1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
|
from collections import OrderedDict
from copy import deepcopy
import numpy as np
import pytest
from numpy.testing import assert_array_almost_equal
import pyqtgraph as pg
from pyqtgraph.functions import arrayToQPath, eq, SignalBlock
from pyqtgraph.Qt import QtCore, QtGui
np.random.seed(12345)
def testSolve3D():
p1 = np.array([[0,0,0,1],
[1,0,0,1],
[0,1,0,1],
[0,0,1,1]], dtype=float)
# transform points through random matrix
tr = np.random.normal(size=(4, 4))
tr[3] = (0,0,0,1)
p2 = np.dot(tr, p1.T).T[:,:3]
# solve to see if we can recover the transformation matrix.
tr2 = pg.solve3DTransform(p1, p2)
assert_array_almost_equal(tr[:3], tr2[:3])
def test_interpolateArray_order0():
check_interpolateArray(order=0)
def test_interpolateArray_order1():
check_interpolateArray(order=1)
def check_interpolateArray(order):
pytest.importorskip("scipy")
def interpolateArray(data, x):
result = pg.interpolateArray(data, x, order=order)
assert result.shape == x.shape[:-1] + data.shape[x.shape[-1]:]
return result
data = np.array([[ 1., 2., 4. ],
[ 10., 20., 40. ],
[ 100., 200., 400.]])
# test various x shapes
interpolateArray(data, np.ones((1,)))
interpolateArray(data, np.ones((2,)))
interpolateArray(data, np.ones((1, 1)))
interpolateArray(data, np.ones((1, 2)))
interpolateArray(data, np.ones((5, 1)))
interpolateArray(data, np.ones((5, 2)))
interpolateArray(data, np.ones((5, 5, 1)))
interpolateArray(data, np.ones((5, 5, 2)))
with pytest.raises(TypeError):
interpolateArray(data, np.ones((3,)))
with pytest.raises(TypeError):
interpolateArray(data, np.ones((1, 3,)))
with pytest.raises(TypeError):
interpolateArray(data, np.ones((5, 5, 3,)))
x = np.array([[ 0.3, 0.6],
[ 1. , 1. ],
[ 0.501, 1. ], # NOTE: testing at exactly 0.5 can yield different results from map_coordinates
[ 0.501, 2.501], # due to differences in rounding
[ 10. , 10. ]])
result = interpolateArray(data, x)
# make sure results match ndimage.map_coordinates
import scipy.ndimage
spresult = scipy.ndimage.map_coordinates(data, x.T, order=order)
#spresult = np.array([ 5.92, 20. , 11. , 0. , 0. ]) # generated with the above line
assert_array_almost_equal(result, spresult)
# test mapping when x.shape[-1] < data.ndim
x = np.array([[ 0.3, 0],
[ 0.3, 1],
[ 0.3, 2]])
r1 = interpolateArray(data, x)
x = np.array([0.3]) # should broadcast across axis 1
r2 = interpolateArray(data, x)
assert_array_almost_equal(r1, r2)
# test mapping 2D array of locations
x = np.array([[[0.501, 0.501], [0.501, 1.0], [0.501, 1.501]],
[[1.501, 0.501], [1.501, 1.0], [1.501, 1.501]]])
r1 = interpolateArray(data, x)
r2 = scipy.ndimage.map_coordinates(data, x.transpose(2,0,1), order=order)
#r2 = np.array([[ 8.25, 11. , 16.5 ], # generated with the above line
#[ 82.5 , 110. , 165. ]])
assert_array_almost_equal(r1, r2)
def test_subArray():
a = np.array([0, 0, 111, 112, 113, 0, 121, 122, 123, 0, 0, 0, 211, 212, 213, 0, 221, 222, 223, 0, 0, 0, 0])
b = pg.subArray(a, offset=2, shape=(2,2,3), stride=(10,4,1))
c = np.array([[[111,112,113], [121,122,123]], [[211,212,213], [221,222,223]]])
assert np.all(b == c)
# operate over first axis; broadcast over the rest
aa = np.vstack([a, a/100.]).T
cc = np.empty(c.shape + (2,))
cc[..., 0] = c
cc[..., 1] = c / 100.
bb = pg.subArray(aa, offset=2, shape=(2,2,3), stride=(10,4,1))
assert np.all(bb == cc)
def test_rescaleData():
rng = np.random.default_rng(12345)
dtypes = map(np.dtype, ('ubyte', 'uint16', 'byte', 'int16', 'int', 'float'))
for dtype1 in dtypes:
for dtype2 in dtypes:
if dtype1.kind in 'iu':
lim = np.iinfo(dtype1)
data = rng.integers(lim.min, lim.max, size=10, dtype=dtype1, endpoint=True)
else:
data = (rng.random(size=10) * 2**32 - 2**31).astype(dtype1)
for scale, offset in [(10, 0), (10., 0.), (1, -50), (0.2, 0.5), (0.001, 0)]:
if dtype2.kind in 'iu':
lim = np.iinfo(dtype2)
lim = lim.min, lim.max
else:
lim = (-np.inf, np.inf)
s1 = np.clip(float(scale) * (data-float(offset)), *lim).astype(dtype2)
s2 = pg.rescaleData(data, scale, offset, dtype2)
assert s1.dtype == s2.dtype
if dtype2.kind in 'iu':
assert np.all(s1 == s2)
else:
assert np.allclose(s1, s2)
def test_eq():
eq = pg.functions.eq
zeros = [0, 0.0, np.float64(0), np.float32(0), np.int32(0), np.int64(0)]
for i,x in enumerate(zeros):
for y in zeros[i:]:
assert eq(x, y)
assert eq(y, x)
assert eq(np.nan, np.nan)
# test
class NotEq(object):
def __eq__(self, x):
return False
noteq = NotEq()
assert eq(noteq, noteq) # passes because they are the same object
assert not eq(noteq, NotEq())
# Should be able to test for equivalence even if the test raises certain
# exceptions
class NoEq(object):
def __init__(self, err):
self.err = err
def __eq__(self, x):
raise self.err
noeq1 = NoEq(AttributeError())
noeq2 = NoEq(ValueError())
noeq3 = NoEq(Exception())
assert eq(noeq1, noeq1)
assert not eq(noeq1, noeq2)
assert not eq(noeq2, noeq1)
with pytest.raises(Exception):
eq(noeq3, noeq2)
# test array equivalence
# note that numpy has a weird behavior here--np.all() always returns True
# if one of the arrays has size=0; eq() will only return True if both arrays
# have the same shape.
a1 = np.zeros((10, 20)).astype('float')
a2 = a1 + 1
a3 = a2.astype('int')
a4 = np.empty((0, 20))
assert not eq(a1, a2) # same shape/dtype, different values
assert not eq(a1, a3) # same shape, different dtype and values
assert not eq(a1, a4) # different shape (note: np.all gives True if one array has size 0)
assert not eq(a2, a3) # same values, but different dtype
assert not eq(a2, a4) # different shape
assert not eq(a3, a4) # different shape and dtype
assert eq(a4, a4.copy())
assert not eq(a4, a4.T)
# test containers
assert not eq({'a': 1}, {'a': 1, 'b': 2})
assert not eq({'a': 1}, {'a': 2})
d1 = {'x': 1, 'y': np.nan, 3: ['a', np.nan, a3, 7, 2.3], 4: a4}
d2 = deepcopy(d1)
assert eq(d1, d2)
d1_ordered = OrderedDict(d1)
d2_ordered = deepcopy(d1_ordered)
assert eq(d1_ordered, d2_ordered)
assert not eq(d1_ordered, d2)
items = list(d1.items())
assert not eq(OrderedDict(items), OrderedDict(reversed(items)))
assert not eq([1,2,3], [1,2,3,4])
l1 = [d1, np.inf, -np.inf, np.nan]
l2 = deepcopy(l1)
t1 = tuple(l1)
t2 = tuple(l2)
assert eq(l1, l2)
assert eq(t1, t2)
assert eq(set(range(10)), set(range(10)))
assert not eq(set(range(10)), set(range(9)))
@pytest.mark.parametrize("s,suffix,expected", [
# usual cases
("100 uV", "V", ("100", "u", "V")),
("100 µV", "V", ("100", "µ", "V")),
("4.2 nV", None, ("4.2", "n", "V")),
("1.2 m", "m", ("1.2", "", "m")),
("1.2 m", None, ("1.2", "", "m")),
("5.0e9", None, ("5.0e9", "", "")),
("2 units", "units", ("2", "", "units")),
# siPrefix with explicit empty suffix
("1.2 m", "", ("1.2", "m", "")),
("5.0e-9 M", "", ("5.0e-9", "M", "")),
# weirder cases that should return the reasonable thing
("4.2 nV", "nV", ("4.2", "", "nV")),
("4.2 nV", "", ("4.2", "n", "")),
("1.2 j", "", ("1.2", "", "")),
("1.2 j", None, ("1.2", "", "j")),
# expected error cases
("100 uV", "v", ValueError),
])
def test_siParse(s, suffix, expected):
if isinstance(expected, tuple):
assert pg.siParse(s, suffix=suffix) == expected
else:
with pytest.raises(expected):
pg.siParse(s, suffix=suffix)
@pytest.mark.parametrize("s,suffix,power,expected", [
# usual cases
("100 uV", "V", 1, 1e-4),
("100 µV", "V", 1, 1e-4),
("4.2 nV", None, 1, 4.2e-9),
("1.2 m", "m", 1, 1.2),
# siPrefix with explicit empty suffix
("1.2 m", "", 1, 1.2e-3),
("5.0e-9 M", "", 1, 5.0e-3),
# weirder cases that should return the reasonable thing
("4.2 nV", "", 1, 4.2e-9),
("1.2 j", "", 1, 1.2),
("1.2 j", None, 1, 1.2),
# cases with power != 1
("100 uV^2", "V^2", 2, 1e-10),
("4.2 nV^2", None, 3, 4.2e-27),
("100.2 um^(1/2)", "m^(1/2)", 0.5, 0.1002),
("100 km^2", "m^2", 2, 1e+8),
])
def test_siEval(s, suffix, power, expected):
result = pg.siEval(s, suffix=suffix, unitPower=power)
assert np.isclose(result, expected)
@pytest.mark.parametrize("s,suffix,expected", [
("1,2 j", "", ("1,2", "", "")),
("1,2 j", None, ("1,2", "", "j")),
(",2 j", None, (",2", "", "j")),])
def test_siParse_with_comma_as_decimal_separator(s, suffix, expected):
assert pg.siParse(s, suffix=suffix, regex=pg.functions.FLOAT_REGEX_COMMA) == expected
def test_CIELab_reconversion():
color_list = [ pg.Qt.QtGui.QColor('#100235') ] # known problematic values
for _ in range(20):
qcol = pg.Qt.QtGui.QColor()
qcol.setRgbF( *np.random.random((3)) )
color_list.append(qcol)
for qcol1 in color_list:
vec_Lab = pg.functions.colorCIELab( qcol1 )
qcol2 = pg.functions.CIELabColor(*vec_Lab)
for val1, val2 in zip( qcol1.getRgb(), qcol2.getRgb() ):
assert abs(val1-val2)<=1, f'Excess CIELab reconversion error ({qcol1.name() } > {vec_Lab } > {qcol2.name()})'
MoveToElement = pg.QtGui.QPainterPath.ElementType.MoveToElement
LineToElement = pg.QtGui.QPainterPath.ElementType.LineToElement
_dtypes = []
for bits in 32, 64:
for base in 'int', 'float', 'uint':
_dtypes.append(f'{base}{bits}')
_dtypes.extend(['uint8', 'uint16'])
def _handle_underflow(dtype, *elements):
"""Wrapper around path description which converts underflow into proper points"""
out = []
dtype = np.dtype(dtype)
# get the signed integer type of the same width
dtype_int = np.dtype(f'i{dtype.itemsize}')
for el in elements:
newElement = [el[0]]
for ii in range(1, 3):
coord = el[ii]
if dtype.kind == 'u' and coord < 0:
# coord is a float with a negative integral value.
# for unsigned integer types, we want negative values to
# wrap-around. to get consistent wrap-around behavior
# across different numpy versions and machine platforms,
# we first convert coord to a signed integer.
coord = np.array(coord, dtype=dtype_int).astype(dtype)
newElement.append(float(coord))
out.append(tuple(newElement))
return out
@pytest.mark.parametrize(
"xs, ys, connect, expected", [
*(
(
np.arange(6, dtype=dtype), np.arange(0, -6, step=-1).astype(dtype), 'all',
_handle_underflow(dtype,
(MoveToElement, 0.0, 0.0),
(LineToElement, 1.0, -1.0),
(LineToElement, 2.0, -2.0),
(LineToElement, 3.0, -3.0),
(LineToElement, 4.0, -4.0),
(LineToElement, 5.0, -5.0)
)
) for dtype in _dtypes
),
*(
(
np.arange(6, dtype=dtype), np.arange(0, -6, step=-1).astype(dtype), 'pairs',
_handle_underflow(dtype,
(MoveToElement, 0.0, 0.0),
(LineToElement, 1.0, -1.0),
(MoveToElement, 2.0, -2.0),
(LineToElement, 3.0, -3.0),
(MoveToElement, 4.0, -4.0),
(LineToElement, 5.0, -5.0),
)
) for dtype in _dtypes
),
*(
(
np.arange(5, dtype=dtype), np.arange(0, -5, step=-1).astype(dtype), 'pairs',
_handle_underflow(dtype,
(MoveToElement, 0.0, 0.0),
(LineToElement, 1.0, -1.0),
(MoveToElement, 2.0, -2.0),
(LineToElement, 3.0, -3.0),
(MoveToElement, 4.0, -4.0)
)
) for dtype in _dtypes
),
# NaN types don't coerce to integers, don't test for all types since that doesn't make sense
(
np.arange(5), np.array([0, -1, np.nan, -3, -4]), 'finite', (
(MoveToElement, 0.0, 0.0),
(LineToElement, 1.0, -1.0),
(LineToElement, 1.0, -1.0),
(MoveToElement, 3.0, -3.0),
(LineToElement, 4.0, -4.0)
)
),
(
np.array([0, 1, np.nan, 3, 4]), np.arange(0, -5, step=-1), 'finite', (
(MoveToElement, 0.0, 0.0),
(LineToElement, 1.0, -1.0),
(LineToElement, 1.0, -1.0),
(MoveToElement, 3.0, -3.0),
(LineToElement, 4.0, -4.0)
)
),
*(
(
np.arange(5, dtype=dtype), np.arange(0, -5, step=-1).astype(dtype), np.array([0, 1, 0, 1, 0]),
_handle_underflow(dtype,
(MoveToElement, 0.0, 0.0),
(MoveToElement, 1.0, -1.0),
(LineToElement, 2.0, -2.0),
(MoveToElement, 3.0, -3.0),
(LineToElement, 4.0, -4.0)
)
) for dtype in _dtypes
),
# Empty path with all types of connection
*(
(
np.arange(0), np.arange(0, dtype=dtype), conn, ()
) for conn in ['all', 'pairs', 'finite', np.array([])] for dtype in _dtypes
),
]
)
def test_arrayToQPath(xs, ys, connect, expected):
path = arrayToQPath(xs, ys, connect=connect)
element = None
for i in range(path.elementCount()):
# nan elements add two line-segments, for simplicity of test config
# we can ignore the second segment
if element is not None and (eq(element.x, np.nan) or eq(element.y, np.nan)):
continue
element = path.elementAt(i)
assert eq(expected[i], (element.type, element.x, element.y))
def test_ndarray_from_qpolygonf():
# test that we get an empty ndarray from an empty QPolygonF
poly = pg.functions.create_qpolygonf(0)
arr = pg.functions.ndarray_from_qpolygonf(poly)
assert isinstance(arr, np.ndarray)
def test_ndarray_from_qimage():
# for QImages created w/o specifying bytesPerLine, Qt will pad
# each line to a multiple of 4-bytes.
# test that we can handle such QImages.
h = 10
fmt = QtGui.QImage.Format.Format_RGB888
for w in [5, 6, 7, 8]:
qimg = QtGui.QImage(w, h, fmt)
qimg.fill(0)
arr = pg.functions.ndarray_from_qimage(qimg)
assert arr.shape == (h, w, 3)
fmt = QtGui.QImage.Format.Format_Grayscale8
for w in [5, 6, 7, 8]:
qimg = QtGui.QImage(w, h, fmt)
qimg.fill(0)
arr = pg.functions.ndarray_from_qimage(qimg)
assert arr.shape == (h, w)
def test_colorDistance():
pg.colorDistance([pg.Qt.QtGui.QColor(0,0,0), pg.Qt.QtGui.QColor(255,0,0)])
pg.colorDistance([])
@pytest.mark.parametrize(
"test_input,expected",
[
(["r"], [255, 0, 0, 255]),
(["g"], [0, 255, 0, 255]),
(["b"], [0, 0, 255, 255]),
(["c"], [0, 255, 255, 255]),
(["m"], [255, 0, 255, 255]),
(["y"], [255, 255, 0, 255]),
(["k"], [0, 0, 0, 255]),
(["w"], [255, 255, 255, 255]),
(["d"], [150, 150, 150, 255]),
(["l"], [200, 200, 200, 255]),
(["s"], [100, 100, 150, 255]),
([0.75], [191, 191, 191, 255]),
([11, 22, 33], [11, 22, 33, 255]),
([11, 22, 33, 44], [11, 22, 33, 44]),
([(11, 22, 33)], [11, 22, 33, 255]),
([(11, 22, 33, 44)], [11, 22, 33, 44]),
([0], [255, 0, 0, 255]),
([1], [255, 170, 0, 255]),
([2], [170, 255, 0, 255]),
([3], [0, 255, 0, 255]),
([4], [0, 255, 170, 255]),
([5], [0, 170, 255, 255]),
([9], [255, 0, 0, 255]),
([(0, 2)], [255, 0, 0, 255]),
([(1, 2)], [0, 255, 255, 255]),
([(2, 2)], [255, 0, 0, 255]),
(["#89a"], [136, 153, 170, 255]),
(["#89ab"], [136, 153, 170, 187]),
(["#4488cc"], [68, 136, 204, 255]),
(["#4488cc00"], [68, 136, 204, 0]),
([QtGui.QColor(1, 2, 3, 4)], [1, 2, 3, 4]),
(["steelblue"], [70, 130, 180, 255]),
(["lawngreen"], [124, 252, 0, 255]),
],
)
def test_mkColor(test_input, expected):
qcol: QtGui.QColor = pg.functions.mkColor(*test_input)
assert list(qcol.getRgb()) == expected
def test_signal_block_unconnected():
"""Test that SignalBlock does not end up connecting an unconnected slot"""
class Sender(QtCore.QObject):
signal = QtCore.Signal()
class Receiver:
def __init__(self):
self.counter = 0
def slot(self):
self.counter += 1
sender = Sender()
receiver = Receiver()
with SignalBlock(sender.signal, receiver.slot):
pass
sender.signal.emit()
assert receiver.counter == 0
@pytest.mark.parametrize("x,precision,suffix,power,expected", [
# usual cases
(0, 3, 'V', 1, "0 V"),
(1, 3, 'V', 1, "1 V"),
(1.2, 3, 'V', 1, "1.2 V"),
(1.23456, 3, 'V', 1, "1.23 V"),
(1.23456, 4, 'V', 1, "1.235 V"),
(12.3456, 3, 'V', 1, "12.3 V"),
(123.456, 3, 'V', 1, "123 V"),
(1234.56, 3, 'V', 1, "1.23 kV"),
(12345.6, 3, 'V', 1, "12.3 kV"),
(123456., 3, 'V', 1, "123 kV"),
(1234567., 3, 'V', 1, "1.23 MV"),
(12345678., 3, 'V', 1, "12.3 MV"),
(123456789., 3, 'V', 1, "123 MV"),
(1234567890., 3, 'V', 1, "1.23 GV"),
(12345678900., 3, 'V', 1, "12.3 GV"),
(123456789000., 3, 'V', 1, "123 GV"),
(0.123456789, 3, 'V', 1, "123 mV"),
(0.0123456789, 3, 'V', 1, "12.3 mV"),
(0.00123456789, 3, 'V', 1, "1.23 mV"),
# Different power
(0, 3, 'V²', 2, "0 V²"),
(123.456, 3, 'V²', 2, "123 V²"),
(1234.56, 4, 'V²', 2, "1235 V²"),
(1234567.8, 3, 'V²', 2, "1.23 kV²"),
(0.00000123, 3, 'V²', 2, "1.23 mV²"),
(1, 3, 'V^-1', -1, "1 V^-1"),
(0.1, 3, 'V^-1', -1, "100 kV^-1"),
(0.001, 3, 'V^-1', -1, "1 kV^-1"),
(123.456, 3, 'V^-1', -1, "123 V^-1"),
(123456.7, 3, 'V^-1', -1, "123 mV^-1"),
(12345.6, 3, 'V^-1', -1, "12.3 mV^-1"),
(12345.6, 3, 'V^(1/2)', 0.5, "12.3 MV^(1/2)"),
])
def test_siFormat(x, precision, suffix, power, expected):
result = pg.siFormat(x, precision=precision, suffix=suffix, power=power)
assert result == expected
|