File: ColorMapWidget.py

package info (click to toggle)
python-pyqtgraph 0.9.8-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 3,552 kB
  • ctags: 4,262
  • sloc: python: 30,181; makefile: 116; sh: 1
file content (218 lines) | stat: -rw-r--r-- 8,866 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from pyqtgraph.Qt import QtGui, QtCore
import pyqtgraph.parametertree as ptree
import numpy as np
from pyqtgraph.pgcollections import OrderedDict
import pyqtgraph.functions as fn

__all__ = ['ColorMapWidget']

class ColorMapWidget(ptree.ParameterTree):
    """
    This class provides a widget allowing the user to customize color mapping
    for multi-column data. Given a list of field names, the user may specify
    multiple criteria for assigning colors to each record in a numpy record array.
    Multiple criteria are evaluated and combined into a single color for each
    record by user-defined compositing methods.
    
    For simpler color mapping using a single gradient editor, see 
    :class:`GradientWidget <pyqtgraph.GradientWidget>`
    """
    sigColorMapChanged = QtCore.Signal(object)
    
    def __init__(self):
        ptree.ParameterTree.__init__(self, showHeader=False)
        
        self.params = ColorMapParameter()
        self.setParameters(self.params)
        self.params.sigTreeStateChanged.connect(self.mapChanged)
        
        ## wrap a couple methods 
        self.setFields = self.params.setFields
        self.map = self.params.map

    def mapChanged(self):
        self.sigColorMapChanged.emit(self)
        

class ColorMapParameter(ptree.types.GroupParameter):
    sigColorMapChanged = QtCore.Signal(object)
    
    def __init__(self):
        self.fields = {}
        ptree.types.GroupParameter.__init__(self, name='Color Map', addText='Add Mapping..', addList=[])
        self.sigTreeStateChanged.connect(self.mapChanged)
        
    def mapChanged(self):
        self.sigColorMapChanged.emit(self)
        
    def addNew(self, name):
        mode = self.fields[name].get('mode', 'range')
        if mode == 'range':
            self.addChild(RangeColorMapItem(name, self.fields[name]))
        elif mode == 'enum':
            self.addChild(EnumColorMapItem(name, self.fields[name]))
        
    def fieldNames(self):
        return self.fields.keys()
    
    def setFields(self, fields):
        """
        Set the list of fields to be used by the mapper. 
        
        The format of *fields* is::
        
            [ (fieldName, {options}), ... ]
        
        ============== ============================================================
        Field Options:
        mode           Either 'range' or 'enum' (default is range). For 'range', 
                       The user may specify a gradient of colors to be applied 
                       linearly across a specific range of values. For 'enum', 
                       the user specifies a single color for each unique value
                       (see *values* option).
        units          String indicating the units of the data for this field.
        values         List of unique values for which the user may assign a 
                       color when mode=='enum'. Optionally may specify a dict 
                       instead {value: name}.
        ============== ============================================================
        """
        self.fields = OrderedDict(fields)
        #self.fields = fields
        #self.fields.sort()
        names = self.fieldNames()
        self.setAddList(names)
        
    def map(self, data, mode='byte'):
        """
        Return an array of colors corresponding to *data*. 
        
        ========= =================================================================
        Arguments
        data      A numpy record array where the fields in data.dtype match those
                  defined by a prior call to setFields().
        mode      Either 'byte' or 'float'. For 'byte', the method returns an array
                  of dtype ubyte with values scaled 0-255. For 'float', colors are
                  returned as 0.0-1.0 float values.
        ========= =================================================================
        """
        colors = np.zeros((len(data),4))
        for item in self.children():
            if not item['Enabled']:
                continue
            chans = item.param('Channels..')
            mask = np.empty((len(data), 4), dtype=bool)
            for i,f in enumerate(['Red', 'Green', 'Blue', 'Alpha']):
                mask[:,i] = chans[f]
            
            colors2 = item.map(data)
            
            op = item['Operation']
            if op == 'Add':
                colors[mask] = colors[mask] + colors2[mask]
            elif op == 'Multiply':
                colors[mask] *= colors2[mask]
            elif op == 'Overlay':
                a = colors2[:,3:4]
                c3 = colors * (1-a) + colors2 * a
                c3[:,3:4] = colors[:,3:4] + (1-colors[:,3:4]) * a
                colors = c3
            elif op == 'Set':
                colors[mask] = colors2[mask]
            
                
        colors = np.clip(colors, 0, 1)
        if mode == 'byte':
            colors = (colors * 255).astype(np.ubyte)
        
        return colors
            
    
class RangeColorMapItem(ptree.types.SimpleParameter):
    def __init__(self, name, opts):
        self.fieldName = name
        units = opts.get('units', '')
        ptree.types.SimpleParameter.__init__(self, 
            name=name, autoIncrementName=True, type='colormap', removable=True, renamable=True, 
            children=[
                #dict(name="Field", type='list', value=name, values=fields),
                dict(name='Min', type='float', value=0.0, suffix=units, siPrefix=True),
                dict(name='Max', type='float', value=1.0, suffix=units, siPrefix=True),
                dict(name='Operation', type='list', value='Overlay', values=['Overlay', 'Add', 'Multiply', 'Set']),
                dict(name='Channels..', type='group', expanded=False, children=[
                    dict(name='Red', type='bool', value=True),
                    dict(name='Green', type='bool', value=True),
                    dict(name='Blue', type='bool', value=True),
                    dict(name='Alpha', type='bool', value=True),
                    ]),
                dict(name='Enabled', type='bool', value=True),
                dict(name='NaN', type='color'),
            ])
    
    def map(self, data):
        data = data[self.fieldName]
        
        
        
        scaled = np.clip((data-self['Min']) / (self['Max']-self['Min']), 0, 1)
        cmap = self.value()
        colors = cmap.map(scaled, mode='float')
        
        mask = np.isnan(data) | np.isinf(data)
        nanColor = self['NaN']
        nanColor = (nanColor.red()/255., nanColor.green()/255., nanColor.blue()/255., nanColor.alpha()/255.)
        colors[mask] = nanColor
        
        return colors


class EnumColorMapItem(ptree.types.GroupParameter):
    def __init__(self, name, opts):
        self.fieldName = name
        vals = opts.get('values', [])
        if isinstance(vals, list):
            vals = OrderedDict([(v,str(v)) for v in vals])
        childs = [{'name': v, 'type': 'color'} for v in vals]
        
        childs = []
        for val,vname in vals.items():
            ch = ptree.Parameter.create(name=vname, type='color')
            ch.maskValue = val
            childs.append(ch)
        
        ptree.types.GroupParameter.__init__(self, 
            name=name, autoIncrementName=True, removable=True, renamable=True, 
            children=[
                dict(name='Values', type='group', children=childs),
                dict(name='Operation', type='list', value='Overlay', values=['Overlay', 'Add', 'Multiply', 'Set']),
                dict(name='Channels..', type='group', expanded=False, children=[
                    dict(name='Red', type='bool', value=True),
                    dict(name='Green', type='bool', value=True),
                    dict(name='Blue', type='bool', value=True),
                    dict(name='Alpha', type='bool', value=True),
                    ]),
                dict(name='Enabled', type='bool', value=True),
                dict(name='Default', type='color'),
            ])
    
    def map(self, data):
        data = data[self.fieldName]
        colors = np.empty((len(data), 4))
        default = np.array(fn.colorTuple(self['Default'])) / 255.
        colors[:] = default
        
        for v in self.param('Values'):
            mask = data == v.maskValue
            c = np.array(fn.colorTuple(v.value())) / 255.
            colors[mask] = c
        #scaled = np.clip((data-self['Min']) / (self['Max']-self['Min']), 0, 1)
        #cmap = self.value()
        #colors = cmap.map(scaled, mode='float')
        
        #mask = np.isnan(data) | np.isinf(data)
        #nanColor = self['NaN']
        #nanColor = (nanColor.red()/255., nanColor.green()/255., nanColor.blue()/255., nanColor.alpha()/255.)
        #colors[mask] = nanColor
        
        return colors