1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
|
"""
functions.py - Miscellaneous functions with no other home
Copyright 2010 Luke Campagnola
Distributed under MIT/X11 license. See license.txt for more information.
"""
import decimal
import math
import re
import struct
import sys
import warnings
from collections import OrderedDict
import numpy as np
from . import Qt, debug, getConfigOption, reload
from .metaarray import MetaArray
from .Qt import QT_LIB, QtCore, QtGui
from .util.cupy_helper import getCupy
from .util.numba_helper import getNumbaFunctions
# in order of appearance in this file.
# add new functions to this list only if they are to reside in pg namespace.
__all__ = [
'siScale', 'siFormat', 'siParse', 'siEval', 'siApply',
'Color', 'mkColor', 'mkBrush', 'mkPen', 'hsvColor',
'CIELabColor', 'colorCIELab', 'colorDistance',
'colorTuple', 'colorStr', 'intColor', 'glColor',
'makeArrowPath', 'eq',
'affineSliceCoords', 'affineSlice',
'interweaveArrays', 'interpolateArray', 'subArray',
'transformToArray', 'transformCoordinates',
'solve3DTransform', 'solveBilinearTransform',
'clip_scalar', 'clip_array', 'rescaleData', 'applyLookupTable',
'makeRGBA', 'makeARGB',
# 'ndarray_to_qimage',
'makeQImage',
# 'ndarray_from_qimage',
'imageToArray', 'colorToAlpha',
'gaussianFilter', 'downsample', 'arrayToQPath',
# 'ndarray_from_qpolygonf', 'create_qpolygonf', 'arrayToQPolygonF',
'isocurve', 'traceImage', 'isosurface',
'invertQTransform',
'pseudoScatter', 'toposort', 'disconnect', 'SignalBlock']
Colors = {
'b': QtGui.QColor(0,0,255,255),
'g': QtGui.QColor(0,255,0,255),
'r': QtGui.QColor(255,0,0,255),
'c': QtGui.QColor(0,255,255,255),
'm': QtGui.QColor(255,0,255,255),
'y': QtGui.QColor(255,255,0,255),
'k': QtGui.QColor(0,0,0,255),
'w': QtGui.QColor(255,255,255,255),
'd': QtGui.QColor(150,150,150,255),
'l': QtGui.QColor(200,200,200,255),
's': QtGui.QColor(100,100,150,255),
}
SI_PREFIXES = 'yzafpnµm kMGTPEZY'
SI_PREFIXES_ASCII = 'yzafpnum kMGTPEZY'
SI_PREFIX_EXPONENTS = dict([(SI_PREFIXES[i], (i-8)*3) for i in range(len(SI_PREFIXES))])
SI_PREFIX_EXPONENTS['u'] = -6
FLOAT_REGEX = re.compile(r'(?P<number>[+-]?((((\d+(\.\d*)?)|(\d*\.\d+))([eE][+-]?\d+)?)|((?i:nan)|(inf))))\s*((?P<siPrefix>[u' + SI_PREFIXES + r']?)(?P<suffix>\w.*))?$')
INT_REGEX = re.compile(r'(?P<number>[+-]?\d+)\s*(?P<siPrefix>[u' + SI_PREFIXES + r']?)(?P<suffix>.*)$')
def siScale(x, minVal=1e-25, allowUnicode=True):
"""
Return the recommended scale factor and SI prefix string for x.
Example::
siScale(0.0001) # returns (1e6, 'μ')
# This indicates that the number 0.0001 is best represented as 0.0001 * 1e6 = 100 μUnits
"""
if isinstance(x, decimal.Decimal):
x = float(x)
try:
if not math.isfinite(x):
return(1, '')
except:
raise
if abs(x) < minVal:
m = 0
else:
m = int(clip_scalar(math.floor(math.log(abs(x))/math.log(1000)), -9.0, 9.0))
if m == 0:
pref = ''
elif m < -8 or m > 8:
pref = 'e%d' % (m*3)
else:
if allowUnicode:
pref = SI_PREFIXES[m+8]
else:
pref = SI_PREFIXES_ASCII[m+8]
m1 = -3*m
p = 10.**m1
return (p, pref)
def siFormat(x, precision=3, suffix='', space=True, error=None, minVal=1e-25, allowUnicode=True):
"""
Return the number x formatted in engineering notation with SI prefix.
Example::
siFormat(0.0001, suffix='V') # returns "100 μV"
"""
if space is True:
space = ' '
if space is False:
space = ''
(p, pref) = siScale(x, minVal, allowUnicode)
if not (len(pref) > 0 and pref[0] == 'e'):
pref = space + pref
if error is None:
fmt = "%." + str(precision) + "g%s%s"
return fmt % (x*p, pref, suffix)
else:
if allowUnicode:
plusminus = space + "±" + space
else:
plusminus = " +/- "
fmt = "%." + str(precision) + "g%s%s%s%s"
return fmt % (x*p, pref, suffix, plusminus, siFormat(error, precision=precision, suffix=suffix, space=space, minVal=minVal))
def siParse(s, regex=FLOAT_REGEX, suffix=None):
"""Convert a value written in SI notation to a tuple (number, si_prefix, suffix).
Example::
siParse('100 µV") # returns ('100', 'µ', 'V')
Note that in the above example, the µ symbol is the "micro sign" (UTF-8
0xC2B5), as opposed to the Greek letter mu (UTF-8 0xCEBC).
Parameters
----------
s : str
The string to parse.
regex : re.Pattern, optional
Compiled regular expression object for parsing. The default is a
general-purpose regex for parsing floating point expressions,
potentially containing an SI prefix and a suffix.
suffix : str, optional
Suffix to check for in ``s``. The default (None) indicates there may or
may not be a suffix contained in the string and it is returned if
found. An empty string ``""`` is handled differently: if the string
contains a suffix, it is discarded. This enables interpreting
characters following the numerical value as an SI prefix.
"""
s = s.strip()
if suffix is not None and len(suffix) > 0:
if s[-len(suffix):] != suffix:
raise ValueError("String '%s' does not have the expected suffix '%s'" % (s, suffix))
s = s[:-len(suffix)] + 'X' # add a fake suffix so the regex still picks up the si prefix
# special case: discard any extra characters if suffix is explicitly empty
if suffix == "":
s += 'X'
m = regex.match(s)
if m is None:
raise ValueError('Cannot parse number "%s"' % s)
try:
sip = m.group('siPrefix')
except IndexError:
sip = ''
if suffix is None:
try:
suf = m.group('suffix')
except IndexError:
suf = ''
else:
suf = suffix
return m.group('number'), '' if sip is None else sip, '' if suf is None else suf
def siEval(s, typ=float, regex=FLOAT_REGEX, suffix=None):
"""
Convert a value written in SI notation to its equivalent prefixless value.
Example::
siEval("100 μV") # returns 0.0001
"""
val, siprefix, suffix = siParse(s, regex, suffix=suffix)
v = typ(val)
return siApply(v, siprefix)
def siApply(val, siprefix):
"""
"""
n = SI_PREFIX_EXPONENTS[siprefix] if siprefix != '' else 0
if n > 0:
return val * 10**n
elif n < 0:
# this case makes it possible to use Decimal objects here
return val / 10**-n
else:
return val
class Color(QtGui.QColor):
def __init__(self, *args):
QtGui.QColor.__init__(self, mkColor(*args))
def glColor(self):
"""Return (r,g,b,a) normalized for use in opengl"""
return self.getRgbF()
def __getitem__(self, ind):
return (self.red, self.green, self.blue, self.alpha)[ind]()
def mkColor(*args):
"""
Convenience function for constructing QColor from a variety of argument
types. Accepted arguments are:
================ ================================================
'c' one of: r, g, b, c, m, y, k, w or an SVG color keyword
R, G, B, [A] integers 0-255
(R, G, B, [A]) tuple of integers 0-255
float greyscale, 0.0-1.0
int see :func:`intColor() <pyqtgraph.intColor>`
(int, hues) see :func:`intColor() <pyqtgraph.intColor>`
"#RGB"
"#RGBA"
"#RRGGBB"
"#RRGGBBAA"
QColor QColor instance; makes a copy.
================ ================================================
"""
err = 'Not sure how to make a color from "%s"' % str(args)
if len(args) == 1:
if isinstance(args[0], str):
c = args[0]
if len(c) == 1:
try:
return QtGui.QColor(Colors[c]) # return copy
except KeyError:
raise ValueError('No color named "%s"' % c) from None
if c[0] == "#" and len(c) < 10:
# match hex color codes
c = c[1:]
if len(c) < 6:
# convert RGBA to RRGGBBAA
c = "".join([x + x for x in c])
return QtGui.QColor(*bytes.fromhex(c))
else:
# 'c' might be an SVG color keyword
qcol = QtGui.QColor(c)
if qcol.isValid():
return qcol
raise ValueError(f"Unable to convert {c} to QColor")
elif isinstance(args[0], QtGui.QColor):
return QtGui.QColor(args[0])
elif np.issubdtype(type(args[0]), np.floating):
r = g = b = int(args[0] * 255)
a = 255
elif hasattr(args[0], '__len__'):
if len(args[0]) == 3:
r, g, b = args[0]
a = 255
elif len(args[0]) == 4:
r, g, b, a = args[0]
elif len(args[0]) == 2:
return intColor(*args[0])
else:
raise TypeError(err)
elif np.issubdtype(type(args[0]), np.integer):
return intColor(args[0])
else:
raise TypeError(err)
elif len(args) == 3:
r, g, b = args
a = 255
elif len(args) == 4:
r, g, b, a = args
else:
raise TypeError(err)
args = [int(a) if np.isfinite(a) else 0 for a in (r, g, b, a)]
return QtGui.QColor(*args)
def mkBrush(*args, **kwds):
"""
| Convenience function for constructing Brush.
| This function always constructs a solid brush and accepts the same arguments as :func:`mkColor() <pyqtgraph.mkColor>`
| Calling mkBrush(None) returns an invisible brush.
"""
if 'color' in kwds:
color = kwds['color']
elif len(args) == 1:
arg = args[0]
if arg is None:
return QtGui.QBrush(QtCore.Qt.BrushStyle.NoBrush)
elif isinstance(arg, QtGui.QBrush):
return QtGui.QBrush(arg)
else:
color = arg
elif len(args) > 1:
color = args
return QtGui.QBrush(mkColor(color))
def mkPen(*args, **kargs):
"""
Convenience function for constructing QPen.
Examples::
mkPen(color)
mkPen(color, width=2)
mkPen(cosmetic=False, width=4.5, color='r')
mkPen({'color': "#FF0", width: 2})
mkPen(None) # (no pen)
In these examples, *color* may be replaced with any arguments accepted by :func:`mkColor() <pyqtgraph.mkColor>` """
color = kargs.get('color', None)
width = kargs.get('width', 1)
style = kargs.get('style', None)
dash = kargs.get('dash', None)
cosmetic = kargs.get('cosmetic', True)
hsv = kargs.get('hsv', None)
if len(args) == 1:
arg = args[0]
if isinstance(arg, dict):
return mkPen(**arg)
if isinstance(arg, QtGui.QPen):
return QtGui.QPen(arg) ## return a copy of this pen
elif arg is None:
style = QtCore.Qt.PenStyle.NoPen
else:
color = arg
if len(args) > 1:
color = args
if color is None:
color = mkColor('l')
if hsv is not None:
color = hsvColor(*hsv)
else:
color = mkColor(color)
pen = QtGui.QPen(QtGui.QBrush(color), width)
pen.setCosmetic(cosmetic)
if style is not None:
pen.setStyle(style)
if dash is not None:
pen.setDashPattern(dash)
# for width > 1.0, we are drawing many short segments to emulate a
# single polyline. the default SquareCap style causes artifacts.
# these artifacts can be avoided by using RoundCap.
# this does have a performance penalty, so enable it only
# for thicker line widths where the artifacts are visible.
if width > 4.0:
pen.setCapStyle(QtCore.Qt.PenCapStyle.RoundCap)
return pen
def hsvColor(hue, sat=1.0, val=1.0, alpha=1.0):
"""Generate a QColor from HSVa values. (all arguments are float 0.0-1.0)"""
return QtGui.QColor.fromHsvF(hue, sat, val, alpha)
# Matrices and math taken from "CIELab Color Space" by Gernot Hoffmann
# http://docs-hoffmann.de/cielab03022003.pdf
MATRIX_XYZ_FROM_RGB = np.array( (
( 0.4124, 0.3576, 0.1805),
( 0.2126, 0.7152, 0.0722),
( 0.0193, 0.1192, 0.9505) ) )
MATRIX_RGB_FROM_XYZ = np.array( (
( 3.2410,-1.5374,-0.4985),
(-0.9692, 1.8760, 0.0416),
( 0.0556,-0.2040, 1.0570) ) )
VECTOR_XYZn = np.array( ( 0.9505, 1.0000, 1.0891) ) # white reference at illuminant D65
def CIELabColor(L, a, b, alpha=1.0):
"""
Generates as QColor from CIE L*a*b* values.
Parameters
----------
L: float
Lightness value ranging from 0 to 100
a, b: float
(green/red) and (blue/yellow) coordinates, typically -127 to +127.
alpha: float, optional
Opacity, ranging from 0 to 1
Notes
-----
The CIE L*a*b* color space parametrizes color in terms of a luminance `L`
and the `a` and `b` coordinates that locate the hue in terms of
a "green to red" and a "blue to yellow" axis.
These coordinates seek to parametrize human color preception in such a way
that the Euclidean distance between the coordinates of two colors represents
the visual difference between these colors. In particular, the difference
ΔE = sqrt( (L1-L2)² + (a1-a2)² + (b1-b2)² ) = 2.3
is considered the smallest "just noticeable difference" between colors.
This simple equation represents the CIE76 standard. Later standards CIE94
and CIE2000 refine the difference calculation ΔE, while maintaining the
L*a*b* coordinates.
Alternative (and arguably more accurate) methods exist to quantify color
difference, but the CIELab color space remains a convenient approximation.
Under a known illumination, assumed to be white standard illuminant D65
here, a CIELab color induces a response in the human eye
that is described by the tristimulus value XYZ. Once this is known, an
sRGB color can be calculated to induce the same response.
More information and underlying mathematics can be found in e.g.
"CIELab Color Space" by Gernot Hoffmann, available at
http://docs-hoffmann.de/cielab03022003.pdf .
Also see :func:`colorDistance() <pyqtgraph.colorDistance>`.
"""
# convert to tristimulus XYZ values
vec_XYZ = np.full(3, ( L +16)/116 ) # Y1 = (L+16)/116
vec_XYZ[0] += a / 500 # X1 = (L+16)/116 + a/500
vec_XYZ[2] -= b / 200 # Z1 = (L+16)/116 - b/200
for idx, val in enumerate(vec_XYZ):
if val > 0.20689:
vec_XYZ[idx] = vec_XYZ[idx]**3
else:
vec_XYZ[idx] = (vec_XYZ[idx] - 16/116) / 7.787
vec_XYZ = VECTOR_XYZn * vec_XYZ # apply white reference
# print(f'XYZ: {vec_XYZ}')
# convert XYZ to linear RGB
vec_RGB = MATRIX_RGB_FROM_XYZ @ vec_XYZ
# gamma-encode linear RGB
arr_sRGB = np.zeros(3)
for idx, val in enumerate( vec_RGB[:3] ):
if val > 0.0031308: # (t) RGB value for linear/exponential transition
arr_sRGB[idx] = 1.055 * val**(1/2.4) - 0.055
else:
arr_sRGB[idx] = 12.92 * val # (s)
arr_sRGB = clip_array( arr_sRGB, 0.0, 1.0 ) # avoid QColor errors
return QtGui.QColor.fromRgbF( *arr_sRGB, alpha )
def colorCIELab(qcol):
"""
Describes a QColor by an array of CIE L*a*b* values.
Also see :func:`CIELabColor() <pyqtgraph.CIELabColor>` .
Parameters
----------
qcol: QColor
QColor to be converted
Returns
-------
np.ndarray
Color coordinates `[L, a, b]`.
"""
srgb = qcol.getRgbF()[:3] # get sRGB values from QColor
# convert gamma-encoded sRGB to linear:
vec_RGB = np.zeros(3)
for idx, val in enumerate( srgb ):
if val > (12.92 * 0.0031308): # coefficients (s) * (t)
vec_RGB[idx] = ((val+0.055)/1.055)**2.4
else:
vec_RGB[idx] = val / 12.92 # (s) coefficient
# converted linear RGB to tristimulus XYZ:
vec_XYZ = MATRIX_XYZ_FROM_RGB @ vec_RGB
# normalize with white reference and convert to L*a*b* values
vec_XYZ1 = vec_XYZ / VECTOR_XYZn
for idx, val in enumerate(vec_XYZ1):
if val > 0.008856:
vec_XYZ1[idx] = vec_XYZ1[idx]**(1/3)
else:
vec_XYZ1[idx] = 7.787*vec_XYZ1[idx] + 16/116
vec_Lab = np.array([
116 * vec_XYZ1[1] - 16, # Y1
500 * (vec_XYZ1[0] - vec_XYZ1[1]), # X1 - Y1
200 * (vec_XYZ1[1] - vec_XYZ1[2])] ) # Y1 - Z1
return vec_Lab
def colorDistance(colors, metric='CIE76'):
"""
Returns the perceptual distances between a sequence of QColors.
See :func:`CIELabColor() <pyqtgraph.CIELabColor>` for more information.
Parameters
----------
colors: list of QColor
Two or more colors to calculate the distances between.
metric: str, optional
Metric used to determined the difference. Only 'CIE76' is supported at this time,
where a distance of 2.3 is considered a "just noticeable difference".
The default may change as more metrics become available.
Returns
-------
List
The `N-1` sequential distances between `N` colors.
"""
metric = metric.upper()
if len(colors) < 1: return np.array([], dtype=float)
if metric == 'CIE76':
dist = []
lab1 = None
for col in colors:
lab2 = colorCIELab(col)
if lab1 is None: #initialize on first element
lab1 = lab2
continue
dE = math.sqrt( np.sum( (lab1-lab2)**2 ) )
dist.append(dE)
lab1 = lab2
return np.array(dist)
raise ValueError(f'Metric {metric} is not available.')
def colorTuple(c):
"""Return a tuple (R,G,B,A) from a QColor"""
return c.getRgb()
def colorStr(c):
"""Generate a hex string code from a QColor"""
return ('%02x'*4) % colorTuple(c)
def intColor(index, hues=9, values=1, maxValue=255, minValue=150, maxHue=360, minHue=0, sat=255, alpha=255):
"""
Creates a QColor from a single index. Useful for stepping through a predefined list of colors.
The argument *index* determines which color from the set will be returned. All other arguments determine what the set of predefined colors will be
Colors are chosen by cycling across hues while varying the value (brightness).
By default, this selects from a list of 9 hues."""
hues = int(hues)
values = int(values)
ind = int(index) % (hues * values)
indh = ind % hues
indv = ind // hues
if values > 1:
v = minValue + indv * ((maxValue-minValue) // (values-1))
else:
v = maxValue
h = minHue + (indh * (maxHue-minHue)) // hues
return QtGui.QColor.fromHsv(h, sat, v, alpha)
def glColor(*args, **kargs):
"""
Convert a color to OpenGL color format (r,g,b,a) floats 0.0-1.0
Accepts same arguments as :func:`mkColor <pyqtgraph.mkColor>`.
"""
c = mkColor(*args, **kargs)
return c.getRgbF()
def makeArrowPath(headLen=20, headWidth=None, tipAngle=20, tailLen=20, tailWidth=3, baseAngle=0):
"""
Construct a path outlining an arrow with the given dimensions.
The arrow points in the -x direction with tip positioned at 0,0.
If *headWidth* is supplied, it overrides *tipAngle* (in degrees).
If *tailLen* is None, no tail will be drawn.
"""
if headWidth is None:
headWidth = headLen * math.tan(math.radians(tipAngle * 0.5))
path = QtGui.QPainterPath()
path.moveTo(0,0)
path.lineTo(headLen, -headWidth)
if tailLen is None:
innerY = headLen - headWidth * math.tan(math.radians(baseAngle))
path.lineTo(innerY, 0)
else:
tailWidth *= 0.5
innerY = headLen - (headWidth-tailWidth) * math.tan(math.radians(baseAngle))
path.lineTo(innerY, -tailWidth)
path.lineTo(headLen + tailLen, -tailWidth)
path.lineTo(headLen + tailLen, tailWidth)
path.lineTo(innerY, tailWidth)
path.lineTo(headLen, headWidth)
path.lineTo(0,0)
return path
def eq(a, b):
"""The great missing equivalence function: Guaranteed evaluation to a single bool value.
This function has some important differences from the == operator:
1. Returns True if a IS b, even if a==b still evaluates to False.
2. While a is b will catch the case with np.nan values, special handling is done for distinct
float('nan') instances using math.isnan.
3. Tests for equivalence using ==, but silently ignores some common exceptions that can occur
(AtrtibuteError, ValueError).
4. When comparing arrays, returns False if the array shapes are not the same.
5. When comparing arrays of the same shape, returns True only if all elements are equal (whereas
the == operator would return a boolean array).
6. Collections (dict, list, etc.) must have the same type to be considered equal. One
consequence is that comparing a dict to an OrderedDict will always return False.
"""
if a is b:
return True
# The above catches np.nan, but not float('nan')
if isinstance(a, float) and isinstance(b, float):
if math.isnan(a) and math.isnan(b):
return True
# Avoid comparing large arrays against scalars; this is expensive and we know it should return False.
aIsArr = isinstance(a, (np.ndarray, MetaArray))
bIsArr = isinstance(b, (np.ndarray, MetaArray))
if (aIsArr or bIsArr) and type(a) != type(b):
return False
# If both inputs are arrays, we can speeed up comparison if shapes / dtypes don't match
# NOTE: arrays of dissimilar type should be considered unequal even if they are numerically
# equal because they may behave differently when computed on.
if aIsArr and bIsArr and (a.shape != b.shape or a.dtype != b.dtype):
return False
# Recursively handle common containers
if isinstance(a, dict) and isinstance(b, dict):
if type(a) != type(b) or len(a) != len(b):
return False
if set(a.keys()) != set(b.keys()):
return False
for k, v in a.items():
if not eq(v, b[k]):
return False
if isinstance(a, OrderedDict) or sys.version_info >= (3, 7):
for a_item, b_item in zip(a.items(), b.items()):
if not eq(a_item, b_item):
return False
return True
if isinstance(a, (list, tuple)) and isinstance(b, (list, tuple)):
if type(a) != type(b) or len(a) != len(b):
return False
for v1,v2 in zip(a, b):
if not eq(v1, v2):
return False
return True
# Test for equivalence.
# If the test raises a recognized exception, then return Falase
try:
try:
# Sometimes running catch_warnings(module=np) generates AttributeError ???
catcher = warnings.catch_warnings(module=np) # ignore numpy futurewarning (numpy v. 1.10)
catcher.__enter__()
except Exception:
catcher = None
e = a==b
except (ValueError, AttributeError):
return False
except:
print('failed to evaluate equivalence for:')
print(" a:", str(type(a)), str(a))
print(" b:", str(type(b)), str(b))
raise
finally:
if catcher is not None:
catcher.__exit__(None, None, None)
t = type(e)
if t is bool:
return e
elif t is np.bool_:
return bool(e)
elif isinstance(e, np.ndarray) or (hasattr(e, 'implements') and e.implements('MetaArray')):
try: ## disaster: if a is an empty array and b is not, then e.all() is True
if a.shape != b.shape:
return False
except:
return False
if (hasattr(e, 'implements') and e.implements('MetaArray')):
return e.asarray().all()
else:
return e.all()
else:
raise TypeError("== operator returned type %s" % str(type(e)))
def affineSliceCoords(shape, origin, vectors, axes):
"""Return the array of coordinates used to sample data arrays in affineSlice().
"""
# sanity check
if len(shape) != len(vectors):
raise Exception("shape and vectors must have same length.")
if len(origin) != len(axes):
raise Exception("origin and axes must have same length.")
for v in vectors:
if len(v) != len(axes):
raise Exception("each vector must be same length as axes.")
shape = list(map(np.ceil, shape))
## make sure vectors are arrays
if not isinstance(vectors, np.ndarray):
vectors = np.array(vectors)
if not isinstance(origin, np.ndarray):
origin = np.array(origin)
origin.shape = (len(axes),) + (1,)*len(shape)
## Build array of sample locations.
grid = np.mgrid[tuple([slice(0,x) for x in shape])] ## mesh grid of indexes
x = (grid[np.newaxis,...] * vectors.transpose()[(Ellipsis,) + (np.newaxis,)*len(shape)]).sum(axis=1) ## magic
x += origin
return x
def affineSlice(data, shape, origin, vectors, axes, order=1, returnCoords=False, **kargs):
"""
Take a slice of any orientation through an array. This is useful for extracting sections of multi-dimensional arrays
such as MRI images for viewing as 1D or 2D data.
The slicing axes are aribtrary; they do not need to be orthogonal to the original data or even to each other. It is
possible to use this function to extract arbitrary linear, rectangular, or parallelepiped shapes from within larger
datasets. The original data is interpolated onto a new array of coordinates using either interpolateArray if order<2
or scipy.ndimage.map_coordinates otherwise.
For a graphical interface to this function, see :func:`ROI.getArrayRegion <pyqtgraph.ROI.getArrayRegion>`
============== ====================================================================================================
**Arguments:**
*data* (ndarray) the original dataset
*shape* the shape of the slice to take (Note the return value may have more dimensions than len(shape))
*origin* the location in the original dataset that will become the origin of the sliced data.
*vectors* list of unit vectors which point in the direction of the slice axes. Each vector must have the same
length as *axes*. If the vectors are not unit length, the result will be scaled relative to the
original data. If the vectors are not orthogonal, the result will be sheared relative to the
original data.
*axes* The axes in the original dataset which correspond to the slice *vectors*
*order* The order of spline interpolation. Default is 1 (linear). See scipy.ndimage.map_coordinates
for more information.
*returnCoords* If True, return a tuple (result, coords) where coords is the array of coordinates used to select
values from the original dataset.
*All extra keyword arguments are passed to scipy.ndimage.map_coordinates.*
--------------------------------------------------------------------------------------------------------------------
============== ====================================================================================================
Note the following must be true:
| len(shape) == len(vectors)
| len(origin) == len(axes) == len(vectors[i])
Example: start with a 4D fMRI data set, take a diagonal-planar slice out of the last 3 axes
* data = array with dims (time, x, y, z) = (100, 40, 40, 40)
* The plane to pull out is perpendicular to the vector (x,y,z) = (1,1,1)
* The origin of the slice will be at (x,y,z) = (40, 0, 0)
* We will slice a 20x20 plane from each timepoint, giving a final shape (100, 20, 20)
The call for this example would look like::
affineSlice(data, shape=(20,20), origin=(40,0,0), vectors=((-1, 1, 0), (-1, 0, 1)), axes=(1,2,3))
"""
x = affineSliceCoords(shape, origin, vectors, axes)
## transpose data so slice axes come first
trAx = list(range(data.ndim))
for ax in axes:
trAx.remove(ax)
tr1 = tuple(axes) + tuple(trAx)
data = data.transpose(tr1)
#print "tr1:", tr1
## dims are now [(slice axes), (other axes)]
if order > 1:
try:
import scipy.ndimage
except ImportError:
raise ImportError("Interpolating with order > 1 requires the scipy.ndimage module, but it could not be imported.")
# iterate manually over unused axes since map_coordinates won't do it for us
extraShape = data.shape[len(axes):]
output = np.empty(tuple(shape) + extraShape, dtype=data.dtype)
for inds in np.ndindex(*extraShape):
ind = (Ellipsis,) + inds
output[ind] = scipy.ndimage.map_coordinates(data[ind], x, order=order, **kargs)
else:
# map_coordinates expects the indexes as the first axis, whereas
# interpolateArray expects indexes at the last axis.
tr = tuple(range(1, x.ndim)) + (0,)
output = interpolateArray(data, x.transpose(tr), order=order)
tr = list(range(output.ndim))
trb = []
for i in range(min(axes)):
ind = tr1.index(i) + (len(shape)-len(axes))
tr.remove(ind)
trb.append(ind)
tr2 = tuple(trb+tr)
## Untranspose array before returning
output = output.transpose(tr2)
if returnCoords:
return (output, x)
else:
return output
def interweaveArrays(*args):
"""
Parameters
----------
args : numpy.ndarray
series of 1D numpy arrays of the same length and dtype
Returns
-------
numpy.ndarray
A numpy array with all the input numpy arrays interwoven
Examples
--------
>>> result = interweaveArrays(numpy.ndarray([0, 2, 4]), numpy.ndarray([1, 3, 5]))
>>> result
array([0, 1, 2, 3, 4, 5])
"""
size = sum(x.size for x in args)
result = np.empty((size,), dtype=args[0].dtype)
n = len(args)
for index, array in enumerate(args):
result[index::n] = array
return result
def interpolateArray(data, x, default=0.0, order=1):
"""
N-dimensional interpolation similar to scipy.ndimage.map_coordinates.
This function returns linearly-interpolated values sampled from a regular
grid of data. It differs from `ndimage.map_coordinates` by allowing broadcasting
within the input array.
============== ===========================================================================================
**Arguments:**
*data* Array of any shape containing the values to be interpolated.
*x* Array with (shape[-1] <= data.ndim) containing the locations within *data* to interpolate.
(note: the axes for this argument are transposed relative to the same argument for
`ndimage.map_coordinates`).
*default* Value to return for locations in *x* that are outside the bounds of *data*.
*order* Order of interpolation: 0=nearest, 1=linear.
============== ===========================================================================================
Returns array of shape (x.shape[:-1] + data.shape[x.shape[-1]:])
For example, assume we have the following 2D image data::
>>> data = np.array([[1, 2, 4 ],
[10, 20, 40 ],
[100, 200, 400]])
To compute a single interpolated point from this data::
>>> x = np.array([(0.5, 0.5)])
>>> interpolateArray(data, x)
array([ 8.25])
To compute a 1D list of interpolated locations::
>>> x = np.array([(0.5, 0.5),
(1.0, 1.0),
(1.0, 2.0),
(1.5, 0.0)])
>>> interpolateArray(data, x)
array([ 8.25, 20. , 40. , 55. ])
To compute a 2D array of interpolated locations::
>>> x = np.array([[(0.5, 0.5), (1.0, 2.0)],
[(1.0, 1.0), (1.5, 0.0)]])
>>> interpolateArray(data, x)
array([[ 8.25, 40. ],
[ 20. , 55. ]])
..and so on. The *x* argument may have any shape as long as
```x.shape[-1] <= data.ndim```. In the case that
```x.shape[-1] < data.ndim```, then the remaining axes are simply
broadcasted as usual. For example, we can interpolate one location
from an entire row of the data::
>>> x = np.array([[0.5]])
>>> interpolateArray(data, x)
array([[ 5.5, 11. , 22. ]])
This is useful for interpolating from arrays of colors, vertexes, etc.
"""
if order not in (0, 1):
raise ValueError("interpolateArray requires order=0 or 1 (got %s)" % order)
prof = debug.Profiler()
nd = data.ndim
md = x.shape[-1]
if md > nd:
raise TypeError("x.shape[-1] must be less than or equal to data.ndim")
totalMask = np.ones(x.shape[:-1], dtype=bool) # keep track of out-of-bound indexes
if order == 0:
xinds = np.round(x).astype(int) # NOTE: for 0.5 this rounds to the nearest *even* number
for ax in range(md):
mask = (xinds[...,ax] >= 0) & (xinds[...,ax] <= data.shape[ax]-1)
xinds[...,ax][~mask] = 0
# keep track of points that need to be set to default
totalMask &= mask
result = data[tuple([xinds[...,i] for i in range(xinds.shape[-1])])]
elif order == 1:
# First we generate arrays of indexes that are needed to
# extract the data surrounding each point
fields = np.mgrid[(slice(0,order+1),) * md]
xmin = np.floor(x).astype(int)
xmax = xmin + 1
indexes = np.concatenate([xmin[np.newaxis, ...], xmax[np.newaxis, ...]])
fieldInds = []
for ax in range(md):
mask = (xmin[...,ax] >= 0) & (x[...,ax] <= data.shape[ax]-1)
# keep track of points that need to be set to default
totalMask &= mask
# ..and keep track of indexes that are out of bounds
# (note that when x[...,ax] == data.shape[ax], then xmax[...,ax] will be out
# of bounds, but the interpolation will work anyway)
mask &= (xmax[...,ax] < data.shape[ax])
axisIndex = indexes[...,ax][fields[ax]]
axisIndex[axisIndex < 0] = 0
axisIndex[axisIndex >= data.shape[ax]] = 0
fieldInds.append(axisIndex)
prof()
# Get data values surrounding each requested point
fieldData = data[tuple(fieldInds)]
prof()
## Interpolate
s = np.empty((md,) + fieldData.shape, dtype=float)
dx = x - xmin
# reshape fields for arithmetic against dx
for ax in range(md):
f1 = fields[ax].reshape(fields[ax].shape + (1,)*(dx.ndim-1))
sax = f1 * dx[...,ax] + (1-f1) * (1-dx[...,ax])
sax = sax.reshape(sax.shape + (1,) * (s.ndim-1-sax.ndim))
s[ax] = sax
s = np.prod(s, axis=0)
result = fieldData * s
for i in range(md):
result = result.sum(axis=0)
prof()
if totalMask.ndim > 0:
result[~totalMask] = default
else:
if totalMask is False:
result[:] = default
prof()
return result
def subArray(data, offset, shape, stride):
"""
Unpack a sub-array from *data* using the specified offset, shape, and stride.
Note that *stride* is specified in array elements, not bytes.
For example, we have a 2x3 array packed in a 1D array as follows::
data = [_, _, 00, 01, 02, _, 10, 11, 12, _]
Then we can unpack the sub-array with this call::
subArray(data, offset=2, shape=(2, 3), stride=(4, 1))
..which returns::
[[00, 01, 02],
[10, 11, 12]]
This function operates only on the first axis of *data*. So changing
the input in the example above to have shape (10, 7) would cause the
output to have shape (2, 3, 7).
"""
data = np.ascontiguousarray(data)[offset:]
shape = tuple(shape)
extraShape = data.shape[1:]
strides = list(data.strides[::-1])
itemsize = strides[-1]
for s in stride[1::-1]:
strides.append(itemsize * s)
strides = tuple(strides[::-1])
return np.ndarray(buffer=data, shape=shape+extraShape, strides=strides, dtype=data.dtype)
def transformToArray(tr):
"""
Given a QTransform, return a 3x3 numpy array.
Given a QMatrix4x4, return a 4x4 numpy array.
Example: map an array of x,y coordinates through a transform::
## coordinates to map are (1,5), (2,6), (3,7), and (4,8)
coords = np.array([[1,2,3,4], [5,6,7,8], [1,1,1,1]]) # the extra '1' coordinate is needed for translation to work
## Make an example transform
tr = QtGui.QTransform()
tr.translate(3,4)
tr.scale(2, 0.1)
## convert to array
m = pg.transformToArray()[:2] # ignore the perspective portion of the transformation
## map coordinates through transform
mapped = np.dot(m, coords)
"""
#return np.array([[tr.m11(), tr.m12(), tr.m13()],[tr.m21(), tr.m22(), tr.m23()],[tr.m31(), tr.m32(), tr.m33()]])
## The order of elements given by the method names m11..m33 is misleading--
## It is most common for x,y translation to occupy the positions 1,3 and 2,3 in
## a transformation matrix. However, with QTransform these values appear at m31 and m32.
## So the correct interpretation is transposed:
if isinstance(tr, QtGui.QTransform):
return np.array([[tr.m11(), tr.m21(), tr.m31()], [tr.m12(), tr.m22(), tr.m32()], [tr.m13(), tr.m23(), tr.m33()]])
elif isinstance(tr, QtGui.QMatrix4x4):
return np.array(tr.copyDataTo()).reshape(4,4)
else:
raise Exception("Transform argument must be either QTransform or QMatrix4x4.")
def transformCoordinates(tr, coords, transpose=False):
"""
Map a set of 2D or 3D coordinates through a QTransform or QMatrix4x4.
The shape of coords must be (2,...) or (3,...)
The mapping will _ignore_ any perspective transformations.
For coordinate arrays with ndim=2, this is basically equivalent to matrix multiplication.
Most arrays, however, prefer to put the coordinate axis at the end (eg. shape=(...,3)). To
allow this, use transpose=True.
"""
if transpose:
## move last axis to beginning. This transposition will be reversed before returning the mapped coordinates.
coords = coords.transpose((coords.ndim-1,) + tuple(range(0,coords.ndim-1)))
nd = coords.shape[0]
if isinstance(tr, np.ndarray):
m = tr
else:
m = transformToArray(tr)
m = m[:m.shape[0]-1] # remove perspective
## If coords are 3D and tr is 2D, assume no change for Z axis
if m.shape == (2,3) and nd == 3:
m2 = np.zeros((3,4))
m2[:2, :2] = m[:2,:2]
m2[:2, 3] = m[:2,2]
m2[2,2] = 1
m = m2
## if coords are 2D and tr is 3D, ignore Z axis
if m.shape == (3,4) and nd == 2:
m2 = np.empty((2,3))
m2[:,:2] = m[:2,:2]
m2[:,2] = m[:2,3]
m = m2
## reshape tr and coords to prepare for multiplication
m = m.reshape(m.shape + (1,)*(coords.ndim-1))
coords = coords[np.newaxis, ...]
# separate scale/rotate and translation
translate = m[:,-1]
m = m[:, :-1]
## map coordinates and return
# nan or inf points will not plot, but should not generate warnings
with warnings.catch_warnings():
warnings.simplefilter("ignore", RuntimeWarning)
mapped = (m*coords).sum(axis=1) ## apply scale/rotate
mapped += translate
if transpose:
## move first axis to end.
mapped = mapped.transpose(tuple(range(1,mapped.ndim)) + (0,))
return mapped
def solve3DTransform(points1, points2):
"""
Find a 3D transformation matrix that maps points1 onto points2.
Points must be specified as either lists of 4 Vectors or
(4, 3) arrays.
"""
import numpy.linalg
pts = []
for inp in (points1, points2):
if isinstance(inp, np.ndarray):
A = np.empty((4,4), dtype=float)
A[:,:3] = inp[:,:3]
A[:,3] = 1.0
else:
A = np.array([[inp[i].x(), inp[i].y(), inp[i].z(), 1] for i in range(4)])
pts.append(A)
## solve 3 sets of linear equations to determine transformation matrix elements
matrix = np.zeros((4,4))
for i in range(3):
## solve Ax = B; x is one row of the desired transformation matrix
matrix[i] = numpy.linalg.solve(pts[0], pts[1][:,i])
return matrix
def solveBilinearTransform(points1, points2):
"""
Find a bilinear transformation matrix (2x4) that maps points1 onto points2.
Points must be specified as a list of 4 Vector, Point, QPointF, etc.
To use this matrix to map a point [x,y]::
mapped = np.dot(matrix, [x*y, x, y, 1])
"""
import numpy.linalg
## A is 4 rows (points) x 4 columns (xy, x, y, 1)
## B is 4 rows (points) x 2 columns (x, y)
A = np.array([[points1[i].x()*points1[i].y(), points1[i].x(), points1[i].y(), 1] for i in range(4)])
B = np.array([[points2[i].x(), points2[i].y()] for i in range(4)])
## solve 2 sets of linear equations to determine transformation matrix elements
matrix = np.zeros((2,4))
for i in range(2):
matrix[i] = numpy.linalg.solve(A, B[:,i]) ## solve Ax = B; x is one row of the desired transformation matrix
return matrix
def clip_scalar(val, vmin, vmax):
""" convenience function to avoid using np.clip for scalar values """
return vmin if val < vmin else vmax if val > vmax else val
def clip_array(arr, vmin, vmax, out=None):
# replacement for np.clip due to regression in
# performance since numpy 1.17
# https://github.com/numpy/numpy/issues/14281
if vmin is None and vmax is None:
# let np.clip handle the error
return np.clip(arr, vmin, vmax, out=out)
if vmin is None:
return np.core.umath.minimum(arr, vmax, out=out)
elif vmax is None:
return np.core.umath.maximum(arr, vmin, out=out)
else:
return np.core.umath.clip(arr, vmin, vmax, out=out)
if tuple(map(int, np.__version__.split(".")[:2])) >= (1, 25):
# The linked issue above has been closed as of 2023/04/25
# and states that the issue has been fixed.
# And furthermore, because NumPy 2.0 has made np.core private,
# we will just use the native np.clip
clip_array = np.clip
def _rescaleData_nditer(data_in, scale, offset, work_dtype, out_dtype, clip):
"""Refer to documentation for rescaleData()"""
data_out = np.empty_like(data_in, dtype=out_dtype)
it = np.nditer([data_in, data_out],
flags=['external_loop', 'buffered'],
op_flags=[['readonly'], ['writeonly', 'no_broadcast']],
op_dtypes=[None, work_dtype],
casting='unsafe',
buffersize=32768)
with it:
for x, y in it:
y[...] = x
y -= offset
y *= scale
# Clip before converting dtype to avoid overflow
if clip is not None:
clip_array(y, clip[0], clip[1], out=y)
return data_out
def rescaleData(data, scale, offset, dtype=None, clip=None):
"""Return data rescaled and optionally cast to a new dtype.
The scaling operation is::
data => (data-offset) * scale
"""
if dtype is None:
out_dtype = data.dtype
else:
out_dtype = np.dtype(dtype)
if out_dtype.kind in 'ui':
lim = np.iinfo(out_dtype)
if clip is None:
# don't let rescale cause integer overflow
clip = lim.min, lim.max
clip = max(clip[0], lim.min), min(clip[1], lim.max)
# make clip limits integer-valued (no need to cast to int)
# this improves performance, especially on Windows
clip = [math.trunc(x) for x in clip]
if np.can_cast(data, np.float32):
work_dtype = np.float32
else:
work_dtype = np.float64
# from: https://numpy.org/devdocs/numpy_2_0_migration_guide.html#changes-to-numpy-data-type-promotion
# np.array([3], dtype=np.float32) + np.float64(3) will now return a float64 array.
# (The higher precision of the scalar is not ignored.)
# this affects us even though we are performing in-place operations.
# a solution mentioned in the link above is to convert to a Python scalar.
offset = float(offset)
scale = float(scale)
cp = getCupy()
if cp and cp.get_array_module(data) == cp:
# Cupy does not support nditer
# https://github.com/cupy/cupy/issues/5021
data_out = data.astype(work_dtype, copy=True)
data_out -= offset
data_out *= scale
# Clip before converting dtype to avoid overflow
if clip is not None:
clip_array(data_out, clip[0], clip[1], out=data_out)
# don't copy if no change in dtype
return data_out.astype(out_dtype, copy=False)
numba_fn = getNumbaFunctions()
if numba_fn and clip is not None:
# if we got here by makeARGB(), clip will not be None at this point
return numba_fn.rescaleData(data, scale, offset, out_dtype, clip)
return _rescaleData_nditer(data, scale, offset, work_dtype, out_dtype, clip)
def applyLookupTable(data, lut):
"""
Uses values in *data* as indexes to select values from *lut*.
The returned data has shape data.shape + lut.shape[1:]
Note: color gradient lookup tables can be generated using GradientWidget.
Parameters
----------
data : np.ndarray
lut : np.ndarray
Either cupy or numpy arrays are accepted, though this function has only
consistently behaved correctly on windows with cuda toolkit version >= 11.1.
"""
if data.dtype.kind not in ('i', 'u'):
data = data.astype(int)
cp = getCupy()
if cp and cp.get_array_module(data) == cp:
# cupy.take only supports "wrap" mode
return cp.take(lut, cp.clip(data, 0, lut.shape[0] - 1), axis=0)
else:
return np.take(lut, data, axis=0, mode='clip')
def makeRGBA(*args, **kwds):
"""Equivalent to makeARGB(..., useRGBA=True)"""
kwds['useRGBA'] = True
return makeARGB(*args, **kwds)
def makeARGB(data, lut=None, levels=None, scale=None, useRGBA=False, maskNans=True, output=None):
"""
Convert an array of values into an ARGB array suitable for building QImages,
OpenGL textures, etc.
Returns the ARGB array (unsigned byte) and a boolean indicating whether
there is alpha channel data. This is a two stage process:
1) Rescale the data based on the values in the *levels* argument (min, max).
2) Determine the final output by passing the rescaled values through a
lookup table.
Both stages are optional.
============== ==================================================================================
**Arguments:**
data numpy array of int/float types. If
levels List [min, max]; optionally rescale data before converting through the
lookup table. The data is rescaled such that min->0 and max->*scale*::
rescaled = (clip(data, min, max) - min) * (*scale* / (max - min))
It is also possible to use a 2D (N,2) array of values for levels. In this case,
it is assumed that each pair of min,max values in the levels array should be
applied to a different subset of the input data (for example, the input data may
already have RGB values and the levels are used to independently scale each
channel). The use of this feature requires that levels.shape[0] == data.shape[-1].
scale The maximum value to which data will be rescaled before being passed through the
lookup table (or returned if there is no lookup table). By default this will
be set to the length of the lookup table, or 255 if no lookup table is provided.
lut Optional lookup table (array with dtype=ubyte).
Values in data will be converted to color by indexing directly from lut.
The output data shape will be input.shape + lut.shape[1:].
Lookup tables can be built using ColorMap or GradientWidget.
useRGBA If True, the data is returned in RGBA order (useful for building OpenGL textures).
The default is False, which returns in ARGB order for use with QImage
(Note that 'ARGB' is a term used by the Qt documentation; the *actual* order
is BGRA).
maskNans Enable or disable masking NaNs as transparent. Converting NaN values to ints is
undefined behavior per the C-standard, results may vary across platforms. Highly
recommend leaving this option to the default value of True.
============== ==================================================================================
"""
cp = getCupy()
xp = cp.get_array_module(data) if cp else np
profile = debug.Profiler()
if data.ndim not in (2, 3):
raise TypeError("data must be 2D or 3D")
if data.ndim == 3 and data.shape[2] > 4:
raise TypeError("data.shape[2] must be <= 4")
if lut is not None and not isinstance(lut, xp.ndarray):
lut = xp.array(lut)
if levels is None:
# automatically decide levels based on data dtype
if data.dtype.kind == 'u':
levels = xp.array([0, 2**(data.itemsize*8)-1])
elif data.dtype.kind == 'i':
s = 2**(data.itemsize*8 - 1)
levels = xp.array([-s, s-1])
elif data.dtype.kind == 'b':
levels = xp.array([0,1])
else:
raise Exception('levels argument is required for float input types')
if not isinstance(levels, xp.ndarray):
levels = xp.array(levels)
levels = levels.astype(xp.float64)
if levels.ndim == 1:
if levels.shape[0] != 2:
raise Exception('levels argument must have length 2')
elif levels.ndim == 2:
if lut is not None and lut.ndim > 1:
raise Exception('Cannot make ARGB data when both levels and lut have ndim > 2')
if levels.shape != (data.shape[-1], 2):
raise Exception('levels must have shape (data.shape[-1], 2)')
else:
raise Exception("levels argument must be 1D or 2D (got shape=%s)." % repr(levels.shape))
profile('check inputs')
# Decide on maximum scaled value
if scale is None:
if lut is not None:
scale = lut.shape[0]
else:
scale = 255.
# Decide on the dtype we want after scaling
if lut is None:
dtype = xp.ubyte
else:
dtype = xp.min_scalar_type(lut.shape[0]-1)
# awkward, but fastest numpy native nan evaluation
nanMask = None
if maskNans and data.dtype.kind == 'f' and xp.isnan(data.min()):
nanMask = xp.isnan(data)
if data.ndim > 2:
nanMask = xp.any(nanMask, axis=-1)
# Apply levels if given
if levels is not None:
if isinstance(levels, xp.ndarray) and levels.ndim == 2:
# we are going to rescale each channel independently
if levels.shape[0] != data.shape[-1]:
raise Exception("When rescaling multi-channel data, there must be the same number of levels as channels (data.shape[-1] == levels.shape[0])")
newData = xp.empty(data.shape, dtype=int)
for i in range(data.shape[-1]):
minVal, maxVal = levels[i]
if minVal == maxVal:
maxVal = xp.nextafter(maxVal, 2*maxVal)
rng = maxVal-minVal
rng = 1 if rng == 0 else rng
newData[...,i] = rescaleData(data[...,i], scale / rng, minVal, dtype=dtype)
data = newData
else:
# Apply level scaling unless it would have no effect on the data
minVal, maxVal = levels
if minVal != 0 or maxVal != scale:
if minVal == maxVal:
maxVal = xp.nextafter(maxVal, 2*maxVal)
rng = maxVal-minVal
rng = 1 if rng == 0 else rng
data = rescaleData(data, scale/rng, minVal, dtype=dtype)
profile('apply levels')
# apply LUT if given
if lut is not None:
data = applyLookupTable(data, lut)
else:
if data.dtype != xp.ubyte:
data = xp.clip(data, 0, 255).astype(xp.ubyte)
profile('apply lut')
# this will be the final image array
if output is None:
imgData = xp.empty(data.shape[:2]+(4,), dtype=xp.ubyte)
else:
imgData = output
profile('allocate')
# decide channel order
if useRGBA:
dst_order = [0, 1, 2, 3] # R,G,B,A
elif sys.byteorder == 'little':
dst_order = [2, 1, 0, 3] # B,G,R,A (ARGB32 little endian)
else:
dst_order = [1, 2, 3, 0] # A,R,G,B (ARGB32 big endian)
if data.ndim == 2:
# This is tempting:
# imgData[..., :3] = data[..., xp.newaxis]
# ..but it turns out this is faster:
for i in range(3):
imgData[..., dst_order[i]] = data
elif data.shape[2] == 1:
for i in range(3):
imgData[..., dst_order[i]] = data[..., 0]
else:
for i in range(0, data.shape[2]):
imgData[..., dst_order[i]] = data[..., i]
profile('reorder channels')
# add opaque alpha channel if needed
if data.ndim == 3 and data.shape[2] == 4:
alpha = True
else:
alpha = False
imgData[..., dst_order[3]] = 255
# apply nan mask through alpha channel
if nanMask is not None:
alpha = True
# Workaround for https://github.com/cupy/cupy/issues/4693, fixed in cupy 10.0.0
if xp == cp and tuple(map(int, cp.__version__.split("."))) < (10, 0):
imgData[nanMask, :, dst_order[3]] = 0
else:
imgData[nanMask, dst_order[3]] = 0
profile('alpha channel')
return imgData, alpha
def ndarray_to_qimage(arr, fmt):
"""
Low level function to encapsulate QImage creation differences between bindings.
"arr" is assumed to be C-contiguous.
"""
# C++ QImage has two kind of constructors
# - QImage(const uchar*, ...)
# - QImage(uchar*, ...)
# If the const constructor is used, subsequently calling any non-const method
# will trigger the COW mechanism, i.e. a copy is made under the hood.
if QT_LIB.startswith('PyQt'):
# PyQt5 -> non-const
# PyQt6 >= 6.0.1 -> non-const
img_ptr = int(Qt.sip.voidptr(arr)) # or arr.ctypes.data
else:
# bindings that support ndarray
# PyQt5 -> const
# PyQt6 >= 6.0.1 -> const
# PySide2 -> non-const
# PySide6 -> non-const
img_ptr = arr
h, w = arr.shape[:2]
bytesPerLine = arr.strides[0]
qimg = QtGui.QImage(img_ptr, w, h, bytesPerLine, fmt)
qimg.data = arr
return qimg
def makeQImage(imgData, alpha=None, copy=True, transpose=True):
"""
Turn an ARGB array into QImage.
By default, the data is copied; changes to the array will not
be reflected in the image. The image will be given a 'data' attribute
pointing to the array which shares its data to prevent python
freeing that memory while the image is in use.
============== ===================================================================
**Arguments:**
imgData Array of data to convert. Must have shape (height, width),
(height, width, 3), or (height, width, 4). If transpose is
True, then the first two axes are swapped. The array dtype
must be ubyte. For 2D arrays, the value is interpreted as
greyscale. For 3D arrays, the order of values in the 3rd
axis must be (b, g, r, a).
alpha If the input array is 3D and *alpha* is True, the QImage
returned will have format ARGB32. If False,
the format will be RGB32. By default, _alpha_ is True if
array.shape[2] == 4.
copy If True, the data is copied before converting to QImage.
If False, the new QImage points directly to the data in the array.
Note that the array must be contiguous for this to work
(see numpy.ascontiguousarray).
transpose If True (the default), the array x/y axes are transposed before
creating the image. Note that Qt expects the axes to be in
(height, width) order whereas pyqtgraph usually prefers the
opposite.
============== ===================================================================
"""
## create QImage from buffer
profile = debug.Profiler()
copied = False
if imgData.ndim == 2:
imgFormat = QtGui.QImage.Format.Format_Grayscale8
elif imgData.ndim == 3:
# If we didn't explicitly specify alpha, check the array shape.
if alpha is None:
alpha = (imgData.shape[2] == 4)
if imgData.shape[2] == 3: # need to make alpha channel (even if alpha==False; QImage requires 32 bpp)
if copy is True:
d2 = np.empty(imgData.shape[:2] + (4,), dtype=imgData.dtype)
d2[:,:,:3] = imgData
d2[:,:,3] = 255
imgData = d2
copied = True
else:
raise Exception('Array has only 3 channels; cannot make QImage without copying.')
profile("add alpha channel")
if alpha:
imgFormat = QtGui.QImage.Format.Format_ARGB32
else:
imgFormat = QtGui.QImage.Format.Format_RGB32
else:
raise TypeError("Image array must have ndim = 2 or 3.")
if transpose:
imgData = imgData.transpose((1, 0, 2)) # QImage expects row-major order
if not imgData.flags['C_CONTIGUOUS']:
if copy is False:
extra = ' (try setting transpose=False)' if transpose else ''
raise Exception('Array is not contiguous; cannot make QImage without copying.'+extra)
imgData = np.ascontiguousarray(imgData)
copied = True
profile("ascontiguousarray")
if copy is True and copied is False:
imgData = imgData.copy()
profile("copy")
return ndarray_to_qimage(imgData, imgFormat)
def ndarray_from_qimage(qimg):
img_ptr = qimg.bits()
if img_ptr is None:
raise ValueError("Null QImage not supported")
h, w = qimg.height(), qimg.width()
bpl = qimg.bytesPerLine()
depth = qimg.depth()
logical_bpl = w * depth // 8
if QT_LIB.startswith('PyQt'):
# sizeInBytes() was introduced in Qt 5.10
# however PyQt5 5.12 will fail with:
# "TypeError: QImage.sizeInBytes() is a private method"
# note that sizeInBytes() works fine with:
# PyQt5 5.15, PySide2 5.12, PySide2 5.15
img_ptr.setsize(h * bpl)
memory = np.frombuffer(img_ptr, dtype=np.ubyte).reshape((h, bpl))
memory = memory[:, :logical_bpl]
if depth in (8, 24, 32):
dtype = np.uint8
nchan = depth // 8
elif depth in (16, 64):
dtype = np.uint16
nchan = depth // 16
else:
raise ValueError("Unsupported Image Type")
shape = h, w
if nchan != 1:
shape = shape + (nchan,)
arr = memory.view(dtype).reshape(shape)
return arr
def imageToArray(img, copy=False, transpose=True):
"""
Convert a QImage into numpy array. The image must have format RGB32, ARGB32, or ARGB32_Premultiplied.
By default, the image is not copied; changes made to the array will appear in the QImage as well (beware: if
the QImage is collected before the array, there may be trouble).
The array will have shape (width, height, (b,g,r,a)).
"""
arr = ndarray_from_qimage(img)
fmt = img.format()
if fmt == img.Format.Format_RGB32:
arr[...,3] = 255
if copy:
arr = arr.copy()
if transpose:
return arr.transpose((1,0,2))
else:
return arr
def colorToAlpha(data, color):
"""
Given an RGBA image in *data*, convert *color* to be transparent.
*data* must be an array (w, h, 3 or 4) of ubyte values and *color* must be
an array (3) of ubyte values.
This is particularly useful for use with images that have a black or white background.
Algorithm is taken from Gimp's color-to-alpha function in plug-ins/common/colortoalpha.c
Credit:
/*
* Color To Alpha plug-in v1.0 by Seth Burgess, sjburges@gimp.org 1999/05/14
* with algorithm by clahey
*/
"""
data = data.astype(float)
if data.shape[-1] == 3: ## add alpha channel if needed
d2 = np.empty(data.shape[:2]+(4,), dtype=data.dtype)
d2[...,:3] = data
d2[...,3] = 255
data = d2
color = color.astype(float)
alpha = np.zeros(data.shape[:2]+(3,), dtype=float)
output = data.copy()
for i in [0,1,2]:
d = data[...,i]
c = color[i]
mask = d > c
alpha[...,i][mask] = (d[mask] - c) / (255. - c)
imask = d < c
alpha[...,i][imask] = (c - d[imask]) / c
output[...,3] = alpha.max(axis=2) * 255.
mask = output[...,3] >= 1.0 ## avoid zero division while processing alpha channel
correction = 255. / output[...,3][mask] ## increase value to compensate for decreased alpha
for i in [0,1,2]:
output[...,i][mask] = ((output[...,i][mask]-color[i]) * correction) + color[i]
output[...,3][mask] *= data[...,3][mask] / 255. ## combine computed and previous alpha values
#raise Exception()
return np.clip(output, 0, 255).astype(np.ubyte)
def gaussianFilter(data, sigma):
"""
Drop-in replacement for scipy.ndimage.gaussian_filter.
(note: results are only approximately equal to the output of
gaussian_filter)
"""
cp = getCupy()
xp = cp.get_array_module(data) if cp else np
if xp.isscalar(sigma):
sigma = (sigma,) * data.ndim
baseline = data.mean()
filtered = data - baseline
for ax in range(data.ndim):
s = sigma[ax]
if s == 0:
continue
# generate 1D gaussian kernel
ksize = int(s * 6)
x = xp.arange(-ksize, ksize)
kernel = xp.exp(-x**2 / (2*s**2))
kshape = [1,] * data.ndim
kshape[ax] = len(kernel)
kernel = kernel.reshape(kshape)
# convolve as product of FFTs
shape = data.shape[ax] + ksize
scale = 1.0 / (abs(s) * (2*xp.pi)**0.5)
filtered = scale * xp.fft.irfft(xp.fft.rfft(filtered, shape, axis=ax) *
xp.fft.rfft(kernel, shape, axis=ax),
axis=ax)
# clip off extra data
sl = [slice(None)] * data.ndim
sl[ax] = slice(filtered.shape[ax]-data.shape[ax],None,None)
filtered = filtered[tuple(sl)]
return filtered + baseline
def downsample(data, n, axis=0, xvals='subsample'):
"""Downsample by averaging points together across axis.
If multiple axes are specified, runs once per axis.
If a metaArray is given, then the axis values can be either subsampled
or downsampled to match.
"""
ma = None
if (hasattr(data, 'implements') and data.implements('MetaArray')):
ma = data
data = data.view(np.ndarray)
if hasattr(axis, '__len__'):
if not hasattr(n, '__len__'):
n = [n]*len(axis)
for i in range(len(axis)):
data = downsample(data, n[i], axis[i])
return data
if n <= 1:
return data
nPts = int(data.shape[axis] / n)
s = list(data.shape)
s[axis] = nPts
s.insert(axis+1, n)
sl = [slice(None)] * data.ndim
sl[axis] = slice(0, nPts*n)
d1 = data[tuple(sl)]
#print d1.shape, s
d1.shape = tuple(s)
d2 = d1.mean(axis+1)
if ma is None:
return d2
else:
info = ma.infoCopy()
if 'values' in info[axis]:
if xvals == 'subsample':
info[axis]['values'] = info[axis]['values'][::n][:nPts]
elif xvals == 'downsample':
info[axis]['values'] = downsample(info[axis]['values'], n)
return MetaArray(d2, info=info)
def _compute_backfill_indices(isfinite):
# the presence of inf/nans result in an empty QPainterPath being generated
# this behavior started in Qt 5.12.3 and was introduced in this commit
# https://github.com/qt/qtbase/commit/c04bd30de072793faee5166cff866a4c4e0a9dd7
# We therefore replace non-finite values
# credit: Divakar https://stackoverflow.com/a/41191127/643629
mask = ~isfinite
idx = np.arange(len(isfinite))
idx[mask] = -1
np.maximum.accumulate(idx, out=idx)
first = np.searchsorted(idx, 0)
if first < len(isfinite):
# Replace all non-finite entries from beginning of arr with the first finite one
idx[:first] = first
return idx
else:
return None
def _arrayToQPath_all(x, y, finiteCheck):
n = x.shape[0]
if n == 0:
return QtGui.QPainterPath()
finite_idx = None
if finiteCheck:
isfinite = np.isfinite(x) & np.isfinite(y)
if not isfinite.all():
finite_idx = isfinite.nonzero()[0]
n = len(finite_idx)
if n < 2:
return QtGui.QPainterPath()
chunksize = 10000
numchunks = (n + chunksize - 1) // chunksize
minchunks = 3
if numchunks < minchunks:
# too few chunks, batching would be a pessimization
poly = create_qpolygonf(n)
arr = ndarray_from_qpolygonf(poly)
if finite_idx is None:
arr[:, 0] = x
arr[:, 1] = y
else:
arr[:, 0] = x[finite_idx]
arr[:, 1] = y[finite_idx]
path = QtGui.QPainterPath()
if hasattr(path, 'reserve'): # Qt 5.13
path.reserve(n)
path.addPolygon(poly)
return path
# at this point, we have numchunks >= minchunks
path = QtGui.QPainterPath()
if hasattr(path, 'reserve'): # Qt 5.13
path.reserve(n)
subpoly = QtGui.QPolygonF()
subpath = None
for idx in range(numchunks):
sl = slice(idx*chunksize, min((idx+1)*chunksize, n))
currsize = sl.stop - sl.start
if currsize != subpoly.size():
if hasattr(subpoly, 'resize'):
subpoly.resize(currsize)
else:
subpoly.fill(QtCore.QPointF(), currsize)
subarr = ndarray_from_qpolygonf(subpoly)
if finite_idx is None:
subarr[:, 0] = x[sl]
subarr[:, 1] = y[sl]
else:
fiv = finite_idx[sl] # view
subarr[:, 0] = x[fiv]
subarr[:, 1] = y[fiv]
if subpath is None:
subpath = QtGui.QPainterPath()
subpath.addPolygon(subpoly)
path.connectPath(subpath)
if hasattr(subpath, 'clear'): # Qt 5.13
subpath.clear()
else:
subpath = None
return path
def _arrayToQPath_finite(x, y, isfinite=None):
n = x.shape[0]
if n == 0:
return QtGui.QPainterPath()
if isfinite is None:
isfinite = np.isfinite(x) & np.isfinite(y)
path = QtGui.QPainterPath()
if hasattr(path, 'reserve'): # Qt 5.13
path.reserve(n)
sidx = np.nonzero(~isfinite)[0] + 1
# note: the chunks are views
xchunks = np.split(x, sidx)
ychunks = np.split(y, sidx)
chunks = list(zip(xchunks, ychunks))
# create a single polygon able to hold the largest chunk
maxlen = max(len(chunk) for chunk in xchunks)
subpoly = create_qpolygonf(maxlen)
subarr = ndarray_from_qpolygonf(subpoly)
# resize and fill do not change the capacity
if hasattr(subpoly, 'resize'):
subpoly_resize = subpoly.resize
else:
# PyQt will be less efficient
subpoly_resize = lambda n, v=QtCore.QPointF() : subpoly.fill(v, n)
# notes:
# - we backfill the non-finite in order to get the same image as the
# old codepath on the CI. somehow P1--P2 gets rendered differently
# from P1--P2--P2
# - we do not generate MoveTo(s) that are not followed by a LineTo,
# thus the QPainterPath can be different from the old codepath's
# all chunks except the last chunk have a trailing non-finite
for xchunk, ychunk in chunks[:-1]:
lc = len(xchunk)
if lc <= 1:
# len 1 means we have a string of non-finite
continue
subpoly_resize(lc)
subarr[:lc, 0] = xchunk
subarr[:lc, 1] = ychunk
subarr[lc-1] = subarr[lc-2] # fill non-finite with its neighbour
path.addPolygon(subpoly)
# handle last chunk, which is either all-finite or empty
for xchunk, ychunk in chunks[-1:]:
lc = len(xchunk)
if lc <= 1:
# can't draw a line with just 1 point
continue
subpoly_resize(lc)
subarr[:lc, 0] = xchunk
subarr[:lc, 1] = ychunk
path.addPolygon(subpoly)
return path
def arrayToQPath(x, y, connect='all', finiteCheck=True):
"""
Convert an array of x,y coordinates to QPainterPath as efficiently as
possible. The *connect* argument may be 'all', indicating that each point
should be connected to the next; 'pairs', indicating that each pair of
points should be connected, or an array of int32 values (0 or 1) indicating
connections.
Parameters
----------
x : np.ndarray
x-values to be plotted of shape (N,)
y : np.ndarray
y-values to be plotted, must be same length as `x` of shape (N,)
connect : {'all', 'pairs', 'finite', (N,) ndarray}, optional
Argument detailing how to connect the points in the path. `all` will
have sequential points being connected. `pairs` generates lines
between every other point. `finite` only connects points that are
finite. If an ndarray is passed, containing int32 values of 0 or 1,
only values with 1 will connect to the previous point. Def
finiteCheck : bool, default True
When false, the check for finite values will be skipped, which can
improve performance. If nonfinite values are present in `x` or `y`,
an empty QPainterPath will be generated.
Returns
-------
QPainterPath
QPainterPath object to be drawn
Raises
------
ValueError
Raised when the connect argument has an invalid value placed within.
Notes
-----
A QPainterPath is generated through one of two ways. When the connect
parameter is 'all', a QPolygonF object is created, and
``QPainterPath.addPolygon()`` is called. For other connect parameters
a ``QDataStream`` object is created and the QDataStream >> QPainterPath
operator is used to pass the data. The memory format is as follows
numVerts(i4)
0(i4) x(f8) y(f8) <-- 0 means this vertex does not connect
1(i4) x(f8) y(f8) <-- 1 means this vertex connects to the previous vertex
...
cStart(i4) fillRule(i4)
see: https://github.com/qt/qtbase/blob/dev/src/gui/painting/qpainterpath.cpp
All values are big endian--pack using struct.pack('>d') or struct.pack('>i')
This binary format may change in future versions of Qt
"""
n = x.shape[0]
if n == 0:
return QtGui.QPainterPath()
connect_array = None
if isinstance(connect, np.ndarray):
# make connect argument contain only str type
connect_array, connect = connect, 'array'
isfinite = None
if connect == 'finite':
if not finiteCheck:
# if user specified to skip finite check, then we skip the heuristic
return _arrayToQPath_finite(x, y)
# otherwise use a heuristic
# if non-finite aren't that many, then use_qpolyponf
isfinite = np.isfinite(x) & np.isfinite(y)
nonfinite_cnt = n - np.sum(isfinite)
all_isfinite = nonfinite_cnt == 0
if all_isfinite:
# delegate to connect='all'
connect = 'all'
finiteCheck = False
elif nonfinite_cnt / n < 2 / 100:
return _arrayToQPath_finite(x, y, isfinite)
else:
# delegate to connect=ndarray
# finiteCheck=True, all_isfinite=False
connect = 'array'
connect_array = isfinite
if connect == 'all':
return _arrayToQPath_all(x, y, finiteCheck)
path = QtGui.QPainterPath()
if hasattr(path, 'reserve'): # Qt 5.13
path.reserve(n)
if hasattr(path, 'reserve') and getConfigOption('enableExperimental'):
backstore = None
arr = Qt.internals.get_qpainterpath_element_array(path, n)
else:
backstore = QtCore.QByteArray()
backstore.resize(4 + n*20 + 8) # contents uninitialized
backstore.replace(0, 4, struct.pack('>i', n))
# cStart, fillRule (Qt.FillRule.OddEvenFill)
backstore.replace(4+n*20, 8, struct.pack('>ii', 0, 0))
arr = np.frombuffer(backstore, dtype=[('c', '>i4'), ('x', '>f8'), ('y', '>f8')],
count=n, offset=4)
backfill_idx = None
if finiteCheck:
if isfinite is None:
isfinite = np.isfinite(x) & np.isfinite(y)
all_isfinite = np.all(isfinite)
if not all_isfinite:
backfill_idx = _compute_backfill_indices(isfinite)
if backfill_idx is None:
arr['x'] = x
arr['y'] = y
else:
arr['x'] = x[backfill_idx]
arr['y'] = y[backfill_idx]
# decide which points are connected by lines
if connect == 'pairs':
arr['c'][0::2] = 0
arr['c'][1::2] = 1 # connect every 2nd point to every 1st one
elif connect == 'array':
# Let's call a point with either x or y being nan is an invalid point.
# A point will anyway not connect to an invalid point regardless of the
# 'c' value of the invalid point. Therefore, we should set 'c' to 0 for
# the next point of an invalid point.
arr['c'][:1] = 0 # the first vertex has no previous vertex to connect
arr['c'][1:] = connect_array[:-1]
else:
raise ValueError('connect argument must be "all", "pairs", "finite", or array')
if isinstance(backstore, QtCore.QByteArray):
ds = QtCore.QDataStream(backstore)
ds >> path
return path
def ndarray_from_qpolygonf(polyline):
# polyline.data() will be None if the pointer was null.
# voidptr(None) is the same as voidptr(0).
vp = Qt.compat.voidptr(polyline.data(), len(polyline)*2*8, True)
return np.frombuffer(vp, dtype=np.float64).reshape((-1, 2))
def create_qpolygonf(size):
polyline = QtGui.QPolygonF()
if hasattr(polyline, 'resize'):
# (PySide) and (PyQt6 >= 6.3.1)
polyline.resize(size)
else:
polyline.fill(QtCore.QPointF(), size)
return polyline
def arrayToQPolygonF(x, y):
"""
Utility function to convert two 1D-NumPy arrays representing curve data
(X-axis, Y-axis data) into a single open polygon (QtGui.PolygonF) object.
Thanks to PythonQwt for making this code available
License/copyright: MIT License © Pierre Raybaut 2020.
Parameters
----------
x : np.array
x-axis coordinates for data to be plotted, must have have ndim of 1
y : np.array
y-axis coordinates for data to be plotted, must have ndim of 1 and
be the same length as x
Returns
-------
QPolygonF
Open QPolygonF object that represents the path looking to be plotted
Raises
------
ValueError
When xdata or ydata does not meet the required criteria
"""
if not (
x.size == y.size == x.shape[0] == y.shape[0]
):
raise ValueError("Arguments must be 1D and the same size")
size = x.size
polyline = create_qpolygonf(size)
memory = ndarray_from_qpolygonf(polyline)
memory[:, 0] = x
memory[:, 1] = y
return polyline
#def isosurface(data, level):
#"""
#Generate isosurface from volumetric data using marching tetrahedra algorithm.
#See Paul Bourke, "Polygonising a Scalar Field Using Tetrahedrons" (http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/)
#*data* 3D numpy array of scalar values
#*level* The level at which to generate an isosurface
#"""
#facets = []
### mark everything below the isosurface level
#mask = data < level
#### make eight sub-fields
#fields = np.empty((2,2,2), dtype=object)
#slices = [slice(0,-1), slice(1,None)]
#for i in [0,1]:
#for j in [0,1]:
#for k in [0,1]:
#fields[i,j,k] = mask[slices[i], slices[j], slices[k]]
### split each cell into 6 tetrahedra
### these all have the same 'orienation'; points 1,2,3 circle
### clockwise around point 0
#tetrahedra = [
#[(0,1,0), (1,1,1), (0,1,1), (1,0,1)],
#[(0,1,0), (0,1,1), (0,0,1), (1,0,1)],
#[(0,1,0), (0,0,1), (0,0,0), (1,0,1)],
#[(0,1,0), (0,0,0), (1,0,0), (1,0,1)],
#[(0,1,0), (1,0,0), (1,1,0), (1,0,1)],
#[(0,1,0), (1,1,0), (1,1,1), (1,0,1)]
#]
### each tetrahedron will be assigned an index
### which determines how to generate its facets.
### this structure is:
### facets[index][facet1, facet2, ...]
### where each facet is triangular and its points are each
### interpolated between two points on the tetrahedron
### facet = [(p1a, p1b), (p2a, p2b), (p3a, p3b)]
### facet points always circle clockwise if you are looking
### at them from below the isosurface.
#indexFacets = [
#[], ## all above
#[[(0,1), (0,2), (0,3)]], # 0 below
#[[(1,0), (1,3), (1,2)]], # 1 below
#[[(0,2), (1,3), (1,2)], [(0,2), (0,3), (1,3)]], # 0,1 below
#[[(2,0), (2,1), (2,3)]], # 2 below
#[[(0,3), (1,2), (2,3)], [(0,3), (0,1), (1,2)]], # 0,2 below
#[[(1,0), (2,3), (2,0)], [(1,0), (1,3), (2,3)]], # 1,2 below
#[[(3,0), (3,1), (3,2)]], # 3 above
#[[(3,0), (3,2), (3,1)]], # 3 below
#[[(1,0), (2,0), (2,3)], [(1,0), (2,3), (1,3)]], # 0,3 below
#[[(0,3), (2,3), (1,2)], [(0,3), (1,2), (0,1)]], # 1,3 below
#[[(2,0), (2,3), (2,1)]], # 0,1,3 below
#[[(0,2), (1,2), (1,3)], [(0,2), (1,3), (0,3)]], # 2,3 below
#[[(1,0), (1,2), (1,3)]], # 0,2,3 below
#[[(0,1), (0,3), (0,2)]], # 1,2,3 below
#[] ## all below
#]
#for tet in tetrahedra:
### get the 4 fields for this tetrahedron
#tetFields = [fields[c] for c in tet]
### generate an index for each grid cell
#index = tetFields[0] + tetFields[1]*2 + tetFields[2]*4 + tetFields[3]*8
### add facets
#for i in range(index.shape[0]): # data x-axis
#for j in range(index.shape[1]): # data y-axis
#for k in range(index.shape[2]): # data z-axis
#for f in indexFacets[index[i,j,k]]: # faces to generate for this tet
#pts = []
#for l in [0,1,2]: # points in this face
#p1 = tet[f[l][0]] # tet corner 1
#p2 = tet[f[l][1]] # tet corner 2
#pts.append([(p1[x]+p2[x])*0.5+[i,j,k][x]+0.5 for x in [0,1,2]]) ## interpolate between tet corners
#facets.append(pts)
#return facets
def isocurve(data, level, connected=False, extendToEdge=False, path=False):
"""
Generate isocurve from 2D data using marching squares algorithm.
============== =========================================================
**Arguments:**
data 2D numpy array of scalar values
level The level at which to generate an isosurface
connected If False, return a single long list of point pairs
If True, return multiple long lists of connected point
locations. (This is slower but better for drawing
continuous lines)
extendToEdge If True, extend the curves to reach the exact edges of
the data.
path if True, return a QPainterPath rather than a list of
vertex coordinates. This forces connected=True.
============== =========================================================
This function is SLOW; plenty of room for optimization here.
"""
if path is True:
connected = True
if extendToEdge:
d2 = np.empty((data.shape[0]+2, data.shape[1]+2), dtype=data.dtype)
d2[1:-1, 1:-1] = data
d2[0, 1:-1] = data[0]
d2[-1, 1:-1] = data[-1]
d2[1:-1, 0] = data[:, 0]
d2[1:-1, -1] = data[:, -1]
d2[0,0] = d2[0,1]
d2[0,-1] = d2[1,-1]
d2[-1,0] = d2[-1,1]
d2[-1,-1] = d2[-1,-2]
data = d2
sideTable = [
[],
[0,1],
[1,2],
[0,2],
[0,3],
[1,3],
[0,1,2,3],
[2,3],
[2,3],
[0,1,2,3],
[1,3],
[0,3],
[0,2],
[1,2],
[0,1],
[]
]
edgeKey=[
[(0,1), (0,0)],
[(0,0), (1,0)],
[(1,0), (1,1)],
[(1,1), (0,1)]
]
lines = []
## mark everything below the isosurface level
mask = data < level
### make four sub-fields and compute indexes for grid cells
index = np.zeros([x-1 for x in data.shape], dtype=np.ubyte)
fields = np.empty((2,2), dtype=object)
slices = [slice(0,-1), slice(1,None)]
for i in [0,1]:
for j in [0,1]:
fields[i,j] = mask[slices[i], slices[j]]
#vertIndex = i - 2*j*i + 3*j + 4*k ## this is just to match Bourk's vertex numbering scheme
vertIndex = i+2*j
#print i,j,k," : ", fields[i,j,k], 2**vertIndex
np.add(index, fields[i,j] * 2**vertIndex, out=index, casting='unsafe')
#print index
#print index
## add lines
for i in range(index.shape[0]): # data x-axis
for j in range(index.shape[1]): # data y-axis
sides = sideTable[index[i,j]]
for l in range(0, len(sides), 2): ## faces for this grid cell
edges = sides[l:l+2]
pts = []
for m in [0,1]: # points in this face
p1 = edgeKey[edges[m]][0] # p1, p2 are points at either side of an edge
p2 = edgeKey[edges[m]][1]
v1 = data[i+p1[0], j+p1[1]] # v1 and v2 are the values at p1 and p2
v2 = data[i+p2[0], j+p2[1]]
f = (level-v1) / (v2-v1)
fi = 1.0 - f
p = ( ## interpolate between corners
p1[0]*fi + p2[0]*f + i + 0.5,
p1[1]*fi + p2[1]*f + j + 0.5
)
if extendToEdge:
## check bounds
p = (
min(data.shape[0]-2, max(0, p[0]-1)),
min(data.shape[1]-2, max(0, p[1]-1)),
)
if connected:
gridKey = i + (1 if edges[m]==2 else 0), j + (1 if edges[m]==3 else 0), edges[m]%2
pts.append((p, gridKey)) ## give the actual position and a key identifying the grid location (for connecting segments)
else:
pts.append(p)
lines.append(pts)
if not connected:
return lines
## turn disjoint list of segments into continuous lines
#lines = [[2,5], [5,4], [3,4], [1,3], [6,7], [7,8], [8,6], [11,12], [12,15], [11,13], [13,14]]
#lines = [[(float(a), a), (float(b), b)] for a,b in lines]
points = {} ## maps each point to its connections
for a,b in lines:
if a[1] not in points:
points[a[1]] = []
points[a[1]].append([a,b])
if b[1] not in points:
points[b[1]] = []
points[b[1]].append([b,a])
## rearrange into chains
for k in list(points.keys()):
try:
chains = points[k]
except KeyError: ## already used this point elsewhere
continue
#print "===========", k
for chain in chains:
#print " chain:", chain
x = None
while True:
if x == chain[-1][1]:
break ## nothing left to do on this chain
x = chain[-1][1]
if x == k:
break ## chain has looped; we're done and can ignore the opposite chain
y = chain[-2][1]
connects = points[x]
for conn in connects[:]:
if conn[1][1] != y:
#print " ext:", conn
chain.extend(conn[1:])
#print " del:", x
del points[x]
if chain[0][1] == chain[-1][1]: # looped chain; no need to continue the other direction
chains.pop()
break
## extract point locations
lines = []
for chain in points.values():
if len(chain) == 2:
chain = chain[1][1:][::-1] + chain[0] # join together ends of chain
else:
chain = chain[0]
lines.append([p[0] for p in chain])
if not path:
return lines ## a list of pairs of points
path = QtGui.QPainterPath()
for line in lines:
path.moveTo(*line[0])
for p in line[1:]:
path.lineTo(*p)
return path
def traceImage(image, values, smooth=0.5):
"""
Convert an image to a set of QPainterPath curves.
One curve will be generated for each item in *values*; each curve outlines the area
of the image that is closer to its value than to any others.
If image is RGB or RGBA, then the shape of values should be (nvals, 3/4)
The parameter *smooth* is expressed in pixels.
"""
if values.ndim == 2:
values = values.T
values = values[np.newaxis, np.newaxis, ...].astype(float)
image = image[..., np.newaxis].astype(float)
diff = np.abs(image-values)
if values.ndim == 4:
diff = diff.sum(axis=2)
labels = np.argmin(diff, axis=2)
paths = []
for i in range(diff.shape[-1]):
d = (labels==i).astype(float)
d = gaussianFilter(d, (smooth, smooth))
lines = isocurve(d, 0.5, connected=True, extendToEdge=True)
path = QtGui.QPainterPath()
for line in lines:
path.moveTo(*line[0])
for p in line[1:]:
path.lineTo(*p)
paths.append(path)
return paths
IsosurfaceDataCache = None
def isosurface(data, level):
"""
Generate isosurface from volumetric data using marching cubes algorithm.
See Paul Bourke, "Polygonising a Scalar Field"
(http://paulbourke.net/geometry/polygonise/)
*data* 3D numpy array of scalar values. Must be contiguous.
*level* The level at which to generate an isosurface
Returns an array of vertex coordinates (Nv, 3) and an array of
per-face vertex indexes (Nf, 3)
"""
## For improvement, see:
##
## Efficient implementation of Marching Cubes' cases with topological guarantees.
## Thomas Lewiner, Helio Lopes, Antonio Wilson Vieira and Geovan Tavares.
## Journal of Graphics Tools 8(2): pp. 1-15 (december 2003)
## Precompute lookup tables on the first run
global IsosurfaceDataCache
if IsosurfaceDataCache is None:
## map from grid cell index to edge index.
## grid cell index tells us which corners are below the isosurface,
## edge index tells us which edges are cut by the isosurface.
## (Data stolen from Bourk; see above.)
edgeTable = np.array([
0x0 , 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c,
0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00,
0x190, 0x99 , 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c,
0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90,
0x230, 0x339, 0x33 , 0x13a, 0x636, 0x73f, 0x435, 0x53c,
0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30,
0x3a0, 0x2a9, 0x1a3, 0xaa , 0x7a6, 0x6af, 0x5a5, 0x4ac,
0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0,
0x460, 0x569, 0x663, 0x76a, 0x66 , 0x16f, 0x265, 0x36c,
0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60,
0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff , 0x3f5, 0x2fc,
0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0,
0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55 , 0x15c,
0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950,
0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc ,
0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0,
0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc,
0xcc , 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0,
0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c,
0x15c, 0x55 , 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650,
0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc,
0x2fc, 0x3f5, 0xff , 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0,
0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c,
0x36c, 0x265, 0x16f, 0x66 , 0x76a, 0x663, 0x569, 0x460,
0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac,
0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa , 0x1a3, 0x2a9, 0x3a0,
0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c,
0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33 , 0x339, 0x230,
0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c,
0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99 , 0x190,
0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c,
0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0
], dtype=np.uint16)
## Table of triangles to use for filling each grid cell.
## Each set of three integers tells us which three edges to
## draw a triangle between.
## (Data stolen from Bourk; see above.)
triTable = [
[],
[0, 8, 3],
[0, 1, 9],
[1, 8, 3, 9, 8, 1],
[1, 2, 10],
[0, 8, 3, 1, 2, 10],
[9, 2, 10, 0, 2, 9],
[2, 8, 3, 2, 10, 8, 10, 9, 8],
[3, 11, 2],
[0, 11, 2, 8, 11, 0],
[1, 9, 0, 2, 3, 11],
[1, 11, 2, 1, 9, 11, 9, 8, 11],
[3, 10, 1, 11, 10, 3],
[0, 10, 1, 0, 8, 10, 8, 11, 10],
[3, 9, 0, 3, 11, 9, 11, 10, 9],
[9, 8, 10, 10, 8, 11],
[4, 7, 8],
[4, 3, 0, 7, 3, 4],
[0, 1, 9, 8, 4, 7],
[4, 1, 9, 4, 7, 1, 7, 3, 1],
[1, 2, 10, 8, 4, 7],
[3, 4, 7, 3, 0, 4, 1, 2, 10],
[9, 2, 10, 9, 0, 2, 8, 4, 7],
[2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4],
[8, 4, 7, 3, 11, 2],
[11, 4, 7, 11, 2, 4, 2, 0, 4],
[9, 0, 1, 8, 4, 7, 2, 3, 11],
[4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1],
[3, 10, 1, 3, 11, 10, 7, 8, 4],
[1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4],
[4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3],
[4, 7, 11, 4, 11, 9, 9, 11, 10],
[9, 5, 4],
[9, 5, 4, 0, 8, 3],
[0, 5, 4, 1, 5, 0],
[8, 5, 4, 8, 3, 5, 3, 1, 5],
[1, 2, 10, 9, 5, 4],
[3, 0, 8, 1, 2, 10, 4, 9, 5],
[5, 2, 10, 5, 4, 2, 4, 0, 2],
[2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8],
[9, 5, 4, 2, 3, 11],
[0, 11, 2, 0, 8, 11, 4, 9, 5],
[0, 5, 4, 0, 1, 5, 2, 3, 11],
[2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5],
[10, 3, 11, 10, 1, 3, 9, 5, 4],
[4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10],
[5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3],
[5, 4, 8, 5, 8, 10, 10, 8, 11],
[9, 7, 8, 5, 7, 9],
[9, 3, 0, 9, 5, 3, 5, 7, 3],
[0, 7, 8, 0, 1, 7, 1, 5, 7],
[1, 5, 3, 3, 5, 7],
[9, 7, 8, 9, 5, 7, 10, 1, 2],
[10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3],
[8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2],
[2, 10, 5, 2, 5, 3, 3, 5, 7],
[7, 9, 5, 7, 8, 9, 3, 11, 2],
[9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11],
[2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7],
[11, 2, 1, 11, 1, 7, 7, 1, 5],
[9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11],
[5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0],
[11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0],
[11, 10, 5, 7, 11, 5],
[10, 6, 5],
[0, 8, 3, 5, 10, 6],
[9, 0, 1, 5, 10, 6],
[1, 8, 3, 1, 9, 8, 5, 10, 6],
[1, 6, 5, 2, 6, 1],
[1, 6, 5, 1, 2, 6, 3, 0, 8],
[9, 6, 5, 9, 0, 6, 0, 2, 6],
[5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8],
[2, 3, 11, 10, 6, 5],
[11, 0, 8, 11, 2, 0, 10, 6, 5],
[0, 1, 9, 2, 3, 11, 5, 10, 6],
[5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11],
[6, 3, 11, 6, 5, 3, 5, 1, 3],
[0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6],
[3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9],
[6, 5, 9, 6, 9, 11, 11, 9, 8],
[5, 10, 6, 4, 7, 8],
[4, 3, 0, 4, 7, 3, 6, 5, 10],
[1, 9, 0, 5, 10, 6, 8, 4, 7],
[10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4],
[6, 1, 2, 6, 5, 1, 4, 7, 8],
[1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7],
[8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6],
[7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9],
[3, 11, 2, 7, 8, 4, 10, 6, 5],
[5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11],
[0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6],
[9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6],
[8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6],
[5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11],
[0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7],
[6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9],
[10, 4, 9, 6, 4, 10],
[4, 10, 6, 4, 9, 10, 0, 8, 3],
[10, 0, 1, 10, 6, 0, 6, 4, 0],
[8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10],
[1, 4, 9, 1, 2, 4, 2, 6, 4],
[3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4],
[0, 2, 4, 4, 2, 6],
[8, 3, 2, 8, 2, 4, 4, 2, 6],
[10, 4, 9, 10, 6, 4, 11, 2, 3],
[0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6],
[3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10],
[6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1],
[9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3],
[8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1],
[3, 11, 6, 3, 6, 0, 0, 6, 4],
[6, 4, 8, 11, 6, 8],
[7, 10, 6, 7, 8, 10, 8, 9, 10],
[0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10],
[10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0],
[10, 6, 7, 10, 7, 1, 1, 7, 3],
[1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7],
[2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9],
[7, 8, 0, 7, 0, 6, 6, 0, 2],
[7, 3, 2, 6, 7, 2],
[2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7],
[2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7],
[1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11],
[11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1],
[8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6],
[0, 9, 1, 11, 6, 7],
[7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0],
[7, 11, 6],
[7, 6, 11],
[3, 0, 8, 11, 7, 6],
[0, 1, 9, 11, 7, 6],
[8, 1, 9, 8, 3, 1, 11, 7, 6],
[10, 1, 2, 6, 11, 7],
[1, 2, 10, 3, 0, 8, 6, 11, 7],
[2, 9, 0, 2, 10, 9, 6, 11, 7],
[6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8],
[7, 2, 3, 6, 2, 7],
[7, 0, 8, 7, 6, 0, 6, 2, 0],
[2, 7, 6, 2, 3, 7, 0, 1, 9],
[1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6],
[10, 7, 6, 10, 1, 7, 1, 3, 7],
[10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8],
[0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7],
[7, 6, 10, 7, 10, 8, 8, 10, 9],
[6, 8, 4, 11, 8, 6],
[3, 6, 11, 3, 0, 6, 0, 4, 6],
[8, 6, 11, 8, 4, 6, 9, 0, 1],
[9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6],
[6, 8, 4, 6, 11, 8, 2, 10, 1],
[1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6],
[4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9],
[10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3],
[8, 2, 3, 8, 4, 2, 4, 6, 2],
[0, 4, 2, 4, 6, 2],
[1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8],
[1, 9, 4, 1, 4, 2, 2, 4, 6],
[8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1],
[10, 1, 0, 10, 0, 6, 6, 0, 4],
[4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3],
[10, 9, 4, 6, 10, 4],
[4, 9, 5, 7, 6, 11],
[0, 8, 3, 4, 9, 5, 11, 7, 6],
[5, 0, 1, 5, 4, 0, 7, 6, 11],
[11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5],
[9, 5, 4, 10, 1, 2, 7, 6, 11],
[6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5],
[7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2],
[3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6],
[7, 2, 3, 7, 6, 2, 5, 4, 9],
[9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7],
[3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0],
[6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8],
[9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7],
[1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4],
[4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10],
[7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10],
[6, 9, 5, 6, 11, 9, 11, 8, 9],
[3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5],
[0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11],
[6, 11, 3, 6, 3, 5, 5, 3, 1],
[1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6],
[0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10],
[11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5],
[6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3],
[5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2],
[9, 5, 6, 9, 6, 0, 0, 6, 2],
[1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8],
[1, 5, 6, 2, 1, 6],
[1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6],
[10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0],
[0, 3, 8, 5, 6, 10],
[10, 5, 6],
[11, 5, 10, 7, 5, 11],
[11, 5, 10, 11, 7, 5, 8, 3, 0],
[5, 11, 7, 5, 10, 11, 1, 9, 0],
[10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1],
[11, 1, 2, 11, 7, 1, 7, 5, 1],
[0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11],
[9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7],
[7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2],
[2, 5, 10, 2, 3, 5, 3, 7, 5],
[8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5],
[9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2],
[9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2],
[1, 3, 5, 3, 7, 5],
[0, 8, 7, 0, 7, 1, 1, 7, 5],
[9, 0, 3, 9, 3, 5, 5, 3, 7],
[9, 8, 7, 5, 9, 7],
[5, 8, 4, 5, 10, 8, 10, 11, 8],
[5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0],
[0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5],
[10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4],
[2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8],
[0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11],
[0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5],
[9, 4, 5, 2, 11, 3],
[2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4],
[5, 10, 2, 5, 2, 4, 4, 2, 0],
[3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9],
[5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2],
[8, 4, 5, 8, 5, 3, 3, 5, 1],
[0, 4, 5, 1, 0, 5],
[8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5],
[9, 4, 5],
[4, 11, 7, 4, 9, 11, 9, 10, 11],
[0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11],
[1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11],
[3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4],
[4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2],
[9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3],
[11, 7, 4, 11, 4, 2, 2, 4, 0],
[11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4],
[2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9],
[9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7],
[3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10],
[1, 10, 2, 8, 7, 4],
[4, 9, 1, 4, 1, 7, 7, 1, 3],
[4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1],
[4, 0, 3, 7, 4, 3],
[4, 8, 7],
[9, 10, 8, 10, 11, 8],
[3, 0, 9, 3, 9, 11, 11, 9, 10],
[0, 1, 10, 0, 10, 8, 8, 10, 11],
[3, 1, 10, 11, 3, 10],
[1, 2, 11, 1, 11, 9, 9, 11, 8],
[3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9],
[0, 2, 11, 8, 0, 11],
[3, 2, 11],
[2, 3, 8, 2, 8, 10, 10, 8, 9],
[9, 10, 2, 0, 9, 2],
[2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8],
[1, 10, 2],
[1, 3, 8, 9, 1, 8],
[0, 9, 1],
[0, 3, 8],
[]
]
edgeShifts = np.array([ ## maps edge ID (0-11) to (x,y,z) cell offset and edge ID (0-2)
[0, 0, 0, 0],
[1, 0, 0, 1],
[0, 1, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0],
[1, 0, 1, 1],
[0, 1, 1, 0],
[0, 0, 1, 1],
[0, 0, 0, 2],
[1, 0, 0, 2],
[1, 1, 0, 2],
[0, 1, 0, 2],
#[9, 9, 9, 9] ## fake
], dtype=np.uint16) # don't use ubyte here! This value gets added to cell index later; will need the extra precision.
nTableFaces = np.array([len(f)/3 for f in triTable], dtype=np.ubyte)
faceShiftTables = [None]
for i in range(1,6):
## compute lookup table of index: vertexes mapping
faceTableI = np.zeros((len(triTable), i*3), dtype=np.ubyte)
faceTableInds = np.argwhere(nTableFaces == i)
faceTableI[faceTableInds[:,0]] = np.array([triTable[j[0]] for j in faceTableInds])
faceTableI = faceTableI.reshape((len(triTable), i, 3))
faceShiftTables.append(edgeShifts[faceTableI])
## Let's try something different:
#faceTable = np.empty((256, 5, 3, 4), dtype=np.ubyte) # (grid cell index, faces, vertexes, edge lookup)
#for i,f in enumerate(triTable):
#f = np.array(f + [12] * (15-len(f))).reshape(5,3)
#faceTable[i] = edgeShifts[f]
IsosurfaceDataCache = (faceShiftTables, edgeShifts, edgeTable, nTableFaces)
else:
faceShiftTables, edgeShifts, edgeTable, nTableFaces = IsosurfaceDataCache
# We use strides below, which means we need contiguous array input.
# Ideally we can fix this just by removing the dependency on strides.
if not data.flags['C_CONTIGUOUS']:
raise TypeError("isosurface input data must be c-contiguous.")
## mark everything below the isosurface level
mask = data < level
### make eight sub-fields and compute indexes for grid cells
index = np.zeros([x-1 for x in data.shape], dtype=np.ubyte)
fields = np.empty((2,2,2), dtype=object)
slices = [slice(0,-1), slice(1,None)]
for i in [0,1]:
for j in [0,1]:
for k in [0,1]:
fields[i,j,k] = mask[slices[i], slices[j], slices[k]]
vertIndex = i - 2*j*i + 3*j + 4*k ## this is just to match Bourk's vertex numbering scheme
np.add(index, fields[i,j,k] * 2**vertIndex, out=index, casting='unsafe')
### Generate table of edges that have been cut
cutEdges = np.zeros([x+1 for x in index.shape]+[3], dtype=np.uint32)
edges = edgeTable[index]
for i, shift in enumerate(edgeShifts[:12]):
slices = [slice(shift[j],cutEdges.shape[j]+(shift[j]-1)) for j in range(3)]
cutEdges[slices[0], slices[1], slices[2], shift[3]] += edges & 2**i
## for each cut edge, interpolate to see where exactly the edge is cut and generate vertex positions
m = cutEdges > 0
vertexInds = np.argwhere(m) ## argwhere is slow!
vertexes = vertexInds[:,:3].astype(np.float32)
dataFlat = data.reshape(data.shape[0]*data.shape[1]*data.shape[2])
## re-use the cutEdges array as a lookup table for vertex IDs
cutEdges[vertexInds[:,0], vertexInds[:,1], vertexInds[:,2], vertexInds[:,3]] = np.arange(vertexInds.shape[0])
for i in [0,1,2]:
vim = vertexInds[:,3] == i
vi = vertexInds[vim, :3]
viFlat = (vi * (np.array(data.strides[:3]) // data.itemsize)[np.newaxis,:]).sum(axis=1)
v1 = dataFlat[viFlat]
v2 = dataFlat[viFlat + data.strides[i]//data.itemsize]
vertexes[vim,i] += (level-v1) / (v2-v1)
### compute the set of vertex indexes for each face.
## This works, but runs a bit slower.
#cells = np.argwhere((index != 0) & (index != 255)) ## all cells with at least one face
#cellInds = index[cells[:,0], cells[:,1], cells[:,2]]
#verts = faceTable[cellInds]
#mask = verts[...,0,0] != 9
#verts[...,:3] += cells[:,np.newaxis,np.newaxis,:] ## we now have indexes into cutEdges
#verts = verts[mask]
#faces = cutEdges[verts[...,0], verts[...,1], verts[...,2], verts[...,3]] ## and these are the vertex indexes we want.
## To allow this to be vectorized efficiently, we count the number of faces in each
## grid cell and handle each group of cells with the same number together.
## determine how many faces to assign to each grid cell
nFaces = nTableFaces[index]
totFaces = nFaces.sum()
faces = np.empty((totFaces, 3), dtype=np.uint32)
ptr = 0
#import debug
#p = debug.Profiler()
## this helps speed up an indexing operation later on
cs = np.array(cutEdges.strides)//cutEdges.itemsize
cutEdges = cutEdges.flatten()
## this, strangely, does not seem to help.
#ins = np.array(index.strides)/index.itemsize
#index = index.flatten()
for i in range(1,6):
### expensive:
#profiler()
cells = np.argwhere(nFaces == i) ## all cells which require i faces (argwhere is expensive)
#profiler()
if cells.shape[0] == 0:
continue
cellInds = index[cells[:,0], cells[:,1], cells[:,2]] ## index values of cells to process for this round
#profiler()
### expensive:
verts = faceShiftTables[i][cellInds]
#profiler()
np.add(verts[...,:3], cells[:,np.newaxis,np.newaxis,:], out=verts[...,:3], casting='unsafe') ## we now have indexes into cutEdges
verts = verts.reshape((verts.shape[0]*i,)+verts.shape[2:])
#profiler()
### expensive:
verts = (verts * cs[np.newaxis, np.newaxis, :]).sum(axis=2)
vertInds = cutEdges[verts]
#profiler()
nv = vertInds.shape[0]
#profiler()
faces[ptr:ptr+nv] = vertInds #.reshape((nv, 3))
#profiler()
ptr += nv
return vertexes, faces
def _pinv_fallback(tr):
arr = np.array([tr.m11(), tr.m12(), tr.m13(),
tr.m21(), tr.m22(), tr.m23(),
tr.m31(), tr.m32(), tr.m33()])
arr.shape = (3, 3)
pinv = np.linalg.pinv(arr)
return QtGui.QTransform(*pinv.ravel().tolist())
def invertQTransform(tr):
"""Return a QTransform that is the inverse of *tr*.
A pseudo-inverse is returned if tr is not invertible.
Note that this function is preferred over QTransform.inverted() due to
bugs in that method. (specifically, Qt has floating-point precision issues
when determining whether a matrix is invertible)
"""
try:
det = tr.determinant()
detr = 1.0 / det # let singular matrices raise ZeroDivisionError
inv = tr.adjoint()
inv *= detr
return inv
except ZeroDivisionError:
return _pinv_fallback(tr)
def pseudoScatter(data, spacing=None, shuffle=True, bidir=False, method='exact'):
"""Return an array of position values needed to make beeswarm or column scatter plots.
Used for examining the distribution of values in an array.
Given an array of x-values, construct an array of y-values such that an x,y scatter-plot
will not have overlapping points (it will look similar to a histogram).
"""
if method == 'exact':
return _pseudoScatterExact(data, spacing=spacing, shuffle=shuffle, bidir=bidir)
elif method == 'histogram':
return _pseudoScatterHistogram(data, spacing=spacing, shuffle=shuffle, bidir=bidir)
def _pseudoScatterHistogram(data, spacing=None, shuffle=True, bidir=False):
"""Works by binning points into a histogram and spreading them out to fill the bin.
Faster method, but can produce blocky results.
"""
inds = np.arange(len(data))
if shuffle:
np.random.shuffle(inds)
data = data[inds]
if spacing is None:
spacing = 2.*np.std(data)/len(data)**0.5
yvals = np.empty(len(data))
dmin = data.min()
dmax = data.max()
nbins = int((dmax-dmin) / spacing) + 1
bins = np.linspace(dmin, dmax, nbins)
dx = bins[1] - bins[0]
dbins = ((data - bins[0]) / dx).astype(int)
binCounts = {}
for i,j in enumerate(dbins):
c = binCounts.get(j, -1) + 1
binCounts[j] = c
yvals[i] = c
if bidir is True:
for i in range(nbins):
yvals[dbins==i] -= binCounts.get(i, 0) * 0.5
return yvals[np.argsort(inds)] ## un-shuffle values before returning
def _pseudoScatterExact(data, spacing=None, shuffle=True, bidir=False):
"""Works by stacking points up one at a time, searching for the lowest position available at each point.
This method produces nice, smooth results but can be prohibitively slow for large datasets.
"""
inds = np.arange(len(data))
if shuffle:
np.random.shuffle(inds)
data = data[inds]
if spacing is None:
spacing = 2.*np.std(data)/len(data)**0.5
s2 = spacing**2
yvals = np.empty(len(data))
if len(data) == 0:
return yvals
yvals[0] = 0
for i in range(1,len(data)):
x = data[i] # current x value to be placed
x0 = data[:i] # all x values already placed
y0 = yvals[:i] # all y values already placed
y = 0
dx = (x0-x)**2 # x-distance to each previous point
xmask = dx < s2 # exclude anything too far away
if xmask.sum() > 0:
if bidir:
dirs = [-1, 1]
else:
dirs = [1]
yopts = []
for direction in dirs:
y = 0
dx2 = dx[xmask]
dy = (s2 - dx2)**0.5
limits = np.empty((2,len(dy))) # ranges of y-values to exclude
limits[0] = y0[xmask] - dy
limits[1] = y0[xmask] + dy
while True:
# ignore anything below this y-value
if direction > 0:
mask = limits[1] >= y
else:
mask = limits[0] <= y
limits2 = limits[:,mask]
# are we inside an excluded region?
mask = (limits2[0] < y) & (limits2[1] > y)
if mask.sum() == 0:
break
if direction > 0:
y = limits2[:,mask].max()
else:
y = limits2[:,mask].min()
yopts.append(y)
if bidir:
y = yopts[0] if -yopts[0] < yopts[1] else yopts[1]
else:
y = yopts[0]
yvals[i] = y
return yvals[np.argsort(inds)] ## un-shuffle values before returning
def toposort(deps, nodes=None, seen=None, stack=None, depth=0):
"""Topological sort. Arguments are:
deps dictionary describing dependencies where a:[b,c] means "a depends on b and c"
nodes optional, specifies list of starting nodes (these should be the nodes
which are not depended on by any other nodes). Other candidate starting
nodes will be ignored.
Example::
# Sort the following graph:
#
# B ──┬─────> C <── D
# │ │
# E <─┴─> A <─┘
#
deps = {'a': ['b', 'c'], 'c': ['b', 'd'], 'e': ['b']}
toposort(deps)
=> ['b', 'd', 'c', 'a', 'e']
"""
# fill in empty dep lists
deps = deps.copy()
for k,v in list(deps.items()):
for k in v:
if k not in deps:
deps[k] = []
if nodes is None:
## run through deps to find nodes that are not depended upon
rem = set()
for dep in deps.values():
rem |= set(dep)
nodes = set(deps.keys()) - rem
if seen is None:
seen = set()
stack = []
sorted = []
for n in nodes:
if n in stack:
raise Exception("Cyclic dependency detected", stack + [n])
if n in seen:
continue
seen.add(n)
sorted.extend( toposort(deps, deps[n], seen, stack+[n], depth=depth+1))
sorted.append(n)
return sorted
def disconnect(signal, slot):
"""Disconnect a Qt signal from a slot.
This method augments Qt's Signal.disconnect():
* Return bool indicating whether disconnection was successful, rather than
raising an exception
* Attempt to disconnect prior versions of the slot when using pg.reload
"""
while True:
try:
success = signal.disconnect(slot)
if success is None: # PyQt
success = True
except (TypeError, RuntimeError):
success = False
if success:
return True
slot = reload.getPreviousVersion(slot)
if slot is None:
return False
class SignalBlock(object):
"""Class used to temporarily block a Qt signal connection::
with SignalBlock(signal, slot):
# do something that emits a signal; it will
# not be delivered to slot
"""
def __init__(self, signal, slot):
self.signal = signal
self.slot = slot
def __enter__(self):
self.reconnect = disconnect(self.signal, self.slot)
return self
def __exit__(self, *args):
if self.reconnect:
self.signal.connect(self.slot)
|