File: README.md

package info (click to toggle)
python-pyrgg 1.6-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,104 kB
  • sloc: python: 1,292; makefile: 3
file content (651 lines) | stat: -rw-r--r-- 19,287 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
<div align="center">
	<img src="https://github.com/sepandhaghighi/pyrgg/raw/master/otherfile/logo.png" width="450">
	<h1>PyRGG: Python Random Graph Generator</h1>
	<a href="https://www.pyrgg.site"><img src="https://img.shields.io/website-up-down-green-red/http/shields.io.svg?label=website"></a>
	<a href="https://badge.fury.io/py/pyrgg"><img src="https://badge.fury.io/py/pyrgg.svg" alt="PyPI version" height="18"></a>
	<a href="https://anaconda.org/sepandhaghighi/pyrgg"><img src="https://anaconda.org/sepandhaghighi/pyrgg/badges/version.svg"></a>
	<a href="https://codecov.io/gh/sepandhaghighi/pyrgg"><img src="https://codecov.io/gh/sepandhaghighi/pyrgg/branch/master/graph/badge.svg" alt="Codecov"></a>
	<a href="https://www.python.org/"><img src="https://img.shields.io/badge/built%20with-Python3-green.svg" alt="built with Python3"></a>
	<a href="https://discord.gg/dfYAWVMaCW"><img src="https://img.shields.io/discord/1013411447130308669.svg" alt="Discord Channel"></a>
</div>			
				
## Overview	

<p align="justify">		
PyRGG is a user-friendly synthetic random graph generator that is written in Python and supports multiple graph file formats, such as <a href ="https://www.diag.uniroma1.it/challenge9/format.shtml#graph">DIMACS-Graph</a> files. It can generate graphs of various sizes and is specifically designed to create input files for a wide range of graph-based research applications, including testing, benchmarking, and performance analysis of graph processing frameworks. PyRGG is aimed at computer scientists who are studying graph algorithms and graph processing frameworks.
</p>

<table>
	<tr> 
		<td align="center">Open Hub</td>
		<td align="center"><a href="https://www.openhub.net/p/pyrgg"><img src="https://www.openhub.net/p/pyrgg/widgets/project_thin_badge.gif"></a></td>	
	</tr>
	<tr>
		<td align="center">PyPI Counter</td>
		<td align="center"><a href="https://pepy.tech/projects/pyrgg"><img src="https://static.pepy.tech/badge/pyrgg" alt="PyPI Downloads"></a></td>
	</tr>
	<tr>
		<td align="center">Github Stars</td>
		<td align="center"><a href="https://github.com/sepandhaghighi/pyrgg"><img src="https://img.shields.io/github/stars/sepandhaghighi/pyrgg.svg?style=social&label=Stars"></a></td>
	</tr>
</table>



<table>
	<tr> 
		<td align="center">Branch</td>
		<td align="center">master</td>	
		<td align="center">dev</td>	
	</tr>
	<tr>
		<td align="center">CI</td>
		<td align="center"><img src="https://github.com/sepandhaghighi/pyrgg/actions/workflows/test.yml/badge.svg?branch=master"></td>
		<td align="center"><img src="https://github.com/sepandhaghighi/pyrgg/actions/workflows/test.yml/badge.svg?branch=dev"></td>
	</tr>
</table>


<table>
	<tr> 
		<td align="center">Code Quality</td>
		<td align="center"><a href="https://www.codacy.com/app/sepand-haghighi/pyrgg?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=sepandhaghighi/pyrgg&amp;utm_campaign=Badge_Grade"><img src="https://api.codacy.com/project/badge/Grade/11ec048bcd594d84997380b64d2d4add"/></a></td>	
        <td align="center"><a href="https://codebeat.co/projects/github-com-sepandhaghighi-pyrgg-dev"><img alt="codebeat badge" src="https://codebeat.co/badges/3f6c7449-3dfc-406b-b233-9fe615c2d103" /></a></td>	
		<td align="center"><a href="https://www.codefactor.io/repository/github/sepandhaghighi/pyrgg"><img src="https://www.codefactor.io/repository/github/sepandhaghighi/pyrgg/badge" alt="CodeFactor" /></a></td>	
	</tr>
</table>


## Installation		

### PyPI
- Check [Python Packaging User Guide](https://packaging.python.org/installing/)     
- `pip install pyrgg==1.6`						

### Source Code
- Download [Version 1.6](https://github.com/sepandhaghighi/pyrgg/archive/v1.6.zip) or [Latest Source ](https://github.com/sepandhaghighi/pyrgg/archive/dev.zip)
- `pip install .`

### Conda
- Check [Conda Managing Package](https://conda.io)
- `conda install -c sepandhaghighi pyrgg`

### Exe Version

⚠️ Only Windows

⚠️ For PyRGG targeting Windows < 10, the user needs to take special care to include the Visual C++ run-time `.dlls`(for more information visit [here](https://pyinstaller.org/en/v3.3.1/usage.html#windows))

- Download [Exe-Version 1.6](https://github.com/sepandhaghighi/pyrgg/releases/download/v1.6/PYRGG-1.6.exe)
- Run `PYRGG-1.6.exe`

### System Requirements
PyRGG will likely run on a modern dual core PC. Typical configuration is:

- Dual Core CPU (2.0 Ghz+)
- 4GB of RAM

⚠️ Note that it may run on lower end equipment though good performance is not guaranteed


## Usage
- Open `CMD` (Windows) or `Terminal` (Linux)
- Run `pyrgg` or `python -m pyrgg` (or run `PYRGG.exe`)
- Enter data		

<div align="center">

<a href="https://asciinema.org/a/539844" target="_blank"><img src="https://asciinema.org/a/539844.svg" /></a>

</div>

## Engines

### PyRGG

<table>
	<tr>
		<th>Parameter</th>
		<th>Description</th>
	</tr>
	<tr>
		<td align="center">Vertices Number</td>
		<td align="center">The total number of vertices in the graph</td>
	</tr>
	<tr>
		<td align="center">Min Edge Number</td>
		<td align="center">The minimum number of edges connected to each vertex</td>
	</tr>
	<tr>
		<td align="center">Max Edge Number</td>
		<td align="center">The maximum number of edges connected to each vertex</td>
	</tr>
	<tr>
		<td align="center">Weighted / Unweighted</td>
		<td align="center">Specifies whether the graph is weighted or unweighted</td>
	</tr>
	<tr>
		<td align="center">Min Weight</td>
		<td align="center">The minimum weight of the edges (if weighted)</td>
	</tr>
	<tr>
		<td align="center">Max Weight</td>
		<td align="center">The maximum weight of the edges (if weighted)</td>
	</tr>
	<tr>
		<td align="center">Signed / Unsigned</td>
		<td align="center">Specifies whether the edge weights are signed or unsigned</td>
	</tr>
	<tr>
		<td align="center">Directed / Undirected</td>
		<td align="center">Specifies whether the graph is directed or undirected</td>
	</tr>
	<tr>
		<td align="center">Self Loop / No Self Loop</td>
		<td align="center">Specifies whether self-loop is allowed or not</td>
	</tr>
	<tr>
		<td align="center">Simple / Multigraph</td>
		<td align="center">Specifies whether the graph is a simple graph or a multigraph</td>
	</tr>
</table>

### Erdős–Rényi-Gilbert

<table>
	<tr>
		<th>Parameter</th>
		<th>Description</th>
	</tr>
	<tr>
		<td align="center">Vertices Number</td>
		<td align="center">The total number of vertices in the graph</td>
	</tr>
	<tr>
		<td align="center">Probability</td>
		<td align="center">The probability for edge creation between any two vertices</td>
	</tr>
	<tr>
		<td align="center">Directed / Undirected</td>
		<td align="center">Specifies whether the graph is directed or undirected</td>
	</tr>
</table>

### Erdős–Rényi

<table>
	<tr>
		<th>Parameter</th>
		<th>Description</th>
	</tr>
	<tr>
		<td align="center">Vertices Number</td>
		<td align="center">The total number of vertices in the graph</td>
	</tr>
	<tr>
		<td align="center">Edge Number</td>
		<td align="center">The total number of edges in the graph</td>
	</tr>
	<tr>
		<td align="center">Directed / Undirected</td>
		<td align="center">Specifies whether the graph is directed or undirected</td>
	</tr>
</table>

## Supported Formats 			

### DIMACS

```
	p sp <number of vertices> <number of edges>
	a <head_1> <tail_1> <weight_1>

	.
	.
	.
		
	a <head_n> <tail_n> <weight_n>
```

* [Document](http://www.diag.uniroma1.it/challenge9/format.shtml)
* [Sample 1](https://www.dropbox.com/s/i80tnwuuv4iyqet/100.gr.gz?dl=0) (100 Vertices , 3KB)
* [Sample 2](https://www.dropbox.com/s/lqk42pwu7o4xauv/1000.gr.gz?dl=0) (1000 Vertices , 13KB)
* [Sample 3](https://www.dropbox.com/s/93dp8cjs6lnu83u/1000000.gr.gz?dl=0) (1000000 Vertices , 7MB)
* [Sample 4](https://www.dropbox.com/s/rrxdc4wt0ldonfk/5000000.gr.gz?dl=0) (5000000 Vertices , 37MB)

### CSV

```
	<head_1>,<tail_1>,<weight_1>

	.
	.
	.
		
	<head_n>,<tail_n>,<weight_n>
```

* [Document](https://en.wikipedia.org/wiki/Comma-separated_values)
* [Sample 1](https://www.dropbox.com/s/dmld0eadftnatr5/100.csv?dl=0) (100 Vertices , 3KB)
* [Sample 2](https://www.dropbox.com/s/juxah4nwamzdegr/1000.csv?dl=0) (1000 Vertices , 51KB)

### TSV

```
	<head_1>	<tail_1>	<weight_1>

	.
	.
	.
		
	<head_n>	<tail_n>	<weight_n>
```

* [Document](https://en.wikipedia.org/wiki/Tab-separated_values)
* [Sample 1](https://www.dropbox.com/s/j3zgs4kx2paxe75/100.tsv?dl=0) (100 Vertices , 29KB)
* [Sample 2](https://www.dropbox.com/s/ykagmjgwlpim6dq/1000.tsv?dl=0) (1000 Vertices , 420KB)

### JSON

```
{
	"properties": {
		"directed": true,
		"signed": true,
		"multigraph": true,
		"weighted": true,
		"self_loop": true
	},
	"graph": {
		"nodes":[
		{
			"id": 1
		},

		.
		.
		.

		{
			"id": n
		}
		],
		"edges":[
		{
			"source": head_1,
			"target": tail_1,
			"weight": weight_1
		},

		.
		.
		.

		{
			"source": head_n,
			"target": tail_n,
			"weight": weight_n
		}
		]
	}
}
```

* [Document](https://en.wikipedia.org/wiki/JSON)
* [Sample 1](https://www.dropbox.com/s/yvevoyb8559nytb/100.json?dl=0) (100 Vertices , 26KB)
* [Sample 2](https://www.dropbox.com/s/f6kljlch7p2rfhy/1000.json?dl=0) (1000 Vertices , 494KB)

### YAML
```
 	graph:
 		edges:
 		- source: head_1
 	  	target: tail_1
 	  	weight: weight_1
 	
 		.
 		.
 		.

 		- source: head_n
 	  	target: tail_n
 	  	weight: weight_n
 					
 		nodes:
 		- id: 1

 		.
 		.
 		.

 		- id: n
 	properties:
 		directed: true
 		multigraph: true
 		self_loop: true
 		signed: true
 		weighted: true
```

* [Document](https://en.wikipedia.org/wiki/YAML)
* [Sample 1](https://www.dropbox.com/s/9seljohtoqjzjzy/30.yaml?dl=0) (30 Vertices , 6KB)
* [Sample 2](https://www.dropbox.com/s/wtfh38rgmn29npi/100.yaml?dl=0) (100 Vertices , 35KB)

### Weighted Edge List	
```
	<head_1> <tail_1> <weight_1>
		
	.
	.
	.
		
	<head_n> <tail_n> <weight_n>	
```

* [Document](http://www.cs.cmu.edu/~pbbs/benchmarks/graphIO.html)
* [Sample 1](https://www.dropbox.com/s/moie1xb2wj90y33/100.wel?dl=0) (100 Vertices , 5KB)
* [Sample 2](https://www.dropbox.com/s/h6pohl60okhdnt7/1000.wel?dl=0) (1000 Vertices , 192KB)

### ASP

```
	node(1).
	.
	.
	.
	node(n).
	edge(head_1,tail_1,weight_1).
	.
	.
	.
	edge(head_n,tail_n,weight_n).
```

* [Document](https://www.mat.unical.it/aspcomp2013/MaximalClique)
* [Sample 1](https://www.dropbox.com/s/4bufa1m4uamv48z/100.lp?dl=0) (100 Vertices , 7KB)
* [Sample 2](https://www.dropbox.com/s/w79fh1qva64namw/1000.lp?dl=0) (1000 Vertices , 76KB)

### Trivial Graph Format

```
	1
	.
	.
	.
	n
	#
	1 2 weight_1
	.
	.
	.
	n k weight_n
```
* [Document](https://en.wikipedia.org/wiki/Trivial_Graph_Format)
* [Sample 1](https://www.dropbox.com/s/tehb6f3gz2o5v9c/100.tgf?dl=0) (100 Vertices , 4KB)
* [Sample 2](https://www.dropbox.com/s/9mjeq4w973189cc/1000.tgf?dl=0) (1000 Vertices , 61KB)

### UCINET DL Format

```
	dl
	format=edgelist1
	n=<number of vertices>
	data:
	1 2 weight_1
	.
	.
	.
	n k weight_n	
```
* [Document](https://sites.google.com/site/ucinetsoftware/home)
* [Sample 1](https://www.dropbox.com/s/82wrl86uowwjud2/100.dl?dl=0) (100 Vertices , 8KB)
* [Sample 2](https://www.dropbox.com/s/kbzbsy47uvfqdsi/1000.dl?dl=0) (1000 Vertices , 729KB)

### Matrix Market

```
    %%MatrixMarket matrix coordinate real general
    <number of vertices>  <number of vertices>  <number of edges>
    <head_1>    <tail_1>    <weight_1> 
    .
    .
    .
    <head_n>    <tail_n>    <weight_n> 
```
* [Document](https://math.nist.gov/MatrixMarket/formats.html)
* [Sample 1](https://www.dropbox.com/s/ztw3vg0roups82q/100.mtx?dl=0) (100 Vertices , 59KB)
* [Sample 2](https://www.dropbox.com/s/skjjvbbzrpvryl4/1000.mtx?dl=0) (1000 Vertices , 1.8MB)

### Graph Line
```
	<head_1> <tail_1>:<weight_1> <tail_2>:<weight_2>  ... <tail_n>:<weight_n>
	<head_2> <tail_1>:<weight_1> <tail_2>:<weight_2>  ... <tail_n>:<weight_n>
	.
	.
	.
	<head_n> <tail_1>:<weight_1> <tail_2>:<weight_2>  ... <tail_n>:<weight_n>
```

* [Sample 1](https://www.dropbox.com/s/obmmb5nw1lca9z3/100.gl?dl=0) (100 Vertices , 17KB)
* [Sample 2](https://www.dropbox.com/s/intufsbudnmfv8m/1000.gl?dl=0) (1000 Vertices , 2.4MB)

### GDF

```
    nodedef>name VARCHAR,label VARCHAR
    node_1,node_1_label
    node_2,node_2_label
    .
    .
    .
    node_n,node_n_label
    edgedef>node1 VARCHAR,node2 VARCHAR, weight DOUBLE
    node_1,node_2,weight_1
    node_1,node_3,weight_2
    .
    .
    .
    node_n,node_2,weight_n 
```

* [Sample 1](https://www.dropbox.com/s/7dqox0f8e1f859s/100.gdf?dl=0) (100 Vertices , 21KB)
* [Sample 2](https://www.dropbox.com/s/xabjzpp0p5sr4b9/1000.gdf?dl=0) (1000 Vertices , 690KB)

### GML

```
    graph
    [
      multigraph 0
      directed  0
      node
      [
       id 1
       label "Node 1"
      ]
      node
      [
       id 2
       label "Node 2"
      ]
      .
      .
      .
      node
      [
       id n
       label "Node n"
      ]
      edge
      [
       source 1
       target 2
       value W1
      ]
      edge
      [
       source 2
       target 4
       value W2
      ]
      .
      .
      .
      edge
      [
       source n
       target r
       value Wn
      ]
    ]

```

* [Document](https://en.wikipedia.org/wiki/Graph_Modelling_Language)
* [Sample 1](https://www.dropbox.com/s/g9uvywn1fwt9aq7/100.gml?dl=0) (100 Vertices , 120KB)
* [Sample 2](https://www.dropbox.com/s/5gt5udezy56mlz9/1000.gml?dl=0) (1000 Vertices , 2.4MB)

### GEXF

```
     <?xml version="1.0" encoding="UTF-8"?>
     <gexf xmlns="http://www.gexf.net/1.2draft" version="1.2">
         <meta lastmodifieddate="2009-03-20">
             <creator>PyRGG</creator>
             <description>File Name</description>
         </meta>
         <graph defaultedgetype="directed">
             <nodes>
                 <node id="1" label="Node 1" />
                 <node id="2" label="Node 2" />
                 ...
             </nodes>
             <edges>
                 <edge id="1" source="1" target="2" weight="400" />
                 ...
             </edges>
         </graph>
     </gexf>
```

* [Document](https://github.com/gephi/gexf/wiki/Basic-Concepts#network-topology)
* [Sample 1](https://www.dropbox.com/s/kgx8xl9j0dpk4us/100.gexf?dl=0) (100 Vertices , 63KB)
* [Sample 2](https://www.dropbox.com/s/7a380kf35buvusr/1000.gexf?dl=0) (1000 Vertices , 6.4MB)

### Graphviz

```
	graph example 
		{
		node1 -- node2 [weight=W1];
		node3 -- node4 [weight=W2];
		node1 -- node3 [weight=W3];
		.
		.
		.
		}
```

* [Document](https://graphviz.org/doc/info/lang.html)
* [Sample 1](https://www.dropbox.com/s/ukev1hi4kguomri/100.gv?dl=0) (100 Vertices , 11KB)
* [Sample 2](https://www.dropbox.com/s/vpvvliz96mdea1p/1000.gv?dl=0) (1000 Vertices , 106KB)
* [Online Visualization](https://dreampuf.github.io/GraphvizOnline/)

### Pickle

⚠️ Binary format

* [Document](https://docs.python.org/3.10/library/pickle.html)
* [Sample 1](https://www.dropbox.com/s/4s8zt9i13z39gts/100.p?dl=0) (100 Vertices , 12KB)
* [Sample 2](https://www.dropbox.com/s/fzurqu5au0p1b54/1000.p?dl=0) (1000 Vertices , 340KB)


## Issues & Bug Reports			

Just fill an issue and describe it. We'll check it ASAP!							
or send an email to [info@pyrgg.site](mailto:info@pyrgg.site "info@pyrgg.site"). 

You can also join our discord server			

<a href="https://discord.gg/dfYAWVMaCW">
  <img src="https://img.shields.io/discord/1013411447130308669.svg?style=for-the-badge" alt="Discord Channel">
</a>


## Citing

If you use PyRGG in your research, please cite the [JOSS paper](http://joss.theoj.org/papers/da33f691984d9a35f66ff93a391bbc26 "PyRGG JOSS Paper") ;-)

<pre>
@article{Haghighi2017,
  doi = {10.21105/joss.00331},
  url = {https://doi.org/10.21105/joss.00331},
  year  = {2017},
  month = {sep},
  publisher = {The Open Journal},
  volume = {2},
  number = {17},
  author = {Sepand Haghighi},
  title = {Pyrgg: Python Random Graph Generator},
  journal = {The Journal of Open Source Software}
}
</pre>

<table>
	<tr> 
		<td align="center">JOSS</td>
		<td align="center"><a href="http://joss.theoj.org/papers/da33f691984d9a35f66ff93a391bbc26"><img src="http://joss.theoj.org/papers/da33f691984d9a35f66ff93a391bbc26/status.svg"></a></td>	
	</tr>
	<tr>
		<td align="center">Zenodo</td>
		<td align="center"><a href="https://zenodo.org/badge/latestdoi/89410101"><img src="https://zenodo.org/badge/89410101.svg" alt="DOI"></a></td>
	</tr>
</table>
 			

## References
					

<blockquote>1- <a href="http://www.diag.uniroma1.it/challenge9/format.shtml">9th DIMACS Implementation Challenge - Shortest Paths</a> </blockquote>

<blockquote>2- <a href="http://www.cs.cmu.edu/~pbbs/benchmarks/graphIO.html">Problem Based Benchmark Suite</a></blockquote>

<blockquote>3- <a href="https://www.mat.unical.it/aspcomp2013/MaximalClique">MaximalClique - ASP Competition 2013</a></blockquote>

<blockquote>4- Pitas, Ioannis, ed. Graph-based social media analysis. Vol. 39. CRC Press, 2016. </blockquote>	

<blockquote>5- Roughan, Matthew, and Jonathan Tuke. "The hitchhikers guide to sharing graph data." 2015 3rd International Conference on Future Internet of Things and Cloud. IEEE, 2015. </blockquote>	

<blockquote>6- Borgatti, Stephen P., Martin G. Everett, and Linton C. Freeman. "Ucinet for Windows: Software for social network analysis." Harvard, MA: analytic technologies 6 (2002). </blockquote>

<blockquote>7- <a href="https://math.nist.gov/MatrixMarket/formats.html">Matrix Market: File Formats</a> </blockquote>		

<blockquote>8- <a href="https://socnetv.org/docs/formats.html#GML">Social Network Visualizer</a> </blockquote>

<blockquote>9- Adar, Eytan. "GUESS: a language and interface for graph exploration." Proceedings of the SIGCHI conference on Human Factors in computing systems. 2006. </blockquote>

<blockquote>10- Skiena, Steven S. The algorithm design manual. Springer International Publishing, 2020. </blockquote>

<blockquote>11- Chakrabarti, Deepayan, Yiping Zhan, and Christos Faloutsos. "R-MAT: A recursive model for graph mining." Proceedings of the 2004 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2004. </blockquote>

<blockquote>12- Zhong, Jianlong, and Bingsheng He. "An overview of medusa: simplified graph processing on gpus." ACM SIGPLAN Notices 47.8 (2012): 283-284.</blockquote>

<blockquote>13- Ellson, John, et al. "Graphviz and dynagraph—static and dynamic graph drawing tools." Graph drawing software. Springer, Berlin, Heidelberg, 2004. 127-148.</blockquote>

<blockquote>14- Gilbert, Edgar N. "Random graphs." The Annals of Mathematical Statistics 30.4 (1959): 1141-1144.</blockquote>

<blockquote>15- Erdős, Paul, and Alfréd Rényi. "On the strength of connectedness of a random graph." Acta Mathematica Hungarica 12.1 (1961): 261-267.</blockquote>
					
 
## Show Your Support
								
<h3>Star This Repo</h3>					

Give a ⭐️ if this project helped you!

<h3>Donate to Our Project</h3>	

If you do like our project and we hope that you do, can you please support us? Our project is not and is never going to be working for profit. We need the money just so we can continue doing what we do ;-) .			

<a href="http://www.pyrgg.site/donate.html" target="_blank"><img src="https://github.com/sepandhaghighi/pyrgg/raw/master/otherfile/donate-button.png" height="90px" width="270px" alt="PyRGG Donation"></a>