1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
|
<div align="center">
<img src="https://github.com/sepandhaghighi/pyrgg/raw/master/otherfile/logo.png" width="450">
<h1>PyRGG: Python Random Graph Generator</h1>
<a href="https://www.pyrgg.site"><img src="https://img.shields.io/website-up-down-green-red/http/shields.io.svg?label=website"></a>
<a href="https://badge.fury.io/py/pyrgg"><img src="https://badge.fury.io/py/pyrgg.svg" alt="PyPI version" height="18"></a>
<a href="https://anaconda.org/sepandhaghighi/pyrgg"><img src="https://anaconda.org/sepandhaghighi/pyrgg/badges/version.svg"></a>
<a href="https://codecov.io/gh/sepandhaghighi/pyrgg"><img src="https://codecov.io/gh/sepandhaghighi/pyrgg/branch/master/graph/badge.svg" alt="Codecov"></a>
<a href="https://www.python.org/"><img src="https://img.shields.io/badge/built%20with-Python3-green.svg" alt="built with Python3"></a>
<a href="https://discord.gg/dfYAWVMaCW"><img src="https://img.shields.io/discord/1013411447130308669.svg" alt="Discord Channel"></a>
</div>
## Overview
<p align="justify">
PyRGG is a user-friendly synthetic random graph generator that is written in Python and supports multiple graph file formats, such as <a href ="https://www.diag.uniroma1.it/challenge9/format.shtml#graph">DIMACS-Graph</a> files. It can generate graphs of various sizes and is specifically designed to create input files for a wide range of graph-based research applications, including testing, benchmarking, and performance analysis of graph processing frameworks. PyRGG is aimed at computer scientists who are studying graph algorithms and graph processing frameworks.
</p>
<table>
<tr>
<td align="center">Open Hub</td>
<td align="center"><a href="https://www.openhub.net/p/pyrgg"><img src="https://www.openhub.net/p/pyrgg/widgets/project_thin_badge.gif"></a></td>
</tr>
<tr>
<td align="center">PyPI Counter</td>
<td align="center"><a href="https://pepy.tech/projects/pyrgg"><img src="https://static.pepy.tech/badge/pyrgg" alt="PyPI Downloads"></a></td>
</tr>
<tr>
<td align="center">Github Stars</td>
<td align="center"><a href="https://github.com/sepandhaghighi/pyrgg"><img src="https://img.shields.io/github/stars/sepandhaghighi/pyrgg.svg?style=social&label=Stars"></a></td>
</tr>
</table>
<table>
<tr>
<td align="center">Branch</td>
<td align="center">master</td>
<td align="center">dev</td>
</tr>
<tr>
<td align="center">CI</td>
<td align="center"><img src="https://github.com/sepandhaghighi/pyrgg/actions/workflows/test.yml/badge.svg?branch=master"></td>
<td align="center"><img src="https://github.com/sepandhaghighi/pyrgg/actions/workflows/test.yml/badge.svg?branch=dev"></td>
</tr>
</table>
<table>
<tr>
<td align="center">Code Quality</td>
<td align="center"><a href="https://www.codacy.com/app/sepand-haghighi/pyrgg?utm_source=github.com&utm_medium=referral&utm_content=sepandhaghighi/pyrgg&utm_campaign=Badge_Grade"><img src="https://api.codacy.com/project/badge/Grade/11ec048bcd594d84997380b64d2d4add"/></a></td>
<td align="center"><a href="https://codebeat.co/projects/github-com-sepandhaghighi-pyrgg-dev"><img alt="codebeat badge" src="https://codebeat.co/badges/3f6c7449-3dfc-406b-b233-9fe615c2d103" /></a></td>
<td align="center"><a href="https://www.codefactor.io/repository/github/sepandhaghighi/pyrgg"><img src="https://www.codefactor.io/repository/github/sepandhaghighi/pyrgg/badge" alt="CodeFactor" /></a></td>
</tr>
</table>
## Installation
### PyPI
- Check [Python Packaging User Guide](https://packaging.python.org/installing/)
- `pip install pyrgg==1.6`
### Source Code
- Download [Version 1.6](https://github.com/sepandhaghighi/pyrgg/archive/v1.6.zip) or [Latest Source ](https://github.com/sepandhaghighi/pyrgg/archive/dev.zip)
- `pip install .`
### Conda
- Check [Conda Managing Package](https://conda.io)
- `conda install -c sepandhaghighi pyrgg`
### Exe Version
⚠️ Only Windows
⚠️ For PyRGG targeting Windows < 10, the user needs to take special care to include the Visual C++ run-time `.dlls`(for more information visit [here](https://pyinstaller.org/en/v3.3.1/usage.html#windows))
- Download [Exe-Version 1.6](https://github.com/sepandhaghighi/pyrgg/releases/download/v1.6/PYRGG-1.6.exe)
- Run `PYRGG-1.6.exe`
### System Requirements
PyRGG will likely run on a modern dual core PC. Typical configuration is:
- Dual Core CPU (2.0 Ghz+)
- 4GB of RAM
⚠️ Note that it may run on lower end equipment though good performance is not guaranteed
## Usage
- Open `CMD` (Windows) or `Terminal` (Linux)
- Run `pyrgg` or `python -m pyrgg` (or run `PYRGG.exe`)
- Enter data
<div align="center">
<a href="https://asciinema.org/a/539844" target="_blank"><img src="https://asciinema.org/a/539844.svg" /></a>
</div>
## Engines
### PyRGG
<table>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
<tr>
<td align="center">Vertices Number</td>
<td align="center">The total number of vertices in the graph</td>
</tr>
<tr>
<td align="center">Min Edge Number</td>
<td align="center">The minimum number of edges connected to each vertex</td>
</tr>
<tr>
<td align="center">Max Edge Number</td>
<td align="center">The maximum number of edges connected to each vertex</td>
</tr>
<tr>
<td align="center">Weighted / Unweighted</td>
<td align="center">Specifies whether the graph is weighted or unweighted</td>
</tr>
<tr>
<td align="center">Min Weight</td>
<td align="center">The minimum weight of the edges (if weighted)</td>
</tr>
<tr>
<td align="center">Max Weight</td>
<td align="center">The maximum weight of the edges (if weighted)</td>
</tr>
<tr>
<td align="center">Signed / Unsigned</td>
<td align="center">Specifies whether the edge weights are signed or unsigned</td>
</tr>
<tr>
<td align="center">Directed / Undirected</td>
<td align="center">Specifies whether the graph is directed or undirected</td>
</tr>
<tr>
<td align="center">Self Loop / No Self Loop</td>
<td align="center">Specifies whether self-loop is allowed or not</td>
</tr>
<tr>
<td align="center">Simple / Multigraph</td>
<td align="center">Specifies whether the graph is a simple graph or a multigraph</td>
</tr>
</table>
### Erdős–Rényi-Gilbert
<table>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
<tr>
<td align="center">Vertices Number</td>
<td align="center">The total number of vertices in the graph</td>
</tr>
<tr>
<td align="center">Probability</td>
<td align="center">The probability for edge creation between any two vertices</td>
</tr>
<tr>
<td align="center">Directed / Undirected</td>
<td align="center">Specifies whether the graph is directed or undirected</td>
</tr>
</table>
### Erdős–Rényi
<table>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
<tr>
<td align="center">Vertices Number</td>
<td align="center">The total number of vertices in the graph</td>
</tr>
<tr>
<td align="center">Edge Number</td>
<td align="center">The total number of edges in the graph</td>
</tr>
<tr>
<td align="center">Directed / Undirected</td>
<td align="center">Specifies whether the graph is directed or undirected</td>
</tr>
</table>
## Supported Formats
### DIMACS
```
p sp <number of vertices> <number of edges>
a <head_1> <tail_1> <weight_1>
.
.
.
a <head_n> <tail_n> <weight_n>
```
* [Document](http://www.diag.uniroma1.it/challenge9/format.shtml)
* [Sample 1](https://www.dropbox.com/s/i80tnwuuv4iyqet/100.gr.gz?dl=0) (100 Vertices , 3KB)
* [Sample 2](https://www.dropbox.com/s/lqk42pwu7o4xauv/1000.gr.gz?dl=0) (1000 Vertices , 13KB)
* [Sample 3](https://www.dropbox.com/s/93dp8cjs6lnu83u/1000000.gr.gz?dl=0) (1000000 Vertices , 7MB)
* [Sample 4](https://www.dropbox.com/s/rrxdc4wt0ldonfk/5000000.gr.gz?dl=0) (5000000 Vertices , 37MB)
### CSV
```
<head_1>,<tail_1>,<weight_1>
.
.
.
<head_n>,<tail_n>,<weight_n>
```
* [Document](https://en.wikipedia.org/wiki/Comma-separated_values)
* [Sample 1](https://www.dropbox.com/s/dmld0eadftnatr5/100.csv?dl=0) (100 Vertices , 3KB)
* [Sample 2](https://www.dropbox.com/s/juxah4nwamzdegr/1000.csv?dl=0) (1000 Vertices , 51KB)
### TSV
```
<head_1> <tail_1> <weight_1>
.
.
.
<head_n> <tail_n> <weight_n>
```
* [Document](https://en.wikipedia.org/wiki/Tab-separated_values)
* [Sample 1](https://www.dropbox.com/s/j3zgs4kx2paxe75/100.tsv?dl=0) (100 Vertices , 29KB)
* [Sample 2](https://www.dropbox.com/s/ykagmjgwlpim6dq/1000.tsv?dl=0) (1000 Vertices , 420KB)
### JSON
```
{
"properties": {
"directed": true,
"signed": true,
"multigraph": true,
"weighted": true,
"self_loop": true
},
"graph": {
"nodes":[
{
"id": 1
},
.
.
.
{
"id": n
}
],
"edges":[
{
"source": head_1,
"target": tail_1,
"weight": weight_1
},
.
.
.
{
"source": head_n,
"target": tail_n,
"weight": weight_n
}
]
}
}
```
* [Document](https://en.wikipedia.org/wiki/JSON)
* [Sample 1](https://www.dropbox.com/s/yvevoyb8559nytb/100.json?dl=0) (100 Vertices , 26KB)
* [Sample 2](https://www.dropbox.com/s/f6kljlch7p2rfhy/1000.json?dl=0) (1000 Vertices , 494KB)
### YAML
```
graph:
edges:
- source: head_1
target: tail_1
weight: weight_1
.
.
.
- source: head_n
target: tail_n
weight: weight_n
nodes:
- id: 1
.
.
.
- id: n
properties:
directed: true
multigraph: true
self_loop: true
signed: true
weighted: true
```
* [Document](https://en.wikipedia.org/wiki/YAML)
* [Sample 1](https://www.dropbox.com/s/9seljohtoqjzjzy/30.yaml?dl=0) (30 Vertices , 6KB)
* [Sample 2](https://www.dropbox.com/s/wtfh38rgmn29npi/100.yaml?dl=0) (100 Vertices , 35KB)
### Weighted Edge List
```
<head_1> <tail_1> <weight_1>
.
.
.
<head_n> <tail_n> <weight_n>
```
* [Document](http://www.cs.cmu.edu/~pbbs/benchmarks/graphIO.html)
* [Sample 1](https://www.dropbox.com/s/moie1xb2wj90y33/100.wel?dl=0) (100 Vertices , 5KB)
* [Sample 2](https://www.dropbox.com/s/h6pohl60okhdnt7/1000.wel?dl=0) (1000 Vertices , 192KB)
### ASP
```
node(1).
.
.
.
node(n).
edge(head_1,tail_1,weight_1).
.
.
.
edge(head_n,tail_n,weight_n).
```
* [Document](https://www.mat.unical.it/aspcomp2013/MaximalClique)
* [Sample 1](https://www.dropbox.com/s/4bufa1m4uamv48z/100.lp?dl=0) (100 Vertices , 7KB)
* [Sample 2](https://www.dropbox.com/s/w79fh1qva64namw/1000.lp?dl=0) (1000 Vertices , 76KB)
### Trivial Graph Format
```
1
.
.
.
n
#
1 2 weight_1
.
.
.
n k weight_n
```
* [Document](https://en.wikipedia.org/wiki/Trivial_Graph_Format)
* [Sample 1](https://www.dropbox.com/s/tehb6f3gz2o5v9c/100.tgf?dl=0) (100 Vertices , 4KB)
* [Sample 2](https://www.dropbox.com/s/9mjeq4w973189cc/1000.tgf?dl=0) (1000 Vertices , 61KB)
### UCINET DL Format
```
dl
format=edgelist1
n=<number of vertices>
data:
1 2 weight_1
.
.
.
n k weight_n
```
* [Document](https://sites.google.com/site/ucinetsoftware/home)
* [Sample 1](https://www.dropbox.com/s/82wrl86uowwjud2/100.dl?dl=0) (100 Vertices , 8KB)
* [Sample 2](https://www.dropbox.com/s/kbzbsy47uvfqdsi/1000.dl?dl=0) (1000 Vertices , 729KB)
### Matrix Market
```
%%MatrixMarket matrix coordinate real general
<number of vertices> <number of vertices> <number of edges>
<head_1> <tail_1> <weight_1>
.
.
.
<head_n> <tail_n> <weight_n>
```
* [Document](https://math.nist.gov/MatrixMarket/formats.html)
* [Sample 1](https://www.dropbox.com/s/ztw3vg0roups82q/100.mtx?dl=0) (100 Vertices , 59KB)
* [Sample 2](https://www.dropbox.com/s/skjjvbbzrpvryl4/1000.mtx?dl=0) (1000 Vertices , 1.8MB)
### Graph Line
```
<head_1> <tail_1>:<weight_1> <tail_2>:<weight_2> ... <tail_n>:<weight_n>
<head_2> <tail_1>:<weight_1> <tail_2>:<weight_2> ... <tail_n>:<weight_n>
.
.
.
<head_n> <tail_1>:<weight_1> <tail_2>:<weight_2> ... <tail_n>:<weight_n>
```
* [Sample 1](https://www.dropbox.com/s/obmmb5nw1lca9z3/100.gl?dl=0) (100 Vertices , 17KB)
* [Sample 2](https://www.dropbox.com/s/intufsbudnmfv8m/1000.gl?dl=0) (1000 Vertices , 2.4MB)
### GDF
```
nodedef>name VARCHAR,label VARCHAR
node_1,node_1_label
node_2,node_2_label
.
.
.
node_n,node_n_label
edgedef>node1 VARCHAR,node2 VARCHAR, weight DOUBLE
node_1,node_2,weight_1
node_1,node_3,weight_2
.
.
.
node_n,node_2,weight_n
```
* [Sample 1](https://www.dropbox.com/s/7dqox0f8e1f859s/100.gdf?dl=0) (100 Vertices , 21KB)
* [Sample 2](https://www.dropbox.com/s/xabjzpp0p5sr4b9/1000.gdf?dl=0) (1000 Vertices , 690KB)
### GML
```
graph
[
multigraph 0
directed 0
node
[
id 1
label "Node 1"
]
node
[
id 2
label "Node 2"
]
.
.
.
node
[
id n
label "Node n"
]
edge
[
source 1
target 2
value W1
]
edge
[
source 2
target 4
value W2
]
.
.
.
edge
[
source n
target r
value Wn
]
]
```
* [Document](https://en.wikipedia.org/wiki/Graph_Modelling_Language)
* [Sample 1](https://www.dropbox.com/s/g9uvywn1fwt9aq7/100.gml?dl=0) (100 Vertices , 120KB)
* [Sample 2](https://www.dropbox.com/s/5gt5udezy56mlz9/1000.gml?dl=0) (1000 Vertices , 2.4MB)
### GEXF
```
<?xml version="1.0" encoding="UTF-8"?>
<gexf xmlns="http://www.gexf.net/1.2draft" version="1.2">
<meta lastmodifieddate="2009-03-20">
<creator>PyRGG</creator>
<description>File Name</description>
</meta>
<graph defaultedgetype="directed">
<nodes>
<node id="1" label="Node 1" />
<node id="2" label="Node 2" />
...
</nodes>
<edges>
<edge id="1" source="1" target="2" weight="400" />
...
</edges>
</graph>
</gexf>
```
* [Document](https://github.com/gephi/gexf/wiki/Basic-Concepts#network-topology)
* [Sample 1](https://www.dropbox.com/s/kgx8xl9j0dpk4us/100.gexf?dl=0) (100 Vertices , 63KB)
* [Sample 2](https://www.dropbox.com/s/7a380kf35buvusr/1000.gexf?dl=0) (1000 Vertices , 6.4MB)
### Graphviz
```
graph example
{
node1 -- node2 [weight=W1];
node3 -- node4 [weight=W2];
node1 -- node3 [weight=W3];
.
.
.
}
```
* [Document](https://graphviz.org/doc/info/lang.html)
* [Sample 1](https://www.dropbox.com/s/ukev1hi4kguomri/100.gv?dl=0) (100 Vertices , 11KB)
* [Sample 2](https://www.dropbox.com/s/vpvvliz96mdea1p/1000.gv?dl=0) (1000 Vertices , 106KB)
* [Online Visualization](https://dreampuf.github.io/GraphvizOnline/)
### Pickle
⚠️ Binary format
* [Document](https://docs.python.org/3.10/library/pickle.html)
* [Sample 1](https://www.dropbox.com/s/4s8zt9i13z39gts/100.p?dl=0) (100 Vertices , 12KB)
* [Sample 2](https://www.dropbox.com/s/fzurqu5au0p1b54/1000.p?dl=0) (1000 Vertices , 340KB)
## Issues & Bug Reports
Just fill an issue and describe it. We'll check it ASAP!
or send an email to [info@pyrgg.site](mailto:info@pyrgg.site "info@pyrgg.site").
You can also join our discord server
<a href="https://discord.gg/dfYAWVMaCW">
<img src="https://img.shields.io/discord/1013411447130308669.svg?style=for-the-badge" alt="Discord Channel">
</a>
## Citing
If you use PyRGG in your research, please cite the [JOSS paper](http://joss.theoj.org/papers/da33f691984d9a35f66ff93a391bbc26 "PyRGG JOSS Paper") ;-)
<pre>
@article{Haghighi2017,
doi = {10.21105/joss.00331},
url = {https://doi.org/10.21105/joss.00331},
year = {2017},
month = {sep},
publisher = {The Open Journal},
volume = {2},
number = {17},
author = {Sepand Haghighi},
title = {Pyrgg: Python Random Graph Generator},
journal = {The Journal of Open Source Software}
}
</pre>
<table>
<tr>
<td align="center">JOSS</td>
<td align="center"><a href="http://joss.theoj.org/papers/da33f691984d9a35f66ff93a391bbc26"><img src="http://joss.theoj.org/papers/da33f691984d9a35f66ff93a391bbc26/status.svg"></a></td>
</tr>
<tr>
<td align="center">Zenodo</td>
<td align="center"><a href="https://zenodo.org/badge/latestdoi/89410101"><img src="https://zenodo.org/badge/89410101.svg" alt="DOI"></a></td>
</tr>
</table>
## References
<blockquote>1- <a href="http://www.diag.uniroma1.it/challenge9/format.shtml">9th DIMACS Implementation Challenge - Shortest Paths</a> </blockquote>
<blockquote>2- <a href="http://www.cs.cmu.edu/~pbbs/benchmarks/graphIO.html">Problem Based Benchmark Suite</a></blockquote>
<blockquote>3- <a href="https://www.mat.unical.it/aspcomp2013/MaximalClique">MaximalClique - ASP Competition 2013</a></blockquote>
<blockquote>4- Pitas, Ioannis, ed. Graph-based social media analysis. Vol. 39. CRC Press, 2016. </blockquote>
<blockquote>5- Roughan, Matthew, and Jonathan Tuke. "The hitchhikers guide to sharing graph data." 2015 3rd International Conference on Future Internet of Things and Cloud. IEEE, 2015. </blockquote>
<blockquote>6- Borgatti, Stephen P., Martin G. Everett, and Linton C. Freeman. "Ucinet for Windows: Software for social network analysis." Harvard, MA: analytic technologies 6 (2002). </blockquote>
<blockquote>7- <a href="https://math.nist.gov/MatrixMarket/formats.html">Matrix Market: File Formats</a> </blockquote>
<blockquote>8- <a href="https://socnetv.org/docs/formats.html#GML">Social Network Visualizer</a> </blockquote>
<blockquote>9- Adar, Eytan. "GUESS: a language and interface for graph exploration." Proceedings of the SIGCHI conference on Human Factors in computing systems. 2006. </blockquote>
<blockquote>10- Skiena, Steven S. The algorithm design manual. Springer International Publishing, 2020. </blockquote>
<blockquote>11- Chakrabarti, Deepayan, Yiping Zhan, and Christos Faloutsos. "R-MAT: A recursive model for graph mining." Proceedings of the 2004 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2004. </blockquote>
<blockquote>12- Zhong, Jianlong, and Bingsheng He. "An overview of medusa: simplified graph processing on gpus." ACM SIGPLAN Notices 47.8 (2012): 283-284.</blockquote>
<blockquote>13- Ellson, John, et al. "Graphviz and dynagraph—static and dynamic graph drawing tools." Graph drawing software. Springer, Berlin, Heidelberg, 2004. 127-148.</blockquote>
<blockquote>14- Gilbert, Edgar N. "Random graphs." The Annals of Mathematical Statistics 30.4 (1959): 1141-1144.</blockquote>
<blockquote>15- Erdős, Paul, and Alfréd Rényi. "On the strength of connectedness of a random graph." Acta Mathematica Hungarica 12.1 (1961): 261-267.</blockquote>
## Show Your Support
<h3>Star This Repo</h3>
Give a ⭐️ if this project helped you!
<h3>Donate to Our Project</h3>
If you do like our project and we hope that you do, can you please support us? Our project is not and is never going to be working for profit. We need the money just so we can continue doing what we do ;-) .
<a href="http://www.pyrgg.site/donate.html" target="_blank"><img src="https://github.com/sepandhaghighi/pyrgg/raw/master/otherfile/donate-button.png" height="90px" width="270px" alt="PyRGG Donation"></a>
|