, 6, 2, 0],
            [2, 7, 6, 2, 3, 7, 0, 1, 9],
            [1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6],
            [10, 7, 6, 10, 1, 7, 1, 3, 7],
            [10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8],
            [0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7],
            [7, 6, 10, 7, 10, 8, 8, 10, 9],
            [6, 8, 4, 11, 8, 6],
            [3, 6, 11, 3, 0, 6, 0, 4, 6],
            [8, 6, 11, 8, 4, 6, 9, 0, 1],
            [9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6],
            [6, 8, 4, 6, 11, 8, 2, 10, 1],
            [1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6],
            [4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9],
            [10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3],
            [8, 2, 3, 8, 4, 2, 4, 6, 2],
            [0, 4, 2, 4, 6, 2],
            [1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8],
            [1, 9, 4, 1, 4, 2, 2, 4, 6],
            [8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1],
            [10, 1, 0, 10, 0, 6, 6, 0, 4],
            [4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3],
            [10, 9, 4, 6, 10, 4],
            [4, 9, 5, 7, 6, 11],
            [0, 8, 3, 4, 9, 5, 11, 7, 6],
            [5, 0, 1, 5, 4, 0, 7, 6, 11],
            [11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5],
            [9, 5, 4, 10, 1, 2, 7, 6, 11],
            [6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5],
            [7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2],
            [3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6],
            [7, 2, 3, 7, 6, 2, 5, 4, 9],
            [9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7],
            [3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0],
            [6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8],
            [9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7],
            [1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4],
            [4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10],
            [7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10],
            [6, 9, 5, 6, 11, 9, 11, 8, 9],
            [3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5],
            [0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11],
            [6, 11, 3, 6, 3, 5, 5, 3, 1],
            [1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6],
            [0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10],
            [11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5],
            [6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3],
            [5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2],
            [9, 5, 6, 9, 6, 0, 0, 6, 2],
            [1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8],
            [1, 5, 6, 2, 1, 6],
            [1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6],
            [10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0],
            [0, 3, 8, 5, 6, 10],
            [10, 5, 6],
            [11, 5, 10, 7, 5, 11],
            [11, 5, 10, 11, 7, 5, 8, 3, 0],
            [5, 11, 7, 5, 10, 11, 1, 9, 0],
            [10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1],
            [11, 1, 2, 11, 7, 1, 7, 5, 1],
            [0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11],
            [9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7],
            [7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2],
            [2, 5, 10, 2, 3, 5, 3, 7, 5],
            [8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5],
            [9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2],
            [9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2],
            [1, 3, 5, 3, 7, 5],
            [0, 8, 7, 0, 7, 1, 1, 7, 5],
            [9, 0, 3, 9, 3, 5, 5, 3, 7],
            [9, 8, 7, 5, 9, 7],
            [5, 8, 4, 5, 10, 8, 10, 11, 8],
            [5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0],
            [0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5],
            [10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4],
            [2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8],
            [0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11],
            [0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5],
            [9, 4, 5, 2, 11, 3],
            [2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4],
            [5, 10, 2, 5, 2, 4, 4, 2, 0],
            [3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9],
            [5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2],
            [8, 4, 5, 8, 5, 3, 3, 5, 1],
            [0, 4, 5, 1, 0, 5],
            [8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5],
            [9, 4, 5],
            [4, 11, 7, 4, 9, 11, 9, 10, 11],
            [0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11],
            [1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11],
            [3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4],
            [4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2],
            [9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3],
            [11, 7, 4, 11, 4, 2, 2, 4, 0],
            [11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4],
            [2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9],
            [9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7],
            [3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10],
            [1, 10, 2, 8, 7, 4],
            [4, 9, 1, 4, 1, 7, 7, 1, 3],
            [4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1],
            [4, 0, 3, 7, 4, 3],
            [4, 8, 7],
            [9, 10, 8, 10, 11, 8],
            [3, 0, 9, 3, 9, 11, 11, 9, 10],
            [0, 1, 10, 0, 10, 8, 8, 10, 11],
            [3, 1, 10, 11, 3, 10],
            [1, 2, 11, 1, 11, 9, 9, 11, 8],
            [3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9],
            [0, 2, 11, 8, 0, 11],
            [3, 2, 11],
            [2, 3, 8, 2, 8, 10, 10, 8, 9],
            [9, 10, 2, 0, 9, 2],
            [2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8],
            [1, 10, 2],
            [1, 3, 8, 9, 1, 8],
            [0, 9, 1],
            [0, 3, 8],
            []
        ]    
        edgeShifts = np.array([  ## maps edge ID (0-11) to (x,y,z) cell offset and edge ID (0-2)
            [0, 0, 0, 0],   
            [1, 0, 0, 1],
            [0, 1, 0, 0],
            [0, 0, 0, 1],
            [0, 0, 1, 0],
            [1, 0, 1, 1],
            [0, 1, 1, 0],
            [0, 0, 1, 1],
            [0, 0, 0, 2],
            [1, 0, 0, 2],
            [1, 1, 0, 2],
            [0, 1, 0, 2],
            #[9, 9, 9, 9]  ## fake
        ], dtype=np.uint16) # don't use ubyte here! This value gets added to cell index later; will need the extra precision.
        nTableFaces = np.array([len(f)/3 for f in triTable], dtype=np.ubyte)
        faceShiftTables = [None]
        for i in range(1,6):
            ## compute lookup table of index: vertexes mapping
            faceTableI = np.zeros((len(triTable), i*3), dtype=np.ubyte)
            faceTableInds = np.argwhere(nTableFaces == i)
            faceTableI[faceTableInds[:,0]] = np.array([triTable[j[0]] for j in faceTableInds])
            faceTableI = faceTableI.reshape((len(triTable), i, 3))
            faceShiftTables.append(edgeShifts[faceTableI])
            
        ## Let's try something different:
        #faceTable = np.empty((256, 5, 3, 4), dtype=np.ubyte)   # (grid cell index, faces, vertexes, edge lookup)
        #for i,f in enumerate(triTable):
            #f = np.array(f + [12] * (15-len(f))).reshape(5,3)
            #faceTable[i] = edgeShifts[f]
        
        
        IsosurfaceDataCache = (faceShiftTables, edgeShifts, edgeTable, nTableFaces)
    else:
        faceShiftTables, edgeShifts, edgeTable, nTableFaces = IsosurfaceDataCache

    # We use strides below, which means we need contiguous array input.
    # Ideally we can fix this just by removing the dependency on strides.
    if not data.flags['C_CONTIGUOUS']:
        raise TypeError("isosurface input data must be c-contiguous.")
    
    ## mark everything below the isosurface level
    mask = data < level
    
    ### make eight sub-fields and compute indexes for grid cells
    index = np.zeros([x-1 for x in data.shape], dtype=np.ubyte)
    fields = np.empty((2,2,2), dtype=object)
    slices = [slice(0,-1), slice(1,None)]
    for i in [0,1]:
        for j in [0,1]:
            for k in [0,1]:
                fields[i,j,k] = mask[slices[i], slices[j], slices[k]]
                vertIndex = i - 2*j*i + 3*j + 4*k  ## this is just to match Bourk's vertex numbering scheme
                np.add(index, fields[i,j,k] * 2**vertIndex, out=index, casting='unsafe')
    
    ### Generate table of edges that have been cut
    cutEdges = np.zeros([x+1 for x in index.shape]+[3], dtype=np.uint32)
    edges = edgeTable[index]
    for i, shift in enumerate(edgeShifts[:12]):        
        slices = [slice(shift[j],cutEdges.shape[j]+(shift[j]-1)) for j in range(3)]
        cutEdges[slices[0], slices[1], slices[2], shift[3]] += edges & 2**i
    
    ## for each cut edge, interpolate to see where exactly the edge is cut and generate vertex positions
    m = cutEdges > 0
    vertexInds = np.argwhere(m)   ## argwhere is slow!
    vertexes = vertexInds[:,:3].astype(np.float32)
    dataFlat = data.reshape(data.shape[0]*data.shape[1]*data.shape[2])
    
    ## re-use the cutEdges array as a lookup table for vertex IDs
    cutEdges[vertexInds[:,0], vertexInds[:,1], vertexInds[:,2], vertexInds[:,3]] = np.arange(vertexInds.shape[0])
    
    for i in [0,1,2]:
        vim = vertexInds[:,3] == i
        vi = vertexInds[vim, :3]
        viFlat = (vi * (np.array(data.strides[:3]) // data.itemsize)[np.newaxis,:]).sum(axis=1)
        v1 = dataFlat[viFlat]
        v2 = dataFlat[viFlat + data.strides[i]//data.itemsize]
        vertexes[vim,i] += (level-v1) / (v2-v1)
    
    ### compute the set of vertex indexes for each face. 
    
    ## This works, but runs a bit slower.
    #cells = np.argwhere((index != 0) & (index != 255))  ## all cells with at least one face
    #cellInds = index[cells[:,0], cells[:,1], cells[:,2]]
    #verts = faceTable[cellInds]
    #mask = verts[...,0,0] != 9
    #verts[...,:3] += cells[:,np.newaxis,np.newaxis,:]  ## we now have indexes into cutEdges
    #verts = verts[mask]
    #faces = cutEdges[verts[...,0], verts[...,1], verts[...,2], verts[...,3]]  ## and these are the vertex indexes we want.
    
    
    ## To allow this to be vectorized efficiently, we count the number of faces in each 
    ## grid cell and handle each group of cells with the same number together.
    ## determine how many faces to assign to each grid cell
    nFaces = nTableFaces[index]
    totFaces = nFaces.sum()
    faces = np.empty((totFaces, 3), dtype=np.uint32)
    ptr = 0
    #import debug
    #p = debug.Profiler()
    
    ## this helps speed up an indexing operation later on
    cs = np.array(cutEdges.strides)//cutEdges.itemsize
    cutEdges = cutEdges.flatten()

    ## this, strangely, does not seem to help.
    #ins = np.array(index.strides)/index.itemsize
    #index = index.flatten()

    for i in range(1,6):
        ### expensive:
        #profiler()
        cells = np.argwhere(nFaces == i)  ## all cells which require i faces  (argwhere is expensive)
        #profiler()
        if cells.shape[0] == 0:
            continue
        cellInds = index[cells[:,0], cells[:,1], cells[:,2]]   ## index values of cells to process for this round
        #profiler()
        
        ### expensive:
        verts = faceShiftTables[i][cellInds]
        #profiler()
        np.add(verts[...,:3], cells[:,np.newaxis,np.newaxis,:], out=verts[...,:3], casting='unsafe')  ## we now have indexes into cutEdges
        verts = verts.reshape((verts.shape[0]*i,)+verts.shape[2:])
        #profiler()
        
        ### expensive:
        verts = (verts * cs[np.newaxis, np.newaxis, :]).sum(axis=2)
        vertInds = cutEdges[verts]
        #profiler()
        nv = vertInds.shape[0]
        #profiler()
        faces[ptr:ptr+nv] = vertInds #.reshape((nv, 3))
        #profiler()
        ptr += nv
        
    return vertexes, faces

    
def _pinv_fallback(tr):
    arr = np.array([tr.m11(), tr.m12(), tr.m13(),
                    tr.m21(), tr.m22(), tr.m23(),
                    tr.m31(), tr.m32(), tr.m33()])
    arr.shape = (3, 3)
    pinv = np.linalg.pinv(arr)
    return QtGui.QTransform(*pinv.ravel().tolist())


def invertQTransform(tr):
    """Return a QTransform that is the inverse of *tr*.
    A pseudo-inverse is returned if tr is not invertible.
    
    Note that this function is preferred over QTransform.inverted() due to
    bugs in that method. (specifically, Qt has floating-point precision issues
    when determining whether a matrix is invertible)
    """
    try:
        det = tr.determinant()
        detr = 1.0 / det    # let singular matrices raise ZeroDivisionError
        inv = tr.adjoint()
        inv *= detr
        return inv
    except ZeroDivisionError:
        return _pinv_fallback(tr)
    

def pseudoScatter(data, spacing=None, shuffle=True, bidir=False, method='exact'):
    """Return an array of position values needed to make beeswarm or column scatter plots.
    
    Used for examining the distribution of values in an array.
    
    Given an array of x-values, construct an array of y-values such that an x,y scatter-plot
    will not have overlapping points (it will look similar to a histogram).
    """
    if method == 'exact':
        return _pseudoScatterExact(data, spacing=spacing, shuffle=shuffle, bidir=bidir)
    elif method == 'histogram':
        return _pseudoScatterHistogram(data, spacing=spacing, shuffle=shuffle, bidir=bidir)


def _pseudoScatterHistogram(data, spacing=None, shuffle=True, bidir=False):
    """Works by binning points into a histogram and spreading them out to fill the bin.
    
    Faster method, but can produce blocky results.
    """
    inds = np.arange(len(data))
    if shuffle:
        np.random.shuffle(inds)
        
    data = data[inds]
    
    if spacing is None:
        spacing = 2.*np.std(data)/len(data)**0.5

    yvals = np.empty(len(data))
    
    dmin = data.min()
    dmax = data.max()
    nbins = int((dmax-dmin) / spacing) + 1
    bins = np.linspace(dmin, dmax, nbins)
    dx = bins[1] - bins[0]
    dbins = ((data - bins[0]) / dx).astype(int)
    binCounts = {}
        
    for i,j in enumerate(dbins):
        c = binCounts.get(j, -1) + 1
        binCounts[j] = c
        yvals[i] = c

    if bidir is True:
        for i in range(nbins):
            yvals[dbins==i] -= binCounts.get(i, 0) * 0.5

    return yvals[np.argsort(inds)]  ## un-shuffle values before returning


def _pseudoScatterExact(data, spacing=None, shuffle=True, bidir=False):
    """Works by stacking points up one at a time, searching for the lowest position available at each point.
    
    This method produces nice, smooth results but can be prohibitively slow for large datasets.
    """
    inds = np.arange(len(data))
    if shuffle:
        np.random.shuffle(inds)
        
    data = data[inds]
    
    if spacing is None:
        spacing = 2.*np.std(data)/len(data)**0.5
    s2 = spacing**2
    
    yvals = np.empty(len(data))
    if len(data) == 0:
        return yvals
    yvals[0] = 0
    for i in range(1,len(data)):
        x = data[i]     # current x value to be placed
        x0 = data[:i]   # all x values already placed
        y0 = yvals[:i]  # all y values already placed
        y = 0
        
        dx = (x0-x)**2  # x-distance to each previous point
        xmask = dx < s2  # exclude anything too far away
        
        if xmask.sum() > 0:
            if bidir:
                dirs = [-1, 1]
            else:
                dirs = [1]
            yopts = []
            for direction in dirs:
                y = 0
                dx2 = dx[xmask]
                dy = (s2 - dx2)**0.5   
                limits = np.empty((2,len(dy)))  # ranges of y-values to exclude
                limits[0] = y0[xmask] - dy
                limits[1] = y0[xmask] + dy    
                while True:
                    # ignore anything below this y-value
                    if direction > 0:
                        mask = limits[1] >= y
                    else:
                        mask = limits[0] <= y
                        
                    limits2 = limits[:,mask]
                    
                    # are we inside an excluded region?
                    mask = (limits2[0] < y) & (limits2[1] > y)
                    if mask.sum() == 0:
                        break
                        
                    if direction > 0:
                        y = limits2[:,mask].max()
                    else:
                        y = limits2[:,mask].min()
                yopts.append(y)
            if bidir:
                y = yopts[0] if -yopts[0] < yopts[1] else yopts[1]
            else:
                y = yopts[0]
        yvals[i] = y
    
    return yvals[np.argsort(inds)]  ## un-shuffle values before returning



def toposort(deps, nodes=None, seen=None, stack=None, depth=0):
    """Topological sort. Arguments are:
      deps    dictionary describing dependencies where a:[b,c] means "a depends on b and c"
      nodes   optional, specifies list of starting nodes (these should be the nodes 
              which are not depended on by any other nodes). Other candidate starting
              nodes will be ignored.
              
    Example::

        # Sort the following graph:
        # 
        #   B ──┬─────> C <── D
        #       │       │       
        #   E <─┴─> A <─┘
        #     
        deps = {'a': ['b', 'c'], 'c': ['b', 'd'], 'e': ['b']}
        toposort(deps)
         => ['b', 'd', 'c', 'a', 'e']
    """
    # fill in empty dep lists
    deps = deps.copy()
    for k,v in list(deps.items()):
        for k in v:
            if k not in deps:
                deps[k] = []
    
    if nodes is None:
        ## run through deps to find nodes that are not depended upon
        rem = set()
        for dep in deps.values():
            rem |= set(dep)
        nodes = set(deps.keys()) - rem
    if seen is None:
        seen = set()
        stack = []
    sorted = []
    for n in nodes:
        if n in stack:
            raise Exception("Cyclic dependency detected", stack + [n])
        if n in seen:
            continue
        seen.add(n)
        sorted.extend( toposort(deps, deps[n], seen, stack+[n], depth=depth+1))
        sorted.append(n)
    return sorted


def disconnect(signal, slot):
    """Disconnect a Qt signal from a slot.

    This method augments Qt's Signal.disconnect():

      * Return bool indicating whether disconnection was successful, rather than
        raising an exception
      * Attempt to disconnect prior versions of the slot when using pg.reload
    """
    while True:
        try:
            success = signal.disconnect(slot)
            if success is None:     # PyQt
                success = True
        except (TypeError, RuntimeError):
            success = False

        if success:
            return True

        slot = reload.getPreviousVersion(slot)
        if slot is None:
            return False


class SignalBlock(object):
    """Class used to temporarily block a Qt signal connection::

        with SignalBlock(signal, slot):
            # do something that emits a signal; it will
            # not be delivered to slot
    """
    def __init__(self, signal, slot):
        self.signal = signal
        self.slot = slot

    def __enter__(self):
        self.reconnect = disconnect(self.signal, self.slot)
        return self

    def __exit__(self, *args):
        if self.reconnect:
            self.signal.connect(self.slot)