File: PColorMeshItem.py

package info (click to toggle)
python-pyqtgraph 0.13.7-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,068 kB
  • sloc: python: 54,043; makefile: 129; ansic: 40; sh: 2
file content (388 lines) | stat: -rw-r--r-- 13,856 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import numpy as np

from .. import Qt, colormap
from .. import functions as fn
from ..Qt import QtCore, QtGui
from .GraphicsObject import GraphicsObject

__all__ = ['PColorMeshItem']


class QuadInstances:
    def __init__(self):
        self.nrows = -1
        self.ncols = -1
        self.pointsarray = Qt.internals.PrimitiveArray(QtCore.QPointF, 2)
        self.resize(0, 0)

    def resize(self, nrows, ncols):
        if nrows == self.nrows and ncols == self.ncols:
            return

        self.nrows = nrows
        self.ncols = ncols

        # (nrows + 1) * (ncols + 1) vertices, (x, y)
        self.pointsarray.resize((nrows+1)*(ncols+1))
        points = self.pointsarray.instances()
        # points is a flattened list of a 2d array of
        # QPointF(s) of shape (nrows+1, ncols+1)

        # pre-create quads from those instances of QPointF(s).
        # store the quads as a flattened list of a 2d array
        # of polygons of shape (nrows, ncols)
        polys = []
        for r in range(nrows):
            for c in range(ncols):
                bl = points[(r+0)*(ncols+1)+(c+0)]
                tl = points[(r+0)*(ncols+1)+(c+1)]
                br = points[(r+1)*(ncols+1)+(c+0)]
                tr = points[(r+1)*(ncols+1)+(c+1)]
                poly = (bl, br, tr, tl)
                polys.append(poly)
        self.polys = polys

    def ndarray(self):
        return self.pointsarray.ndarray()

    def instances(self):
        return self.polys


class PColorMeshItem(GraphicsObject):
    """
    **Bases:** :class:`GraphicsObject <pyqtgraph.GraphicsObject>`
    """

    sigLevelsChanged = QtCore.Signal(object)  # emits tuple with levels (low,high) when color levels are changed.

    def __init__(self, *args, **kwargs):
        """
        Create a pseudocolor plot with convex polygons.

        Call signature:

        ``PColorMeshItem([x, y,] z, **kwargs)``

        x and y can be used to specify the corners of the quadrilaterals.
        z must be used to specified to color of the quadrilaterals.

        Parameters
        ----------
        x, y : np.ndarray, optional, default None
            2D array containing the coordinates of the polygons
        z : np.ndarray
            2D array containing the value which will be mapped into the polygons
            colors.
            If x and y is None, the polygons will be displaced on a grid
            otherwise x and y will be used as polygons vertices coordinates as::

                (x[i+1, j], y[i+1, j])           (x[i+1, j+1], y[i+1, j+1])
                                    +---------+
                                    | z[i, j] |
                                    +---------+
                    (x[i, j], y[i, j])           (x[i, j+1], y[i, j+1])

            "ASCII from: <https://matplotlib.org/3.2.1/api/_as_gen/matplotlib.pyplot.pcolormesh.html>".
        colorMap : pyqtgraph.ColorMap
            Colormap used to map the z value to colors.
            default ``pyqtgraph.colormap.get('viridis')``
        levels: tuple, optional, default None
            Sets the minimum and maximum values to be represented by the colormap (min, max). 
            Values outside this range will be clipped to the colors representing min or max.
            ``None`` disables the limits, meaning that the colormap will autoscale 
            the next time ``setData()`` is called with new data.
        enableAutoLevels: bool, optional, default True
            Causes the colormap levels to autoscale whenever ``setData()`` is called. 
            It is possible to override this value on a per-change-basis by using the
            ``autoLevels`` keyword argument when calling ``setData()``.
            If ``enableAutoLevels==False`` and ``levels==None``, autoscaling will be 
            performed once when the first z data is supplied. 
        edgecolors : dict, optional
            The color of the edges of the polygons.
            Default None means no edges.
            Only cosmetic pens are supported.
            The dict may contains any arguments accepted by :func:`mkColor() <pyqtgraph.mkColor>`.
            Example: ``mkPen(color='w', width=2)``
        antialiasing : bool, default False
            Whether to draw edgelines with antialiasing.
            Note that if edgecolors is None, antialiasing is always False.
        """

        GraphicsObject.__init__(self)

        self.qpicture = None  ## rendered picture for display
        self.x = None
        self.y = None
        self.z = None
        self._dataBounds = None

        self.edgecolors = kwargs.get('edgecolors', None)
        if self.edgecolors is not None:
            self.edgecolors = fn.mkPen(self.edgecolors)
            # force the pen to be cosmetic. see discussion in
            # https://github.com/pyqtgraph/pyqtgraph/pull/2586
            self.edgecolors.setCosmetic(True)
        self.antialiasing = kwargs.get('antialiasing', False)
        self.levels = kwargs.get('levels', None)
        self._defaultAutoLevels = kwargs.get('enableAutoLevels', True)
        
        if 'colorMap' in kwargs:
            cmap = kwargs.get('colorMap')
            if not isinstance(cmap, colormap.ColorMap):
                raise ValueError('colorMap argument must be a ColorMap instance')
            self.cmap = cmap
        else:
            self.cmap = colormap.get('viridis')

        self.lut_qcolor = self.cmap.getLookupTable(nPts=256, mode=self.cmap.QCOLOR)

        self.quads = QuadInstances()

        # If some data have been sent we directly display it
        if len(args)>0:
            self.setData(*args)


    def _prepareData(self, args):
        """
        Check the shape of the data.
        Return a set of 2d array x, y, z ready to be used to draw the picture.
        """

        # User didn't specified data
        if len(args)==0:

            self.x = None
            self.y = None
            self.z = None

            self._dataBounds = None
            
        # User only specified z
        elif len(args)==1:
            # If x and y is None, the polygons will be displaced on a grid
            x = np.arange(0, args[0].shape[0]+1, 1)
            y = np.arange(0, args[0].shape[1]+1, 1)
            self.x, self.y = np.meshgrid(x, y, indexing='ij')
            self.z = args[0]

            self._dataBounds = ((x[0], x[-1]), (y[0], y[-1]))

        # User specified x, y, z
        elif len(args)==3:

            # Shape checking
            if args[0].shape[0] != args[2].shape[0]+1 or args[0].shape[1] != args[2].shape[1]+1:
                raise ValueError('The dimension of x should be one greater than the one of z')
            
            if args[1].shape[0] != args[2].shape[0]+1 or args[1].shape[1] != args[2].shape[1]+1:
                raise ValueError('The dimension of y should be one greater than the one of z')
        
            self.x = args[0]
            self.y = args[1]
            self.z = args[2]

            xmn, xmx = np.min(self.x), np.max(self.x)
            ymn, ymx = np.min(self.y), np.max(self.y)
            self._dataBounds = ((xmn, xmx), (ymn, ymx))

        else:
            raise ValueError('Data must been sent as (z) or (x, y, z)')


    def setData(self, *args, **kwargs):
        """
        Set the data to be drawn.

        Parameters
        ----------
        x, y : np.ndarray, optional, default None
            2D array containing the coordinates of the polygons
        z : np.ndarray
            2D array containing the value which will be mapped into the polygons
            colors.
            If x and y is None, the polygons will be displaced on a grid
            otherwise x and y will be used as polygons vertices coordinates as::
                
                (x[i+1, j], y[i+1, j])           (x[i+1, j+1], y[i+1, j+1])
                                    +---------+
                                    | z[i, j] |
                                    +---------+
                    (x[i, j], y[i, j])           (x[i, j+1], y[i, j+1])

            "ASCII from: <https://matplotlib.org/3.2.1/api/_as_gen/
                         matplotlib.pyplot.pcolormesh.html>".
        autoLevels: bool, optional
            If set, overrides the value of ``enableAutoLevels``
        """
        old_bounds = self._dataBounds
        self._prepareData(args)
        boundsChanged = old_bounds != self._dataBounds

        self._rerender(
            autoLevels=kwargs.get('autoLevels', self._defaultAutoLevels)
        )

        if boundsChanged:
            self.prepareGeometryChange()
            self.informViewBoundsChanged()

        self.update()

    def _rerender(self, *, autoLevels):
        self.qpicture = None
        if self.z is not None:
            if (self.levels is None) or autoLevels:
                # Autoscale colormap
                z_min = self.z.min()
                z_max = self.z.max()
                self.setLevels( (z_min, z_max), update=False)
            self.qpicture = self._drawPicture()

    def _drawPicture(self) -> QtGui.QPicture:
        # on entry, the following members are all valid: x, y, z, levels
        # this function does not alter any state (besides using self.quads)

        picture = QtGui.QPicture()
        painter = QtGui.QPainter(picture)
        # We set the pen of all polygons once
        if self.edgecolors is None:
            painter.setPen(QtCore.Qt.PenStyle.NoPen)
        else:
            painter.setPen(self.edgecolors)
            if self.antialiasing:
                painter.setRenderHint(QtGui.QPainter.RenderHint.Antialiasing)

        ## Prepare colormap
        # First we get the LookupTable
        lut = self.lut_qcolor
        # Second we associate each z value, that we normalize, to the lut
        scale = len(lut) - 1
        lo, hi = self.levels[0], self.levels[1]
        rng = hi - lo
        if rng == 0:
            rng = 1
        norm = fn.rescaleData(self.z, scale / rng, lo, dtype=int, clip=(0, len(lut)-1))

        if Qt.QT_LIB.startswith('PyQt'):
            drawConvexPolygon = lambda x : painter.drawConvexPolygon(*x)
        else:
            drawConvexPolygon = painter.drawConvexPolygon

        self.quads.resize(self.z.shape[0], self.z.shape[1])
        memory = self.quads.ndarray()
        memory[..., 0] = self.x.ravel()
        memory[..., 1] = self.y.ravel()
        polys = self.quads.instances()

        # group indices of same coloridx together
        color_indices, counts = np.unique(norm, return_counts=True)
        sorted_indices = np.argsort(norm, axis=None)

        offset = 0
        for coloridx, cnt in zip(color_indices, counts):
            indices = sorted_indices[offset:offset+cnt]
            offset += cnt
            painter.setBrush(lut[coloridx])
            for idx in indices:
                drawConvexPolygon(polys[idx])

        painter.end()
        return picture


    def setLevels(self, levels, update=True):
        """
        Sets color-scaling levels for the mesh. 
        
        Parameters
        ----------
            levels: tuple
                ``(low, high)`` 
                sets the range for which values can be represented in the colormap.
            update: bool, optional
                Controls if mesh immediately updates to reflect the new color levels.
        """
        self.levels = levels
        self.sigLevelsChanged.emit(levels)
        if update:
            self._rerender(autoLevels=False)
            self.update()

    def getLevels(self):
        """
        Returns a tuple containing the current level settings. See :func:`~setLevels`.
        The format is ``(low, high)``.
        """
        return self.levels


    
    def setLookupTable(self, lut, update=True):
        self.cmap = None    # invalidate since no longer consistent with lut
        self.lut_qcolor = lut[:]
        if update:
            self._rerender(autoLevels=False)
            self.update()

    def getColorMap(self):
        return self.cmap

    def setColorMap(self, cmap):
        self.setLookupTable(cmap.getLookupTable(nPts=256, mode=cmap.QCOLOR), update=True)
        self.cmap = cmap

    def enableAutoLevels(self):
        self._defaultAutoLevels = True

    def disableAutoLevels(self):
        self._defaultAutoLevels = False

    def paint(self, p, *args):
        if self.qpicture is not None:
            p.drawPicture(0, 0, self.qpicture)

    def width(self):
        if self._dataBounds is None:
            return 0
        bounds = self._dataBounds[0]
        return bounds[1]-bounds[0]

    def height(self):
        if self._dataBounds is None:
            return 0
        bounds = self._dataBounds[1]
        return bounds[1]-bounds[0]

    def dataBounds(self, ax, frac=1.0, orthoRange=None):
        if self._dataBounds is None:
            return (None, None)
        return self._dataBounds[ax]

    def pixelPadding(self):
        # pen is known to be cosmetic
        pen = self.edgecolors
        no_pen = (pen is None) or (pen.style() == QtCore.Qt.PenStyle.NoPen)
        return 0 if no_pen else (pen.widthF() or 1) * 0.5

    def boundingRect(self):
        xmn, xmx = self.dataBounds(ax=0)
        if xmn is None or xmx is None:
            return QtCore.QRectF()
        ymn, ymx = self.dataBounds(ax=1)
        if ymn is None or ymx is None:
            return QtCore.QRectF()

        px = py = 0
        pxPad = self.pixelPadding()
        if pxPad > 0:
            # determine length of pixel in local x, y directions
            px, py = self.pixelVectors()
            px = 0 if px is None else px.length()
            py = 0 if py is None else py.length()
            # return bounds expanded by pixel size
            px *= pxPad
            py *= pxPad

        return QtCore.QRectF(xmn-px, ymn-py, (2*px)+xmx-xmn, (2*py)+ymx-ymn)