File: ImageView.py

package info (click to toggle)
python-pyqtgraph 0.13.7-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 8,068 kB
  • sloc: python: 54,043; makefile: 129; ansic: 40; sh: 2
file content (947 lines) | stat: -rw-r--r-- 33,953 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
"""
ImageView.py -  Widget for basic image dispay and analysis
Copyright 2010  Luke Campagnola
Distributed under MIT/X11 license. See license.txt for more information.

Widget used for displaying 2D or 3D data. Features:
  - float or int (including 16-bit int) image display via ImageItem
  - zoom/pan via GraphicsView
  - black/white level controls
  - time slider for 3D data sets
  - ROI plotting
  - Image normalization through a variety of methods
"""
import os
from math import log10
from time import perf_counter

import numpy as np

from .. import debug as debug
from .. import functions as fn
from .. import getConfigOption
from ..graphicsItems.GradientEditorItem import addGradientListToDocstring
from ..graphicsItems.ImageItem import ImageItem
from ..graphicsItems.InfiniteLine import InfiniteLine
from ..graphicsItems.LinearRegionItem import LinearRegionItem
from ..graphicsItems.ROI import ROI
from ..graphicsItems.ViewBox import ViewBox
from ..graphicsItems.VTickGroup import VTickGroup
from ..Qt import QtCore, QtGui, QtWidgets
from ..SignalProxy import SignalProxy
from . import ImageViewTemplate_generic as ui_template

try:
    from bottleneck import nanmax, nanmin
except ImportError:
    from numpy import nanmax, nanmin

translate = QtCore.QCoreApplication.translate


class PlotROI(ROI):
    def __init__(self, size):
        ROI.__init__(self, pos=[0,0], size=size) #, scaleSnap=True, translateSnap=True)
        self.addScaleHandle([1, 1], [0, 0])
        self.addRotateHandle([0, 0], [0.5, 0.5])


class ImageView(QtWidgets.QWidget):
    """
    Widget used for display and analysis of image data.
    Implements many features:
    
      * Displays 2D and 3D image data. For 3D data, a z-axis
        slider is displayed allowing the user to select which frame is displayed.
      * Displays histogram of image data with movable region defining the dark/light levels
      * Editable gradient provides a color lookup table
      * Frame slider may also be moved using left/right arrow keys as well as pgup, pgdn, home, and end.
      * Basic analysis features including:

          * ROI and embedded plot for measuring image values across frames
          * Image normalization / background subtraction
    
    Basic Usage::
    
        imv = pg.ImageView()
        imv.show()
        imv.setImage(data)
        
    **Keyboard interaction**
    
      * left/right arrows step forward/backward 1 frame when pressed,
        seek at 20fps when held.
      * up/down arrows seek at 100fps
      * pgup/pgdn seek at 1000fps
      * home/end seek immediately to the first/last frame
      * space begins playing frames. If time values (in seconds) are given
        for each frame, then playback is in realtime.
    """
    sigTimeChanged = QtCore.Signal(object, object)
    sigProcessingChanged = QtCore.Signal(object)
    
    def __init__(
            self,
            parent=None,
            name="ImageView",
            view=None,
            imageItem=None,
            levelMode='mono',
            discreteTimeLine=False,
            roi=None,
            normRoi=None,
            *args,
    ):
        """
        By default, this class creates an :class:`ImageItem <pyqtgraph.ImageItem>` to display image data
        and a :class:`ViewBox <pyqtgraph.ViewBox>` to contain the ImageItem.

        Parameters
        ----------
        parent : QWidget
            Specifies the parent widget to which this ImageView will belong. If None, then the ImageView is created with
            no parent.
        name : str
            The name used to register both the internal ViewBox and the PlotItem used to display ROI data. See the
            *name* argument to :func:`ViewBox.__init__() <pyqtgraph.ViewBox.__init__>`.
        view : ViewBox or PlotItem
            If specified, this will be used as the display area that contains the displayed image. Any
            :class:`ViewBox <pyqtgraph.ViewBox>`, :class:`PlotItem <pyqtgraph.PlotItem>`, or other compatible object is
            acceptable. Note: to display axis ticks inside the ImageView, instantiate it with a PlotItem instance as its
            view::

                pg.ImageView(view=pg.PlotItem())
        imageItem : ImageItem
            If specified, this object will be used to display the image. Must be an instance of ImageItem or other
            compatible object.
        levelMode : str
            See the *levelMode* argument to :func:`HistogramLUTItem.__init__() <pyqtgraph.HistogramLUTItem.__init__>`
        discreteTimeLine : bool
            Whether to snap to xvals / frame numbers when interacting with the timeline position.
        roi : ROI
            If specified, this object is used as ROI for the plot feature. Must be an instance of ROI.
        normRoi : ROI
            If specified, this object is used as ROI for the normalization feature. Must be an instance of ROI.
        """
        QtWidgets.QWidget.__init__(self, parent, *args)
        self._imageLevels = None  # [(min, max), ...] per channel image metrics
        self.levelMin = None    # min / max levels across all channels
        self.levelMax = None

        self.name = name
        self.image = None
        self.axes = {}
        self.imageDisp = None
        self.ui = ui_template.Ui_Form()
        self.ui.setupUi(self)
        self.scene = self.ui.graphicsView.scene()
        self.discreteTimeLine = discreteTimeLine
        self.ui.histogram.setLevelMode(levelMode)
        self.ignoreTimeLine = False

        if view is None:
            self.view = ViewBox()
        else:
            self.view = view
        self.ui.graphicsView.setCentralItem(self.view)
        self.view.setAspectLocked(True)
        self.view.invertY()
        
        self.menu = None
        
        self.ui.normGroup.hide()

        if roi is None:
            self.roi = PlotROI(10)
        else:
            self.roi = roi
        self.roi.setZValue(20)
        self.view.addItem(self.roi)
        self.roi.hide()
        if normRoi is None:
            self.normRoi = PlotROI(10)
            self.normRoi.setPen('y')
        else:
            self.normRoi = normRoi
        self.normRoi.setZValue(20)
        self.view.addItem(self.normRoi)
        self.normRoi.hide()
        self.roiCurves = []
        self.timeLine = InfiniteLine(0, movable=True)
        if getConfigOption('background')=='w':
            self.timeLine.setPen((20, 80,80, 200))
        else:
            self.timeLine.setPen((255, 255, 0, 200))
        self.timeLine.setZValue(1)
        self.ui.roiPlot.addItem(self.timeLine)
        self.ui.splitter.setSizes([self.height()-35, 35])

        # init imageItem and histogram
        if imageItem is None:
            self.imageItem = ImageItem()
        else:
            self.imageItem = imageItem
            self.setImage(imageItem.image, autoRange=False, autoLevels=False, transform=imageItem.transform())
        self.view.addItem(self.imageItem)
        self.currentIndex = 0
        
        self.ui.histogram.setImageItem(self.imageItem)
        self.ui.histogram.setLevelMode(levelMode)
        
        # make splitter an unchangeable small grey line:
        s = self.ui.splitter
        s.handle(1).setEnabled(False)
        s.setStyleSheet("QSplitter::handle{background-color: grey}")
        s.setHandleWidth(2)

        self.ui.roiPlot.hideAxis('left')
        self.frameTicks = VTickGroup(yrange=[0.8, 1], pen=0.4)
        self.ui.roiPlot.addItem(self.frameTicks, ignoreBounds=True)
        
        self.keysPressed = {}
        self.playTimer = QtCore.QTimer()
        self.playRate = 0
        self._pausedPlayRate = None
        self.fps = 1  # 1 Hz by default
        self.lastPlayTime = 0
        
        self.normRgn = LinearRegionItem()
        self.normRgn.setZValue(0)
        self.ui.roiPlot.addItem(self.normRgn)
        self.normRgn.hide()
            
        ## wrap functions from view box
        for fn in ['addItem', 'removeItem']:
            setattr(self, fn, getattr(self.view, fn))

        ## wrap functions from histogram
        for fn in ['setHistogramRange', 'autoHistogramRange', 'getLookupTable', 'getLevels']:
            setattr(self, fn, getattr(self.ui.histogram, fn))

        self.timeLine.sigPositionChanged.connect(self.timeLineChanged)
        self.ui.roiBtn.clicked.connect(self.roiClicked)
        self.roi.sigRegionChanged.connect(self.roiChanged)
        #self.ui.normBtn.toggled.connect(self.normToggled)
        self.ui.menuBtn.clicked.connect(self.menuClicked)
        self.ui.normDivideRadio.clicked.connect(self.normRadioChanged)
        self.ui.normSubtractRadio.clicked.connect(self.normRadioChanged)
        self.ui.normOffRadio.clicked.connect(self.normRadioChanged)
        self.ui.normROICheck.clicked.connect(self.updateNorm)
        self.ui.normFrameCheck.clicked.connect(self.updateNorm)
        self.ui.normTimeRangeCheck.clicked.connect(self.updateNorm)
        self.playTimer.timeout.connect(self.timeout)
        
        self.normProxy = SignalProxy(
            self.normRgn.sigRegionChanged,
            slot=self.updateNorm,
            threadSafe=False,
        )
        self.normRoi.sigRegionChangeFinished.connect(self.updateNorm)
        
        self.ui.roiPlot.registerPlot(self.name + '_ROI')
        self.view.register(self.name)
        
        self.noRepeatKeys = [
            QtCore.Qt.Key.Key_Right,
            QtCore.Qt.Key.Key_Left,
            QtCore.Qt.Key.Key_Up,
            QtCore.Qt.Key.Key_Down,
            QtCore.Qt.Key.Key_PageUp,
            QtCore.Qt.Key.Key_PageDown,
        ]
        
        self.roiClicked() ## initialize roi plot to correct shape / visibility

    def setImage(
            self,
            img,
            autoRange=True,
            autoLevels=True,
            levels=None,
            axes=None,
            xvals=None,
            pos=None,
            scale=None,
            transform=None,
            autoHistogramRange=True,
            levelMode=None,
    ):
        """
        Set the image to be displayed in the widget.

        Parameters
        ----------
        img : np.ndarray
            The image to be displayed. See :func:`ImageItem.setImage` and *notes* below.
        autoRange : bool
            Whether to scale/pan the view to fit the image.
        autoLevels : bool
            Whether to update the white/black levels to fit the image.
        levels : tuple
            (min, max) white and black level values to use.
        axes : dict
            Dictionary indicating the interpretation for each axis. This is only needed to override the default guess.
            Format is::

                {'t':0, 'x':1, 'y':2, 'c':3};
        xvals : np.ndarray
            1D array of values corresponding to the first axis in a 3D image. For video, this array should contain
            the time of each frame.
        pos
            Change the position of the displayed image
        scale
            Change the scale of the displayed image
        transform
            Set the transform of the displayed image. This option overrides *pos* and *scale*.
        autoHistogramRange : bool
            If True, the histogram y-range is automatically scaled to fit the image data.
        levelMode : str
            If specified, this sets the user interaction mode for setting image levels. Options are 'mono',
            which provides a single level control for all image channels, and 'rgb' or 'rgba', which provide
            individual controls for each channel.

        Notes
        -----
        For backward compatibility, image data is assumed to be in column-major order (column, row).
        However, most image data is stored in row-major order (row, column) and will need to be
        transposed before calling setImage()::
        
            imageview.setImage(imagedata.T)
            
        This requirement can be changed by the ``imageAxisOrder``
        :ref:`global configuration option <apiref_config>`.
        """
        profiler = debug.Profiler()

        if hasattr(img, 'implements') and img.implements('MetaArray'):
            img = img.asarray()

        if not isinstance(img, np.ndarray):
            required = ['dtype', 'max', 'min', 'ndim', 'shape', 'size']
            if not all(hasattr(img, attr) for attr in required):
                raise TypeError("Image must be NumPy array or any object "
                                "that provides compatible attributes/methods:\n"
                                "  %s" % str(required))

        self.image = img
        self.imageDisp = None
        if levelMode is not None:
            self.ui.histogram.setLevelMode(levelMode)

        profiler()

        if axes is None:
            x,y = (0, 1) if self.imageItem.axisOrder == 'col-major' else (1, 0)

            if img.ndim == 2:
                self.axes = {'t': None, 'x': x, 'y': y, 'c': None}
            elif img.ndim == 3:
                # Ambiguous case; make a guess
                if img.shape[2] <= 4:
                    self.axes = {'t': None, 'x': x, 'y': y, 'c': 2}
                else:
                    self.axes = {'t': 0, 'x': x+1, 'y': y+1, 'c': None}
            elif img.ndim == 4:
                # Even more ambiguous; just assume the default
                self.axes = {'t': 0, 'x': x+1, 'y': y+1, 'c': 3}
            else:
                raise Exception("Can not interpret image with dimensions %s" % (str(img.shape)))
        elif isinstance(axes, dict):
            self.axes = axes.copy()
        elif isinstance(axes, list) or isinstance(axes, tuple):
            self.axes = {}
            for i in range(len(axes)):
                self.axes[axes[i]] = i
        else:
            raise Exception("Can not interpret axis specification %s. Must be like {'t': 2, 'x': 0, 'y': 1} or ('t', 'x', 'y', 'c')" % (str(axes)))
            
        for x in ['t', 'x', 'y', 'c']:
            self.axes[x] = self.axes.get(x, None)
        axes = self.axes

        if xvals is not None:
            self.tVals = xvals
        elif axes['t'] is not None:
            if hasattr(img, 'xvals'):
                try:
                    self.tVals = img.xvals(axes['t'])
                except:
                    self.tVals = np.arange(img.shape[axes['t']])
            else:
                self.tVals = np.arange(img.shape[axes['t']])

        profiler()

        self.currentIndex = 0
        self.updateImage(autoHistogramRange=autoHistogramRange)
        if levels is None and autoLevels:
            self.autoLevels()
        if levels is not None:  ## this does nothing since getProcessedImage sets these values again.
            self.setLevels(*levels)
            
        if self.ui.roiBtn.isChecked():
            self.roiChanged()

        profiler()

        if self.axes['t'] is not None:
            self.ui.roiPlot.setXRange(self.tVals.min(), self.tVals.max())
            self.frameTicks.setXVals(self.tVals)
            self.timeLine.setValue(0)
            if len(self.tVals) > 1:
                start = self.tVals.min()
                stop = self.tVals.max() + abs(self.tVals[-1] - self.tVals[0]) * 0.02
            elif len(self.tVals) == 1:
                start = self.tVals[0] - 0.5
                stop = self.tVals[0] + 0.5
            else:
                start = 0
                stop = 1
            for s in [self.timeLine, self.normRgn]:
                s.setBounds([start, stop])
        
        profiler()

        if transform is None:
            transform = QtGui.QTransform()
            # note that the order of transform is
            #   scale followed by translate
            if pos is not None:
                transform.translate(*pos)
            if scale is not None:
                transform.scale(*scale)
        self.imageItem.setTransform(transform)

        profiler()

        if autoRange:
            self.autoRange()
        self.roiClicked()

        profiler()

    def clear(self):
        self.image = None
        self.imageItem.clear()
        
    def play(self, rate=None):
        """Begin automatically stepping frames forward at the given rate (in fps).
        This can also be accessed by pressing the spacebar."""
        if rate is None:
            rate = self._pausedPlayRate or self.fps
        if rate == 0 and self.playRate not in (None, 0):
            self._pausedPlayRate = self.playRate
        self.playRate = rate

        if rate == 0:
            self.playTimer.stop()
            return
            
        self.lastPlayTime = perf_counter()
        if not self.playTimer.isActive():
            self.playTimer.start(abs(int(1000/rate)))

    def togglePause(self):
        if self.playTimer.isActive():
            self.play(0)
        elif self.playRate == 0:
            if self._pausedPlayRate is not None:
                fps = self._pausedPlayRate
            else:
                fps = (self.nframes() - 1) / (self.tVals[-1] - self.tVals[0])
            self.play(fps)
        else:
            self.play(self.playRate)

    def setHistogramLabel(self, text=None, **kwargs):
        """
        Set the label text of the histogram axis similar to
        :func:`AxisItem.setLabel() <pyqtgraph.AxisItem.setLabel>`
        """
        a = self.ui.histogram.axis
        a.setLabel(text, **kwargs)
        if text == '':
            a.showLabel(False)
        self.ui.histogram.setMinimumWidth(135)

    def nframes(self):
        """
        Returns
        -------
        int
            The number of frames in the image data.
        """
        if self.image is None:
            return 0
        elif self.axes['t'] is not None:
            return self.image.shape[self.axes['t']]
        return 1

    def autoLevels(self):
        """Set the min/max intensity levels automatically to match the image data."""
        self.setLevels(rgba=self._imageLevels)

    def setLevels(self, *args, **kwds):
        """Set the min/max (bright and dark) levels.
        
        See :func:`HistogramLUTItem.setLevels <pyqtgraph.HistogramLUTItem.setLevels>`.
        """
        self.ui.histogram.setLevels(*args, **kwds)

    def autoRange(self):
        """Auto scale and pan the view around the image such that the image fills the view."""
        self.getProcessedImage()
        self.view.autoRange()
        
    def getProcessedImage(self):
        """Returns the image data after it has been processed by any normalization options in use.
        """
        if self.imageDisp is None:
            image = self.normalize(self.image)
            self.imageDisp = image
            self._imageLevels = self.quickMinMax(self.imageDisp)
            self.levelMin = min([level[0] for level in self._imageLevels])
            self.levelMax = max([level[1] for level in self._imageLevels])
            
        return self.imageDisp
        
    def close(self):
        """Closes the widget nicely, making sure to clear the graphics scene and release memory."""
        self.clear()
        self.imageDisp = None
        self.imageItem.setParent(None)
        super(ImageView, self).close()
        self.setParent(None)
        
    def keyPressEvent(self, ev):
        if not self.hasTimeAxis():
            super().keyPressEvent(ev)
            return

        if ev.key() == QtCore.Qt.Key.Key_Space:
            self.togglePause()
            ev.accept()
        elif ev.key() == QtCore.Qt.Key.Key_Home:
            self.setCurrentIndex(0)
            self.play(0)
            ev.accept()
        elif ev.key() == QtCore.Qt.Key.Key_End:
            self.setCurrentIndex(self.nframes()-1)
            self.play(0)
            ev.accept()
        elif ev.key() in self.noRepeatKeys:
            ev.accept()
            if ev.isAutoRepeat():
                return
            self.keysPressed[ev.key()] = 1
            self.evalKeyState()
        else:
            super().keyPressEvent(ev)

    def keyReleaseEvent(self, ev):
        if not self.hasTimeAxis():
            super().keyReleaseEvent(ev)
            return

        if ev.key() in [QtCore.Qt.Key.Key_Space, QtCore.Qt.Key.Key_Home, QtCore.Qt.Key.Key_End]:
            ev.accept()
        elif ev.key() in self.noRepeatKeys:
            ev.accept()
            if ev.isAutoRepeat():
                return
            try:
                del self.keysPressed[ev.key()]
            except:
                self.keysPressed = {}
            self.evalKeyState()
        else:
            super().keyReleaseEvent(ev)
        
    def evalKeyState(self):
        if len(self.keysPressed) == 1:
            key = list(self.keysPressed.keys())[0]
            if key == QtCore.Qt.Key.Key_Right:
                self.play(20)
                self.jumpFrames(1)
                # effectively pause playback for 0.2 s
                self.lastPlayTime = perf_counter() + 0.2  
            elif key == QtCore.Qt.Key.Key_Left:
                self.play(-20)
                self.jumpFrames(-1)
                self.lastPlayTime = perf_counter() + 0.2
            elif key == QtCore.Qt.Key.Key_Up:
                self.play(-100)
            elif key == QtCore.Qt.Key.Key_Down:
                self.play(100)
            elif key == QtCore.Qt.Key.Key_PageUp:
                self.play(-1000)
            elif key == QtCore.Qt.Key.Key_PageDown:
                self.play(1000)
        else:
            self.play(0)
        
    def timeout(self):
        now = perf_counter()
        dt = now - self.lastPlayTime
        if dt < 0:
            return
        n = int(self.playRate * dt)
        if n != 0:
            self.lastPlayTime += (float(n)/self.playRate)
            if self.currentIndex+n > self.image.shape[self.axes['t']]:
                self.play(0)
            self.jumpFrames(n)
        
    def setCurrentIndex(self, ind):
        """Set the currently displayed frame index."""
        index = fn.clip_scalar(ind, 0, self.nframes()-1)
        self.currentIndex = index
        self.updateImage()
        self.ignoreTimeLine = True
        # Implicitly call timeLineChanged
        self.timeLine.setValue(self.tVals[index])
        self.ignoreTimeLine = False

    def jumpFrames(self, n):
        """Move video frame ahead n frames (may be negative)"""
        if self.axes['t'] is not None:
            self.setCurrentIndex(self.currentIndex + n)

    def normRadioChanged(self):
        self.imageDisp = None
        self.updateImage()
        self.autoLevels()
        self.roiChanged()
        self.sigProcessingChanged.emit(self)
    
    def updateNorm(self):
        if self.ui.normTimeRangeCheck.isChecked():
            self.normRgn.show()
        else:
            self.normRgn.hide()
        
        if self.ui.normROICheck.isChecked():
            self.normRoi.show()
        else:
            self.normRoi.hide()
        
        if not self.ui.normOffRadio.isChecked():
            self.imageDisp = None
            self.updateImage()
            self.autoLevels()
            self.roiChanged()
            self.sigProcessingChanged.emit(self)

    def normToggled(self, b):
        self.ui.normGroup.setVisible(b)
        self.normRoi.setVisible(b and self.ui.normROICheck.isChecked())
        self.normRgn.setVisible(b and self.ui.normTimeRangeCheck.isChecked())

    def hasTimeAxis(self):
        return 't' in self.axes and self.axes['t'] is not None

    def roiClicked(self):
        showRoiPlot = False
        if self.ui.roiBtn.isChecked():
            showRoiPlot = True
            self.roi.show()
            self.ui.roiPlot.setMouseEnabled(True, True)
            self.ui.splitter.setSizes([int(self.height()*0.6), int(self.height()*0.4)])
            self.ui.splitter.handle(1).setEnabled(True)
            self.roiChanged()
            for c in self.roiCurves:
                c.show()
            self.ui.roiPlot.showAxis('left')
        else:
            self.roi.hide()
            self.ui.roiPlot.setMouseEnabled(False, False)
            for c in self.roiCurves:
                c.hide()
            self.ui.roiPlot.hideAxis('left')
            
        if self.hasTimeAxis():
            showRoiPlot = True
            mn = self.tVals.min()
            mx = self.tVals.max()
            self.ui.roiPlot.setXRange(mn, mx, padding=0.01)
            self.timeLine.show()
            self.timeLine.setBounds([mn, mx])
            if not self.ui.roiBtn.isChecked():
                self.ui.splitter.setSizes([self.height()-35, 35])
                self.ui.splitter.handle(1).setEnabled(False)
        else:
            self.timeLine.hide()
            
        self.ui.roiPlot.setVisible(showRoiPlot)

    def roiChanged(self):
        # Extract image data from ROI
        if self.image is None:
            return

        image = self.getProcessedImage()

        # getArrayRegion axes should be (x, y) of data array for col-major,
        # (y, x) for row-major
        # can't just transpose input because ROI is axisOrder aware
        colmaj = self.imageItem.axisOrder == 'col-major'
        if colmaj:
            axes = (self.axes['x'], self.axes['y'])
        else:
            axes = (self.axes['y'], self.axes['x'])

        data, coords = self.roi.getArrayRegion(
            image.view(np.ndarray), img=self.imageItem, axes=axes,
            returnMappedCoords=True)

        if data is None:
            return

        # Convert extracted data into 1D plot data
        if self.axes['t'] is None:
            # Average across y-axis of ROI
            data = data.mean(axis=self.axes['y'])

            # get coordinates along x axis of ROI mapped to range (0, roiwidth)
            if colmaj:
                coords = coords[:, :, 0] - coords[:, 0:1, 0]
            else:
                coords = coords[:, 0, :] - coords[:, 0, 0:1]
            xvals = (coords**2).sum(axis=0) ** 0.5
        else:
            # Average data within entire ROI for each frame
            data = data.mean(axis=axes)
            xvals = self.tVals

        # Handle multi-channel data
        if data.ndim == 1:
            plots = [(xvals, data, 'w')]
        if data.ndim == 2:
            if data.shape[1] == 1:
                colors = 'w'
            else:
                colors = 'rgbw'
            plots = []
            for i in range(data.shape[1]):
                d = data[:,i]
                plots.append((xvals, d, colors[i]))

        # Update plot line(s)
        while len(plots) < len(self.roiCurves):
            c = self.roiCurves.pop()
            c.scene().removeItem(c)
        while len(plots) > len(self.roiCurves):
            self.roiCurves.append(self.ui.roiPlot.plot())
        for i in range(len(plots)):
            x, y, p = plots[i]
            self.roiCurves[i].setData(x, y, pen=p)

    def quickMinMax(self, data):
        """
        Estimate the min/max values of *data* by subsampling.
        Returns [(min, max), ...] with one item per channel
        """
        while data.size > 1e6:
            ax = np.argmax(data.shape)
            sl = [slice(None)] * data.ndim
            sl[ax] = slice(None, None, 2)
            data = data[tuple(sl)]
            
        cax = self.axes['c']
        if cax is None:
            if data.size == 0:
                return [(0, 0)]
            return [(float(nanmin(data)), float(nanmax(data)))]
        else:
            if data.size == 0:
                return [(0, 0)] * data.shape[-1]
            return [(float(nanmin(data.take(i, axis=cax))), 
                     float(nanmax(data.take(i, axis=cax)))) for i in range(data.shape[-1])]

    def normalize(self, image):
        """
        Process *image* using the normalization options configured in the
        control panel.
        
        This can be repurposed to process any data through the same filter.
        """
        if self.ui.normOffRadio.isChecked():
            return image
            
        div = self.ui.normDivideRadio.isChecked()
        norm = image.view(np.ndarray).copy()
        #if div:
            #norm = ones(image.shape)
        #else:
            #norm = zeros(image.shape)
        if div:
            norm = norm.astype(np.float32)
            
        if self.ui.normTimeRangeCheck.isChecked() and image.ndim == 3:
            (sind, start) = self.timeIndex(self.normRgn.lines[0])
            (eind, end) = self.timeIndex(self.normRgn.lines[1])
            #print start, end, sind, eind
            n = image[sind:eind+1].mean(axis=0)
            n.shape = (1,) + n.shape
            if div:
                norm /= n
            else:
                norm -= n
                
        if self.ui.normFrameCheck.isChecked() and image.ndim == 3:
            n = image.mean(axis=1).mean(axis=1)
            n.shape = n.shape + (1, 1)
            if div:
                norm /= n
            else:
                norm -= n
            
        if self.ui.normROICheck.isChecked() and image.ndim == 3:
            n = self.normRoi.getArrayRegion(norm, self.imageItem, (1, 2)).mean(axis=1).mean(axis=1)
            n = n[:,np.newaxis,np.newaxis]
            #print start, end, sind, eind
            if div:
                norm /= n
            else:
                norm -= n
                
        return norm
        
    def timeLineChanged(self):
        if not self.ignoreTimeLine:
            self.play(0)

        (ind, time) = self.timeIndex(self.timeLine)
        if ind != self.currentIndex:
            self.currentIndex = ind
            self.updateImage()
        if self.discreteTimeLine:
            with fn.SignalBlock(self.timeLine.sigPositionChanged, self.timeLineChanged):
                if self.tVals is not None:
                    self.timeLine.setPos(self.tVals[ind])
                else:
                    self.timeLine.setPos(ind)

        self.sigTimeChanged.emit(ind, time)

    def updateImage(self, autoHistogramRange=True):
        ## Redraw image on screen
        if self.image is None:
            return
    
        image = self.getProcessedImage()
        if autoHistogramRange:
            self.ui.histogram.setHistogramRange(self.levelMin, self.levelMax)
        
        # Transpose image into order expected by ImageItem
        if self.imageItem.axisOrder == 'col-major':
            axorder = ['t', 'x', 'y', 'c']
        else:
            axorder = ['t', 'y', 'x', 'c']
        axorder = [self.axes[ax] for ax in axorder if self.axes[ax] is not None]
        image = image.transpose(axorder)
            
        # Select time index
        if self.axes['t'] is not None:
            self.ui.roiPlot.show()
            image = image[self.currentIndex]
            
        self.imageItem.updateImage(image)

    def timeIndex(self, slider):
        """
        Returns
        -------
        int
            The index of the frame closest to the timeline slider.
        float
            The time value of the slider.
        """
        if not self.hasTimeAxis():
            return 0, 0.0

        t = slider.value()

        xv = self.tVals
        if xv is None:
            ind = int(t)
        else:
            if len(xv) < 2:
                return 0, 0.0
            inds = np.argwhere(xv <= t)
            if len(inds) < 1:
                return 0, t
            ind = inds[-1, 0]
        return ind, t

    def getView(self):
        """Return the ViewBox (or other compatible object) which displays the ImageItem"""
        return self.view
        
    def getImageItem(self):
        """Return the ImageItem for this ImageView."""
        return self.imageItem
        
    def getRoiPlot(self):
        """Return the ROI PlotWidget for this ImageView"""
        return self.ui.roiPlot
       
    def getHistogramWidget(self):
        """Return the HistogramLUTWidget for this ImageView"""
        return self.ui.histogram

    def export(self, fileName):
        """
        Export data from the ImageView to a file, or to a stack of files if
        the data is 3D. Saving an image stack will result in index numbers
        being added to the file name. Images are saved as they would appear
        onscreen, with levels and lookup table applied.
        """
        img = self.getProcessedImage()
        if self.hasTimeAxis():
            base, ext = os.path.splitext(fileName)
            fmt = "%%s%%0%dd%%s" % int(log10(img.shape[0])+1)
            for i in range(img.shape[0]):
                self.imageItem.setImage(img[i], autoLevels=False)
                self.imageItem.save(fmt % (base, i, ext))
            self.updateImage()
        else:
            self.imageItem.save(fileName)
            
    def exportClicked(self):
        fileName, _ = QtWidgets.QFileDialog.getSaveFileName()
        if not fileName:
            return
        self.export(fileName)
        
    def buildMenu(self):
        self.menu = QtWidgets.QMenu()
        self.normAction = QtGui.QAction(translate("ImageView", "Normalization"), self.menu)
        self.normAction.setCheckable(True)
        self.normAction.toggled.connect(self.normToggled)
        self.menu.addAction(self.normAction)
        self.exportAction = QtGui.QAction(translate("ImageView", "Export"), self.menu)
        self.exportAction.triggered.connect(self.exportClicked)
        self.menu.addAction(self.exportAction)
        
    def menuClicked(self):
        if self.menu is None:
            self.buildMenu()
        self.menu.popup(QtGui.QCursor.pos())

    def setColorMap(self, colormap):
        """Set the color map. 

        Parameters
        ----------
        colormap : ColorMap
            The ColorMap to use for coloring images.
        """
        self.ui.histogram.gradient.setColorMap(colormap)

    @addGradientListToDocstring()
    def setPredefinedGradient(self, name):
        """Set one of the gradients defined in :class:`GradientEditorItem`.
        Currently available gradients are:   
        """
        self.ui.histogram.gradient.loadPreset(name)