File: stats.c.pysam.c

package info (click to toggle)
python-pysam 0.10.0%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 14,196 kB
  • ctags: 10,087
  • sloc: ansic: 79,627; python: 8,569; sh: 282; makefile: 215; perl: 41
file content (1732 lines) | stat: -rw-r--r-- 70,624 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
#include "pysam.h"

/*  stats.c -- This is the former bamcheck integrated into samtools/htslib.

    Copyright (C) 2012-2015 Genome Research Ltd.

    Author: Petr Danecek <pd3@sanger.ac.uk>
    Author: Sam Nicholls <sam@samnicholls.net>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.  */

/*  Assumptions, approximations and other issues:
        - GC-depth graph does not split reads, the starting position determines which bin is incremented.
            There are small overlaps between bins (max readlen-1). However, the bins are big (20k).
        - coverage distribution ignores softclips and deletions
        - some stats require sorted BAMs
        - GC content graph can have an untidy, step-like pattern when BAM contains multiple read lengths.
        - 'bases mapped' (stats->nbases_mapped) is calculated from read lengths given by BAM (core.l_qseq)
        - With the -t option, the whole reads are used. Except for the number of mapped bases (cigar)
            counts, no splicing is done, no indels or soft clips are considered, even small overlap is
            good enough to include the read in the stats.
        - GC content of reads not calculated for "=" sequences

*/

#include <config.h>

#include <unistd.h> // for isatty()
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <math.h>
#include <ctype.h>
#include <getopt.h>
#include <errno.h>
#include <assert.h>
#include <zlib.h>   // for crc32
#include <htslib/faidx.h>
#include <htslib/sam.h>
#include <htslib/hts.h>
#include "sam_header.h"
#include <htslib/khash_str2int.h>
#include "samtools.h"
#include <htslib/khash.h>
#include <htslib/kstring.h>
#include "stats_isize.h"
#include "sam_opts.h"

#define BWA_MIN_RDLEN 35
// From the spec
// If 0x4 is set, no assumptions can be made about RNAME, POS, CIGAR, MAPQ, bits 0x2, 0x10, 0x100 and 0x800, and the bit 0x20 of the previous read in the template.
#define IS_PAIRED_AND_MAPPED(bam) (((bam)->core.flag&BAM_FPAIRED) && !((bam)->core.flag&BAM_FUNMAP) && !((bam)->core.flag&BAM_FMUNMAP))
#define IS_PROPERLYPAIRED(bam) (((bam)->core.flag&(BAM_FPAIRED|BAM_FPROPER_PAIR)) == (BAM_FPAIRED|BAM_FPROPER_PAIR) && !((bam)->core.flag&BAM_FUNMAP))
#define IS_UNMAPPED(bam) ((bam)->core.flag&BAM_FUNMAP)
#define IS_REVERSE(bam) ((bam)->core.flag&BAM_FREVERSE)
#define IS_MATE_REVERSE(bam) ((bam)->core.flag&BAM_FMREVERSE)
#define IS_READ1(bam) ((bam)->core.flag&BAM_FREAD1)
#define IS_READ2(bam) ((bam)->core.flag&BAM_FREAD2)
#define IS_DUP(bam) ((bam)->core.flag&BAM_FDUP)
#define IS_ORIGINAL(bam) (((bam)->core.flag&(BAM_FSECONDARY|BAM_FSUPPLEMENTARY)) == 0)

// The GC-depth graph works as follows: split the reference sequence into
// segments and calculate GC content and depth in each bin. Then sort
// these segments by their GC and plot the depth distribution by means
// of 10th, 25th, etc. depth percentiles.
typedef struct
{
    float gc;
    uint32_t depth;
}
gc_depth_t;

// For coverage distribution, a simple pileup
typedef struct
{
    int64_t pos;
    int size, start;
    int *buffer;
}
round_buffer_t;

typedef struct { uint32_t from, to; } pos_t;
typedef struct
{
    int npos,mpos,cpos;
    pos_t *pos;
}
regions_t;

typedef struct
{
    uint64_t a;
    uint64_t c;
    uint64_t g;
    uint64_t t;
    uint64_t n;
    uint64_t other;
}
acgtno_count_t;

typedef struct
{
    // Auxiliary data
    int flag_require, flag_filter;
    faidx_t *fai;                   // Reference sequence for GC-depth graph
    int argc;                       // Command line arguments to be printed on the output
    char **argv;
    int gcd_bin_size;           // The size of GC-depth bin
    int nisize;         // The maximum insert size that the allocated array can hold - 0 indicates no limit
    int trim_qual;      // bwa trim quality
    float isize_main_bulk;  // There are always some unrealistically big insert sizes, report only the main part
    int cov_min,cov_max,cov_step;   // Minimum, maximum coverage and size of the coverage bins
    samFile* sam;
    bam_hdr_t* sam_header;

    // Filters
    int filter_readlen;

    // Misc
    char *split_tag;      // Tag on which to perform stats splitting
    char *split_prefix;   // Path or string prefix for filenames created when splitting
}
stats_info_t;

typedef struct
{
    // Dimensions of the quality histogram holder (quals_1st,quals_2nd), GC content holder (gc_1st,gc_2nd),
    //  insert size histogram holder
    int nquals;         // The number of quality bins
    int nbases;         // The maximum sequence length the allocated array can hold
    int ngc;            // The size of gc_1st and gc_2nd
    int nindels;        // The maximum indel length for indel distribution

    // Arrays for the histogram data
    uint64_t *quals_1st, *quals_2nd;
    uint64_t *gc_1st, *gc_2nd;
    acgtno_count_t *acgtno_cycles;
    uint64_t *read_lengths;
    uint64_t *insertions, *deletions;
    uint64_t *ins_cycles_1st, *ins_cycles_2nd, *del_cycles_1st, *del_cycles_2nd;
    isize_t *isize;

    // The extremes encountered
    int max_len;            // Maximum read length
    int max_qual;           // Maximum quality
    int is_sorted;

    // Summary numbers
    uint64_t total_len;
    uint64_t total_len_dup;
    uint64_t nreads_1st;
    uint64_t nreads_2nd;
    uint64_t nreads_filtered;
    uint64_t nreads_dup;
    uint64_t nreads_unmapped;
    uint64_t nreads_single_mapped;
    uint64_t nreads_paired_and_mapped;
    uint64_t nreads_properly_paired;
    uint64_t nreads_paired_tech;
    uint64_t nreads_anomalous;
    uint64_t nreads_mq0;
    uint64_t nbases_mapped;
    uint64_t nbases_mapped_cigar;
    uint64_t nbases_trimmed;  // bwa trimmed bases
    uint64_t nmismatches;
    uint64_t nreads_QCfailed, nreads_secondary;
    struct {
        uint32_t names, reads, quals;
    } checksum;

    // GC-depth related data
    uint32_t ngcd, igcd;        // The maximum number of GC depth bins and index of the current bin
    gc_depth_t *gcd;            // The GC-depth bins holder
    int32_t tid, gcd_pos;       // Position of the current bin
    int32_t pos;                // Position of the last read

    // Coverage distribution related data
    int ncov;                       // The number of coverage bins
    uint64_t *cov;                  // The coverage frequencies
    round_buffer_t cov_rbuf;        // Pileup round buffer

    // Mismatches by read cycle
    uint8_t *rseq_buf;              // A buffer for reference sequence to check the mismatches against
    int mrseq_buf;                  // The size of the buffer
    int32_t rseq_pos;               // The coordinate of the first base in the buffer
    int32_t nrseq_buf;              // The used part of the buffer
    uint64_t *mpc_buf;              // Mismatches per cycle

    // Target regions
    int nregions, reg_from,reg_to;
    regions_t *regions;

    // Auxiliary data
    double sum_qual;                // For calculating average quality value
    void *rg_hash;                  // Read groups to include, the array is null-terminated

    // Split
    char* split_name;

    stats_info_t* info;             // Pointer to options and settings struct

}
stats_t;
KHASH_MAP_INIT_STR(c2stats, stats_t*)

static void error(const char *format, ...);
int is_in_regions(bam1_t *bam_line, stats_t *stats);
void realloc_buffers(stats_t *stats, int seq_len);


// Coverage distribution methods
static inline int coverage_idx(int min, int max, int n, int step, int depth)
{
    if ( depth < min )
        return 0;

    if ( depth > max )
        return n-1;

    return 1 + (depth - min) / step;
}

static inline int round_buffer_lidx2ridx(int offset, int size, int64_t refpos, int64_t pos)
{
    return (offset + (pos-refpos) % size) % size;
}

void round_buffer_flush(stats_t *stats, int64_t pos)
{
    int ibuf,idp;

    if ( pos==stats->cov_rbuf.pos )
        return;

    int64_t new_pos = pos;
    if ( pos==-1 || pos - stats->cov_rbuf.pos >= stats->cov_rbuf.size )
    {
        // Flush the whole buffer, but in sequential order,
        pos = stats->cov_rbuf.pos + stats->cov_rbuf.size - 1;
    }

    if ( pos < stats->cov_rbuf.pos )
        error("Expected coordinates in ascending order, got %ld after %ld\n", pos,stats->cov_rbuf.pos);

    int ifrom = stats->cov_rbuf.start;
    int ito = round_buffer_lidx2ridx(stats->cov_rbuf.start,stats->cov_rbuf.size,stats->cov_rbuf.pos,pos-1);
    if ( ifrom>ito )
    {
        for (ibuf=ifrom; ibuf<stats->cov_rbuf.size; ibuf++)
        {
            if ( !stats->cov_rbuf.buffer[ibuf] )
                continue;
            idp = coverage_idx(stats->info->cov_min,stats->info->cov_max,stats->ncov,stats->info->cov_step,stats->cov_rbuf.buffer[ibuf]);
            stats->cov[idp]++;
            stats->cov_rbuf.buffer[ibuf] = 0;
        }
        ifrom = 0;
    }
    for (ibuf=ifrom; ibuf<=ito; ibuf++)
    {
        if ( !stats->cov_rbuf.buffer[ibuf] )
            continue;
        idp = coverage_idx(stats->info->cov_min,stats->info->cov_max,stats->ncov,stats->info->cov_step,stats->cov_rbuf.buffer[ibuf]);
        stats->cov[idp]++;
        stats->cov_rbuf.buffer[ibuf] = 0;
    }
    stats->cov_rbuf.start = (new_pos==-1) ? 0 : round_buffer_lidx2ridx(stats->cov_rbuf.start,stats->cov_rbuf.size,stats->cov_rbuf.pos,pos);
    stats->cov_rbuf.pos   = new_pos;
}

void round_buffer_insert_read(round_buffer_t *rbuf, int64_t from, int64_t to)
{
    if ( to-from >= rbuf->size )
        error("The read length too big (%d), please increase the buffer length (currently %d)\n", to-from+1,rbuf->size);
    if ( from < rbuf->pos )
        error("The reads are not sorted (%ld comes after %ld).\n", from,rbuf->pos);

    int ifrom,ito,ibuf;
    ifrom = round_buffer_lidx2ridx(rbuf->start,rbuf->size,rbuf->pos,from);
    ito   = round_buffer_lidx2ridx(rbuf->start,rbuf->size,rbuf->pos,to);
    if ( ifrom>ito )
    {
        for (ibuf=ifrom; ibuf<rbuf->size; ibuf++)
            rbuf->buffer[ibuf]++;
        ifrom = 0;
    }
    for (ibuf=ifrom; ibuf<=ito; ibuf++)
        rbuf->buffer[ibuf]++;
}

// Calculate the number of bases in the read trimmed by BWA
int bwa_trim_read(int trim_qual, uint8_t *quals, int len, int reverse)
{
    if ( len<BWA_MIN_RDLEN ) return 0;

    // Although the name implies that the read cannot be trimmed to more than BWA_MIN_RDLEN,
    //  the calculation can in fact trim it to (BWA_MIN_RDLEN-1). (bwa_trim_read in bwa/bwaseqio.c).
    int max_trimmed = len - BWA_MIN_RDLEN + 1;
    int l, sum=0, max_sum=0, max_l=0;

    for (l=0; l<max_trimmed; l++)
    {
        sum += trim_qual - quals[ reverse ? l : len-1-l ];
        if ( sum<0 ) break;
        if ( sum>max_sum )
        {
            max_sum = sum;
            // This is the correct way, but bwa clips from some reason one base less
            // max_l   = l+1;
            max_l   = l;
        }
    }
    return max_l;
}


void count_indels(stats_t *stats,bam1_t *bam_line)
{
    int is_fwd = IS_REVERSE(bam_line) ? 0 : 1;
    int is_1st = IS_READ1(bam_line) ? 1 : 0;
    int icig;
    int icycle = 0;
    int read_len = bam_line->core.l_qseq;
    for (icig=0; icig<bam_line->core.n_cigar; icig++)
    {
        int cig  = bam_cigar_op(bam_get_cigar(bam_line)[icig]);
        int ncig = bam_cigar_oplen(bam_get_cigar(bam_line)[icig]);
        if ( !ncig ) continue;  // curiously, this can happen: 0D

        if ( cig==BAM_CINS )
        {
            int idx = is_fwd ? icycle : read_len-icycle-ncig;
            if ( idx<0 )
                error("FIXME: read_len=%d vs icycle=%d\n", read_len,icycle);
            if ( idx >= stats->nbases || idx<0 ) error("FIXME: %d vs %d, %s:%d %s\n", idx,stats->nbases, stats->info->sam_header->target_name[bam_line->core.tid],bam_line->core.pos+1,bam_get_qname(bam_line));
            if ( is_1st )
                stats->ins_cycles_1st[idx]++;
            else
                stats->ins_cycles_2nd[idx]++;
            icycle += ncig;
            if ( ncig<=stats->nindels )
                stats->insertions[ncig-1]++;
            continue;
        }
        if ( cig==BAM_CDEL )
        {
            int idx = is_fwd ? icycle-1 : read_len-icycle-1;
            if ( idx<0 ) continue;  // discard meaningless deletions
            if ( idx >= stats->nbases ) error("FIXME: %d vs %d\n", idx,stats->nbases);
            if ( is_1st )
                stats->del_cycles_1st[idx]++;
            else
                stats->del_cycles_2nd[idx]++;
            if ( ncig<=stats->nindels )
                stats->deletions[ncig-1]++;
            continue;
        }
        if ( cig!=BAM_CREF_SKIP && cig!=BAM_CHARD_CLIP && cig!=BAM_CPAD )
            icycle += ncig;
    }
}

int unclipped_length(bam1_t *bam_line)
{
    int icig, read_len = bam_line->core.l_qseq;
    for (icig=0; icig<bam_line->core.n_cigar; icig++)
    {
        int cig = bam_cigar_op(bam_get_cigar(bam_line)[icig]);
        if ( cig==BAM_CHARD_CLIP )
            read_len += bam_cigar_oplen(bam_get_cigar(bam_line)[icig]);
    }
    return read_len;
}

void count_mismatches_per_cycle(stats_t *stats, bam1_t *bam_line, int read_len)
{
    int is_fwd = IS_REVERSE(bam_line) ? 0 : 1;
    int icig,iread=0,icycle=0;
    int iref = bam_line->core.pos - stats->rseq_pos;
    uint8_t *read  = bam_get_seq(bam_line);
    uint8_t *quals = bam_get_qual(bam_line);
    uint64_t *mpc_buf = stats->mpc_buf;
    for (icig=0; icig<bam_line->core.n_cigar; icig++)
    {
        int cig  = bam_cigar_op(bam_get_cigar(bam_line)[icig]);
        int ncig = bam_cigar_oplen(bam_get_cigar(bam_line)[icig]);
        if ( cig==BAM_CINS )
        {
            iread  += ncig;
            icycle += ncig;
            continue;
        }
        if ( cig==BAM_CDEL )
        {
            iref += ncig;
            continue;
        }
        if ( cig==BAM_CSOFT_CLIP )
        {
            icycle += ncig;
            // Soft-clips are present in the sequence, but the position of the read marks a start of the sequence after clipping
            //   iref += ncig;
            iread  += ncig;
            continue;
        }
        if ( cig==BAM_CHARD_CLIP )
        {
            icycle += ncig;
            continue;
        }
        // Ignore H and N CIGARs. The letter are inserted e.g. by TopHat and often require very large
        //  chunk of refseq in memory. Not very frequent and not noticable in the stats.
        if ( cig==BAM_CREF_SKIP || cig==BAM_CHARD_CLIP || cig==BAM_CPAD ) continue;
        if ( cig!=BAM_CMATCH && cig!=BAM_CEQUAL && cig!=BAM_CDIFF ) // not relying on precalculated diffs
            error("TODO: cigar %d, %s:%d %s\n", cig,stats->info->sam_header->target_name[bam_line->core.tid],bam_line->core.pos+1,bam_get_qname(bam_line));

        if ( ncig+iref > stats->nrseq_buf )
            error("FIXME: %d+%d > %d, %s, %s:%d\n",ncig,iref,stats->nrseq_buf, bam_get_qname(bam_line),stats->info->sam_header->target_name[bam_line->core.tid],bam_line->core.pos+1);

        int im;
        for (im=0; im<ncig; im++)
        {
            uint8_t cread = bam_seqi(read,iread);
            uint8_t cref  = stats->rseq_buf[iref];

            // ---------------15
            // =ACMGRSVTWYHKDBN
            if ( cread==15 )
            {
                int idx = is_fwd ? icycle : read_len-icycle-1;
                if ( idx>stats->max_len )
                    error("mpc: %d>%d\n",idx,stats->max_len);
                idx = idx*stats->nquals;
                if ( idx>=stats->nquals*stats->nbases )
                    error("FIXME: mpc_buf overflow\n");
                mpc_buf[idx]++;
            }
            else if ( cref && cread && cref!=cread )
            {
                uint8_t qual = quals[iread] + 1;
                if ( qual>=stats->nquals )
                    error("TODO: quality too high %d>=%d (%s %d %s)\n", qual,stats->nquals, stats->info->sam_header->target_name[bam_line->core.tid],bam_line->core.pos+1,bam_get_qname(bam_line));

                int idx = is_fwd ? icycle : read_len-icycle-1;
                if ( idx>stats->max_len )
                    error("mpc: %d>%d (%s %d %s)\n",idx,stats->max_len,stats->info->sam_header->target_name[bam_line->core.tid],bam_line->core.pos+1,bam_get_qname(bam_line));

                idx = idx*stats->nquals + qual;
                if ( idx>=stats->nquals*stats->nbases )
                    error("FIXME: mpc_buf overflow\n");
                mpc_buf[idx]++;
            }

            iref++;
            iread++;
            icycle++;
        }
    }
}

void read_ref_seq(stats_t *stats, int32_t tid, int32_t pos)
{
    int i, fai_ref_len;
    char *fai_ref = faidx_fetch_seq(stats->info->fai, stats->info->sam_header->target_name[tid], pos, pos+stats->mrseq_buf-1, &fai_ref_len);
    if ( fai_ref_len<0 ) error("Failed to fetch the sequence \"%s\"\n", stats->info->sam_header->target_name[tid]);

    uint8_t *ptr = stats->rseq_buf;
    for (i=0; i<fai_ref_len; i++)
    {
        // Conversion between uint8_t coding and ACGT
        //      -12-4---8-------
        //      =ACMGRSVTWYHKDBN
        switch (fai_ref[i])
        {
            case 'A':
            case 'a': *ptr = 1; break;
            case 'C':
            case 'c': *ptr = 2; break;
            case 'G':
            case 'g': *ptr = 4; break;
            case 'T':
            case 't': *ptr = 8; break;
            default:  *ptr = 0; break;
        }
        ptr++;
    }
    free(fai_ref);

    if ( fai_ref_len < stats->mrseq_buf ) memset(ptr,0, stats->mrseq_buf - fai_ref_len);
    stats->nrseq_buf = fai_ref_len;
    stats->rseq_pos  = pos;
    stats->tid       = tid;
}

float fai_gc_content(stats_t *stats, int pos, int len)
{
    uint32_t gc,count,c;
    int i = pos - stats->rseq_pos, ito = i + len;
    assert( i>=0 );

    if (  ito > stats->nrseq_buf ) ito = stats->nrseq_buf;

    // Count GC content
    gc = count = 0;
    for (; i<ito; i++)
    {
        c = stats->rseq_buf[i];
        if ( c==2 || c==4 )
        {
            gc++;
            count++;
        }
        else if ( c==1 || c==8 )
            count++;
    }
    return count ? (float)gc/count : 0;
}

void realloc_rseq_buffer(stats_t *stats)
{
    int n = stats->nbases*10;
    if ( stats->info->gcd_bin_size > n ) n = stats->info->gcd_bin_size;
    if ( stats->mrseq_buf<n )
    {
        stats->rseq_buf = realloc(stats->rseq_buf,sizeof(uint8_t)*n);
        stats->mrseq_buf = n;
    }
}

void realloc_gcd_buffer(stats_t *stats, int seq_len)
{
    hts_expand0(gc_depth_t,stats->igcd+1,stats->ngcd,stats->gcd);
    realloc_rseq_buffer(stats);
}

void realloc_buffers(stats_t *stats, int seq_len)
{
    int n = 2*(1 + seq_len - stats->nbases) + stats->nbases;

    stats->quals_1st = realloc(stats->quals_1st, n*stats->nquals*sizeof(uint64_t));
    if ( !stats->quals_1st )
        error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len,n*stats->nquals*sizeof(uint64_t));
    memset(stats->quals_1st + stats->nbases*stats->nquals, 0, (n-stats->nbases)*stats->nquals*sizeof(uint64_t));

    stats->quals_2nd = realloc(stats->quals_2nd, n*stats->nquals*sizeof(uint64_t));
    if ( !stats->quals_2nd )
        error("Could not realloc buffers, the sequence too long: %d (2x%ld)\n", seq_len,n*stats->nquals*sizeof(uint64_t));
    memset(stats->quals_2nd + stats->nbases*stats->nquals, 0, (n-stats->nbases)*stats->nquals*sizeof(uint64_t));

    if ( stats->mpc_buf )
    {
        stats->mpc_buf = realloc(stats->mpc_buf, n*stats->nquals*sizeof(uint64_t));
        if ( !stats->mpc_buf )
            error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len,n*stats->nquals*sizeof(uint64_t));
        memset(stats->mpc_buf + stats->nbases*stats->nquals, 0, (n-stats->nbases)*stats->nquals*sizeof(uint64_t));
    }

    stats->acgtno_cycles = realloc(stats->acgtno_cycles, n*sizeof(acgtno_count_t));
    if ( !stats->acgtno_cycles )
        error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len, n*sizeof(acgtno_count_t));
    memset(stats->acgtno_cycles + stats->nbases, 0, (n-stats->nbases)*sizeof(acgtno_count_t));

    stats->read_lengths = realloc(stats->read_lengths, n*sizeof(uint64_t));
    if ( !stats->read_lengths )
        error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len,n*sizeof(uint64_t));
    memset(stats->read_lengths + stats->nbases, 0, (n-stats->nbases)*sizeof(uint64_t));

    stats->insertions = realloc(stats->insertions, n*sizeof(uint64_t));
    if ( !stats->insertions )
        error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len,n*sizeof(uint64_t));
    memset(stats->insertions + stats->nbases, 0, (n-stats->nbases)*sizeof(uint64_t));

    stats->deletions = realloc(stats->deletions, n*sizeof(uint64_t));
    if ( !stats->deletions )
        error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len,n*sizeof(uint64_t));
    memset(stats->deletions + stats->nbases, 0, (n-stats->nbases)*sizeof(uint64_t));

    stats->ins_cycles_1st = realloc(stats->ins_cycles_1st, (n+1)*sizeof(uint64_t));
    if ( !stats->ins_cycles_1st )
        error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len,(n+1)*sizeof(uint64_t));
    memset(stats->ins_cycles_1st + stats->nbases + 1, 0, (n-stats->nbases)*sizeof(uint64_t));

    stats->ins_cycles_2nd = realloc(stats->ins_cycles_2nd, (n+1)*sizeof(uint64_t));
    if ( !stats->ins_cycles_2nd )
        error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len,(n+1)*sizeof(uint64_t));
    memset(stats->ins_cycles_2nd + stats->nbases + 1, 0, (n-stats->nbases)*sizeof(uint64_t));

    stats->del_cycles_1st = realloc(stats->del_cycles_1st, (n+1)*sizeof(uint64_t));
    if ( !stats->del_cycles_1st )
        error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len,(n+1)*sizeof(uint64_t));
    memset(stats->del_cycles_1st + stats->nbases + 1, 0, (n-stats->nbases)*sizeof(uint64_t));

    stats->del_cycles_2nd = realloc(stats->del_cycles_2nd, (n+1)*sizeof(uint64_t));
    if ( !stats->del_cycles_2nd )
        error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len,(n+1)*sizeof(uint64_t));
    memset(stats->del_cycles_2nd + stats->nbases + 1, 0, (n-stats->nbases)*sizeof(uint64_t));

    stats->nbases = n;

    // Realloc the coverage distribution buffer
    int *rbuffer = calloc(sizeof(int),seq_len*5);
    n = stats->cov_rbuf.size-stats->cov_rbuf.start;
    memcpy(rbuffer,stats->cov_rbuf.buffer+stats->cov_rbuf.start,n);
    if ( stats->cov_rbuf.start>1 )
        memcpy(rbuffer+n,stats->cov_rbuf.buffer,stats->cov_rbuf.start);
    stats->cov_rbuf.start = 0;
    free(stats->cov_rbuf.buffer);
    stats->cov_rbuf.buffer = rbuffer;
    stats->cov_rbuf.size = seq_len*5;

    realloc_rseq_buffer(stats);
}

void update_checksum(bam1_t *bam_line, stats_t *stats)
{
    uint8_t *name = (uint8_t*) bam_get_qname(bam_line);
    int len = 0;
    while ( name[len] ) len++;
    stats->checksum.names +=  crc32(0L, name, len);

    int seq_len = bam_line->core.l_qseq;
    if ( !seq_len ) return;

    uint8_t *seq = bam_get_seq(bam_line);
    stats->checksum.reads += crc32(0L, seq, (seq_len+1)/2);

    uint8_t *qual = bam_get_qual(bam_line);
    stats->checksum.quals += crc32(0L, qual, (seq_len+1)/2);
}

// These stats should only be calculated for the original reads ignoring
// supplementary artificial reads otherwise we'll accidentally double count
void collect_orig_read_stats(bam1_t *bam_line, stats_t *stats, int* gc_count_out)
{
    int seq_len = bam_line->core.l_qseq;
    stats->total_len += seq_len; // This ignores clipping so only count primary

    if ( bam_line->core.flag & BAM_FQCFAIL ) stats->nreads_QCfailed++;
    if ( bam_line->core.flag & BAM_FPAIRED ) stats->nreads_paired_tech++;

    // Count GC and ACGT per cycle. Note that cycle is approximate, clipping is ignored
    uint8_t *seq  = bam_get_seq(bam_line);
    int i, read_cycle, gc_count = 0, reverse = IS_REVERSE(bam_line);
    for (i=0; i<seq_len; i++)
    {
        // Read cycle for current index
        read_cycle = (reverse ? seq_len-i-1 : i);

        // Conversion from uint8_t coding:
        //      -12-4---8------5
        //      =ACMGRSVTWYHKDBN
        switch (bam_seqi(seq, i)) {
        case 1:
            stats->acgtno_cycles[ read_cycle ].a++;
            break;
        case 2:
            stats->acgtno_cycles[ read_cycle ].c++;
            gc_count++;
            break;
        case 4:
            stats->acgtno_cycles[ read_cycle ].g++;
            gc_count++;
            break;
        case 8:
            stats->acgtno_cycles[ read_cycle ].t++;
            break;
        case 15:
            stats->acgtno_cycles[ read_cycle ].n++;
            break;
        default:
            /*
             * count "=" sequences in "other" along
             * with MRSVWYHKDB ambiguity codes
             */
            stats->acgtno_cycles[ read_cycle ].other++;
            break;
        }
    }
    int gc_idx_min = gc_count*(stats->ngc-1)/seq_len;
    int gc_idx_max = (gc_count+1)*(stats->ngc-1)/seq_len;
    if ( gc_idx_max >= stats->ngc ) gc_idx_max = stats->ngc - 1;

    // Determine which array (1st or 2nd read) will these stats go to,
    //  trim low quality bases from end the same way BWA does,
    //  fill GC histogram
    uint64_t *quals;
    uint8_t *bam_quals = bam_get_qual(bam_line);
    if ( bam_line->core.flag&BAM_FREAD2 )
    {
        quals  = stats->quals_2nd;
        stats->nreads_2nd++;
        for (i=gc_idx_min; i<gc_idx_max; i++)
            stats->gc_2nd[i]++;
    }
    else
    {
        quals = stats->quals_1st;
        stats->nreads_1st++;
        for (i=gc_idx_min; i<gc_idx_max; i++)
            stats->gc_1st[i]++;
    }
    if ( stats->info->trim_qual>0 )
        stats->nbases_trimmed += bwa_trim_read(stats->info->trim_qual, bam_quals, seq_len, reverse);

    // Quality histogram and average quality. Clipping is neglected.
    for (i=0; i<seq_len; i++)
    {
        uint8_t qual = bam_quals[ reverse ? seq_len-i-1 : i];
        if ( qual>=stats->nquals )
            error("TODO: quality too high %d>=%d (%s %d %s)\n", qual,stats->nquals,stats->info->sam_header->target_name[bam_line->core.tid],bam_line->core.pos+1,bam_get_qname(bam_line));
        if ( qual>stats->max_qual )
            stats->max_qual = qual;

        quals[ i*stats->nquals+qual ]++;
        stats->sum_qual += qual;
    }

    // Look at the flags and increment appropriate counters (mapped, paired, etc)
    if ( IS_UNMAPPED(bam_line) )
    {
        stats->nreads_unmapped++;
    }
    else
    {
        stats->nbases_mapped += seq_len; // This ignores clipping so only count primary

        if ( !bam_line->core.qual )
            stats->nreads_mq0++;
        if ( !IS_PAIRED_AND_MAPPED(bam_line) )
            stats->nreads_single_mapped++;
        else
        {
            stats->nreads_paired_and_mapped++;

            if (IS_PROPERLYPAIRED(bam_line)) stats->nreads_properly_paired++;

            if ( bam_line->core.tid!=bam_line->core.mtid )
                stats->nreads_anomalous++;
        }
    }
    *gc_count_out = gc_count;
}

void collect_stats(bam1_t *bam_line, stats_t *stats)
{
    if ( stats->rg_hash )
    {
        const uint8_t *rg = bam_aux_get(bam_line, "RG");
        if ( !rg ) return;  // certain read groups were requested but this record has none
        if ( !khash_str2int_has_key(stats->rg_hash, (const char*)(rg + 1)) ) return;
    }
    if ( stats->info->flag_require && (bam_line->core.flag & stats->info->flag_require)!=stats->info->flag_require )
    {
        stats->nreads_filtered++;
        return;
    }
    if ( stats->info->flag_filter && (bam_line->core.flag & stats->info->flag_filter) )
    {
        stats->nreads_filtered++;
        return;
    }
    if ( !is_in_regions(bam_line,stats) )
        return;
    if ( stats->info->filter_readlen!=-1 && bam_line->core.l_qseq!=stats->info->filter_readlen )
        return;

    update_checksum(bam_line, stats);

    // Secondary reads don't count for most stats purposes
    if ( bam_line->core.flag & BAM_FSECONDARY )
    {
        stats->nreads_secondary++;
        return;
    }

    // If line has no sequence cannot continue
    int seq_len = bam_line->core.l_qseq;
    if ( !seq_len ) return;

    if ( IS_DUP(bam_line) )
    {
        stats->total_len_dup += seq_len;
        stats->nreads_dup++;
    }

    int read_len = unclipped_length(bam_line);
    if ( read_len >= stats->nbases )
        realloc_buffers(stats,read_len);
    // Update max_len observed
    if ( stats->max_len<read_len )
        stats->max_len = read_len;
    int i;
    int gc_count = 0;

    // These stats should only be calculated for the original reads ignoring supplementary artificial reads
    // otherwise we'll accidentally double count
    if ( IS_ORIGINAL(bam_line) )
    {
        stats->read_lengths[read_len]++;
        collect_orig_read_stats(bam_line, stats, &gc_count);
    }

    // Look at the flags and increment appropriate counters (mapped, paired, etc)
    if ( IS_UNMAPPED(bam_line) ) return;

    count_indels(stats, bam_line);

    if ( IS_PAIRED_AND_MAPPED(bam_line) )
    {
        // The insert size is tricky, because for long inserts the libraries are
        // prepared differently and the pairs point in other direction. BWA does
        // not set the paired flag for them.  Similar thing is true also for 454
        // reads. Mates mapped to different chromosomes have isize==0.
        int32_t isize = bam_line->core.isize;
        if ( isize<0 ) isize = -isize;
        if ( stats->info->nisize > 0 && isize >= stats->info->nisize )
            isize = stats->info->nisize-1;
        if ( isize>0 || bam_line->core.tid==bam_line->core.mtid )
        {
            int pos_fst = bam_line->core.mpos - bam_line->core.pos;
            int is_fst  = IS_READ1(bam_line) ? 1 : -1;
            int is_fwd  = IS_REVERSE(bam_line) ? -1 : 1;
            int is_mfwd = IS_MATE_REVERSE(bam_line) ? -1 : 1;

            if ( is_fwd*is_mfwd>0 )
                stats->isize->inc_other(stats->isize->data, isize);
            else if ( is_fst*pos_fst>0 )
            {
                if ( is_fst*is_fwd>0 )
                    stats->isize->inc_inward(stats->isize->data, isize);
                else
                    stats->isize->inc_outward(stats->isize->data, isize);
            }
            else if ( is_fst*pos_fst<0 )
            {
                if ( is_fst*is_fwd>0 )
                    stats->isize->inc_outward(stats->isize->data, isize);
                else
                    stats->isize->inc_inward(stats->isize->data, isize);
            }
        }
    }

    // Number of mismatches
    uint8_t *nm = bam_aux_get(bam_line,"NM");
    if (nm)
        stats->nmismatches += bam_aux2i(nm);

    // Number of mapped bases from cigar
    if ( bam_line->core.n_cigar == 0)
        error("FIXME: mapped read with no cigar?\n");
    int readlen=seq_len;
    if ( stats->regions )
    {
        // Count only on-target bases
        int iref = bam_line->core.pos + 1;
        for (i=0; i<bam_line->core.n_cigar; i++)
        {
            int cig  = bam_cigar_op(bam_get_cigar(bam_line)[i]);
            int ncig = bam_cigar_oplen(bam_get_cigar(bam_line)[i]);
            if ( !ncig ) continue;  // curiously, this can happen: 0D
            if ( cig==BAM_CDEL ) readlen += ncig;
            else if ( cig==BAM_CMATCH )
            {
                if ( iref < stats->reg_from ) ncig -= stats->reg_from-iref;
                else if ( iref+ncig-1 > stats->reg_to ) ncig -= iref+ncig-1 - stats->reg_to;
                if ( ncig<0 ) ncig = 0;
                stats->nbases_mapped_cigar += ncig;
                iref += bam_cigar_oplen(bam_get_cigar(bam_line)[i]);
            }
            else if ( cig==BAM_CINS )
            {
                iref += ncig;
                if ( iref>=stats->reg_from && iref<=stats->reg_to )
                    stats->nbases_mapped_cigar += ncig;
            }
        }
    }
    else
    {
        // Count the whole read
        for (i=0; i<bam_line->core.n_cigar; i++)
        {
            if ( bam_cigar_op(bam_get_cigar(bam_line)[i])==BAM_CMATCH || bam_cigar_op(bam_get_cigar(bam_line)[i])==BAM_CINS )
                stats->nbases_mapped_cigar += bam_cigar_oplen(bam_get_cigar(bam_line)[i]);
            if ( bam_cigar_op(bam_get_cigar(bam_line)[i])==BAM_CDEL )
                readlen += bam_cigar_oplen(bam_get_cigar(bam_line)[i]);
        }
    }

    if ( stats->tid==bam_line->core.tid && bam_line->core.pos<stats->pos )
        stats->is_sorted = 0;
    stats->pos = bam_line->core.pos;

    if ( stats->is_sorted )
    {
        if ( stats->tid==-1 || stats->tid!=bam_line->core.tid )
            round_buffer_flush(stats, -1);

        // Mismatches per cycle and GC-depth graph. For simplicity, reads overlapping GCD bins
        //  are not splitted which results in up to seq_len-1 overlaps. The default bin size is
        //  20kbp, so the effect is negligible.
        if ( stats->info->fai )
        {
            int inc_ref = 0, inc_gcd = 0;
            // First pass or new chromosome
            if ( stats->rseq_pos==-1 || stats->tid != bam_line->core.tid ) { inc_ref=1; inc_gcd=1; }
            // Read goes beyond the end of the rseq buffer
            else if ( stats->rseq_pos+stats->nrseq_buf < bam_line->core.pos+readlen ) { inc_ref=1; inc_gcd=1; }
            // Read overlaps the next gcd bin
            else if ( stats->gcd_pos+stats->info->gcd_bin_size < bam_line->core.pos+readlen )
            {
                inc_gcd = 1;
                if ( stats->rseq_pos+stats->nrseq_buf < bam_line->core.pos+stats->info->gcd_bin_size ) inc_ref = 1;
            }
            if ( inc_gcd )
            {
                stats->igcd++;
                if ( stats->igcd >= stats->ngcd )
                    realloc_gcd_buffer(stats, readlen);
                if ( inc_ref )
                    read_ref_seq(stats,bam_line->core.tid,bam_line->core.pos);
                stats->gcd_pos = bam_line->core.pos;
                stats->gcd[ stats->igcd ].gc = fai_gc_content(stats, stats->gcd_pos, stats->info->gcd_bin_size);
            }

            count_mismatches_per_cycle(stats,bam_line,read_len);
        }
        // No reference and first pass, new chromosome or sequence going beyond the end of the gcd bin
        else if ( stats->gcd_pos==-1 || stats->tid != bam_line->core.tid || bam_line->core.pos - stats->gcd_pos > stats->info->gcd_bin_size )
        {
            // First pass or a new chromosome
            stats->tid     = bam_line->core.tid;
            stats->gcd_pos = bam_line->core.pos;
            stats->igcd++;
            if ( stats->igcd >= stats->ngcd )
                realloc_gcd_buffer(stats, readlen);
        }
        stats->gcd[ stats->igcd ].depth++;
        // When no reference sequence is given, approximate the GC from the read (much shorter window, but otherwise OK)
        if ( !stats->info->fai )
            stats->gcd[ stats->igcd ].gc += (float) gc_count / seq_len;

        // Coverage distribution graph
        round_buffer_flush(stats,bam_line->core.pos);
        round_buffer_insert_read(&(stats->cov_rbuf),bam_line->core.pos,bam_line->core.pos+seq_len-1);
    }
}

// Sort by GC and depth
#define GCD_t(x) ((gc_depth_t *)x)
static int gcd_cmp(const void *a, const void *b)
{
    if ( GCD_t(a)->gc < GCD_t(b)->gc ) return -1;
    if ( GCD_t(a)->gc > GCD_t(b)->gc ) return 1;
    if ( GCD_t(a)->depth < GCD_t(b)->depth ) return -1;
    if ( GCD_t(a)->depth > GCD_t(b)->depth ) return 1;
    return 0;
}
#undef GCD_t

float gcd_percentile(gc_depth_t *gcd, int N, int p)
{
    float n,d;
    int k;

    n = p*(N+1)/100;
    k = n;
    if ( k<=0 )
        return gcd[0].depth;
    if ( k>=N )
        return gcd[N-1].depth;

    d = n - k;
    return gcd[k-1].depth + d*(gcd[k].depth - gcd[k-1].depth);
}

void output_stats(FILE *to, stats_t *stats, int sparse)
{
    // Calculate average insert size and standard deviation (from the main bulk data only)
    int isize, ibulk=0;
    uint64_t nisize=0, nisize_inward=0, nisize_outward=0, nisize_other=0;
    for (isize=0; isize<stats->isize->nitems(stats->isize->data); isize++)
    {
        // Each pair was counted twice
        stats->isize->set_inward(stats->isize->data, isize, stats->isize->inward(stats->isize->data, isize) * 0.5);
        stats->isize->set_outward(stats->isize->data, isize, stats->isize->outward(stats->isize->data, isize) * 0.5);
        stats->isize->set_other(stats->isize->data, isize, stats->isize->other(stats->isize->data, isize) * 0.5);

        nisize_inward += stats->isize->inward(stats->isize->data, isize);
        nisize_outward += stats->isize->outward(stats->isize->data, isize);
        nisize_other += stats->isize->other(stats->isize->data, isize);
        nisize += stats->isize->inward(stats->isize->data, isize) + stats->isize->outward(stats->isize->data, isize) + stats->isize->other(stats->isize->data, isize);
    }

    double bulk=0, avg_isize=0, sd_isize=0;
    for (isize=0; isize<stats->isize->nitems(stats->isize->data); isize++)
    {
        bulk += stats->isize->inward(stats->isize->data, isize) +  stats->isize->outward(stats->isize->data, isize) + stats->isize->other(stats->isize->data, isize);
        avg_isize += isize * (stats->isize->inward(stats->isize->data, isize) +  stats->isize->outward(stats->isize->data, isize) + stats->isize->other(stats->isize->data, isize));

        if ( bulk/nisize > stats->info->isize_main_bulk )
        {
            ibulk  = isize+1;
            nisize = bulk;
            break;
        }
    }
    avg_isize /= nisize ? nisize : 1;
    for (isize=1; isize<ibulk; isize++)
        sd_isize += (stats->isize->inward(stats->isize->data, isize) + stats->isize->outward(stats->isize->data, isize) +stats->isize->other(stats->isize->data, isize)) * (isize-avg_isize)*(isize-avg_isize) / nisize;
    sd_isize = sqrt(sd_isize);


    fprintf(to, "# This file was produced by samtools stats (%s+htslib-%s) and can be plotted using plot-bamstats\n", samtools_version(), hts_version());
    if( stats->split_name != NULL ){
        fprintf(to, "# This file contains statistics only for reads with tag: %s=%s\n", stats->info->split_tag, stats->split_name);
    }
    else{
        fprintf(to, "# This file contains statistics for all reads.\n");
    }
    fprintf(to, "# The command line was:  %s",stats->info->argv[0]);
    int i;
    for (i=1; i<stats->info->argc; i++)
        fprintf(to, " %s", stats->info->argv[i]);
    fprintf(to, "\n");
    fprintf(to, "# CHK, Checksum\t[2]Read Names\t[3]Sequences\t[4]Qualities\n");
    fprintf(to, "# CHK, CRC32 of reads which passed filtering followed by addition (32bit overflow)\n");
    fprintf(to, "CHK\t%08x\t%08x\t%08x\n", stats->checksum.names,stats->checksum.reads,stats->checksum.quals);
    fprintf(to, "# Summary Numbers. Use `grep ^SN | cut -f 2-` to extract this part.\n");
    fprintf(to, "SN\traw total sequences:\t%ld\n", (long)(stats->nreads_filtered+stats->nreads_1st+stats->nreads_2nd));  // not counting excluded seqs (and none of the below)
    fprintf(to, "SN\tfiltered sequences:\t%ld\n", (long)stats->nreads_filtered);
    fprintf(to, "SN\tsequences:\t%ld\n", (long)(stats->nreads_1st+stats->nreads_2nd));
    fprintf(to, "SN\tis sorted:\t%d\n", stats->is_sorted ? 1 : 0);
    fprintf(to, "SN\t1st fragments:\t%ld\n", (long)stats->nreads_1st);
    fprintf(to, "SN\tlast fragments:\t%ld\n", (long)stats->nreads_2nd);
    fprintf(to, "SN\treads mapped:\t%ld\n", (long)(stats->nreads_paired_and_mapped+stats->nreads_single_mapped));
    fprintf(to, "SN\treads mapped and paired:\t%ld\t# paired-end technology bit set + both mates mapped\n", (long)stats->nreads_paired_and_mapped);
    fprintf(to, "SN\treads unmapped:\t%ld\n", (long)stats->nreads_unmapped);
    fprintf(to, "SN\treads properly paired:\t%ld\t# proper-pair bit set\n", (long)stats->nreads_properly_paired);
    fprintf(to, "SN\treads paired:\t%ld\t# paired-end technology bit set\n", (long)stats->nreads_paired_tech);
    fprintf(to, "SN\treads duplicated:\t%ld\t# PCR or optical duplicate bit set\n", (long)stats->nreads_dup);
    fprintf(to, "SN\treads MQ0:\t%ld\t# mapped and MQ=0\n", (long)stats->nreads_mq0);
    fprintf(to, "SN\treads QC failed:\t%ld\n", (long)stats->nreads_QCfailed);
    fprintf(to, "SN\tnon-primary alignments:\t%ld\n", (long)stats->nreads_secondary);
    fprintf(to, "SN\ttotal length:\t%ld\t# ignores clipping\n", (long)stats->total_len);
    fprintf(to, "SN\tbases mapped:\t%ld\t# ignores clipping\n", (long)stats->nbases_mapped);                 // the length of the whole read goes here, including soft-clips etc.
    fprintf(to, "SN\tbases mapped (cigar):\t%ld\t# more accurate\n", (long)stats->nbases_mapped_cigar);   // only matched and inserted bases are counted here
    fprintf(to, "SN\tbases trimmed:\t%ld\n", (long)stats->nbases_trimmed);
    fprintf(to, "SN\tbases duplicated:\t%ld\n", (long)stats->total_len_dup);
    fprintf(to, "SN\tmismatches:\t%ld\t# from NM fields\n", (long)stats->nmismatches);
    fprintf(to, "SN\terror rate:\t%e\t# mismatches / bases mapped (cigar)\n", stats->nbases_mapped_cigar ? (float)stats->nmismatches/stats->nbases_mapped_cigar : 0);
    float avg_read_length = (stats->nreads_1st+stats->nreads_2nd)?stats->total_len/(stats->nreads_1st+stats->nreads_2nd):0;
    fprintf(to, "SN\taverage length:\t%.0f\n", avg_read_length);
    fprintf(to, "SN\tmaximum length:\t%d\n", stats->max_len);
    fprintf(to, "SN\taverage quality:\t%.1f\n", stats->total_len?stats->sum_qual/stats->total_len:0);
    fprintf(to, "SN\tinsert size average:\t%.1f\n", avg_isize);
    fprintf(to, "SN\tinsert size standard deviation:\t%.1f\n", sd_isize);
    fprintf(to, "SN\tinward oriented pairs:\t%ld\n", (long)nisize_inward);
    fprintf(to, "SN\toutward oriented pairs:\t%ld\n", (long)nisize_outward);
    fprintf(to, "SN\tpairs with other orientation:\t%ld\n", (long)nisize_other);
    fprintf(to, "SN\tpairs on different chromosomes:\t%ld\n", (long)stats->nreads_anomalous/2);

    int ibase,iqual;
    if ( stats->max_len<stats->nbases ) stats->max_len++;
    if ( stats->max_qual+1<stats->nquals ) stats->max_qual++;
    fprintf(to, "# First Fragment Qualitites. Use `grep ^FFQ | cut -f 2-` to extract this part.\n");
    fprintf(to, "# Columns correspond to qualities and rows to cycles. First column is the cycle number.\n");
    for (ibase=0; ibase<stats->max_len; ibase++)
    {
        fprintf(to, "FFQ\t%d",ibase+1);
        for (iqual=0; iqual<=stats->max_qual; iqual++)
        {
            fprintf(to, "\t%ld", (long)stats->quals_1st[ibase*stats->nquals+iqual]);
        }
        fprintf(to, "\n");
    }
    fprintf(to, "# Last Fragment Qualitites. Use `grep ^LFQ | cut -f 2-` to extract this part.\n");
    fprintf(to, "# Columns correspond to qualities and rows to cycles. First column is the cycle number.\n");
    for (ibase=0; ibase<stats->max_len; ibase++)
    {
        fprintf(to, "LFQ\t%d",ibase+1);
        for (iqual=0; iqual<=stats->max_qual; iqual++)
        {
            fprintf(to, "\t%ld", (long)stats->quals_2nd[ibase*stats->nquals+iqual]);
        }
        fprintf(to, "\n");
    }
    if ( stats->mpc_buf )
    {
        fprintf(to, "# Mismatches per cycle and quality. Use `grep ^MPC | cut -f 2-` to extract this part.\n");
        fprintf(to, "# Columns correspond to qualities, rows to cycles. First column is the cycle number, second\n");
        fprintf(to, "# is the number of N's and the rest is the number of mismatches\n");
        for (ibase=0; ibase<stats->max_len; ibase++)
        {
            fprintf(to, "MPC\t%d",ibase+1);
            for (iqual=0; iqual<=stats->max_qual; iqual++)
            {
                fprintf(to, "\t%ld", (long)stats->mpc_buf[ibase*stats->nquals+iqual]);
            }
            fprintf(to, "\n");
        }
    }
    fprintf(to, "# GC Content of first fragments. Use `grep ^GCF | cut -f 2-` to extract this part.\n");
    int ibase_prev = 0;
    for (ibase=0; ibase<stats->ngc; ibase++)
    {
        if ( stats->gc_1st[ibase]==stats->gc_1st[ibase_prev] ) continue;
        fprintf(to, "GCF\t%.2f\t%ld\n", (ibase+ibase_prev)*0.5*100./(stats->ngc-1), (long)stats->gc_1st[ibase_prev]);
        ibase_prev = ibase;
    }
    fprintf(to, "# GC Content of last fragments. Use `grep ^GCL | cut -f 2-` to extract this part.\n");
    ibase_prev = 0;
    for (ibase=0; ibase<stats->ngc; ibase++)
    {
        if ( stats->gc_2nd[ibase]==stats->gc_2nd[ibase_prev] ) continue;
        fprintf(to, "GCL\t%.2f\t%ld\n", (ibase+ibase_prev)*0.5*100./(stats->ngc-1), (long)stats->gc_2nd[ibase_prev]);
        ibase_prev = ibase;
    }
    fprintf(to, "# ACGT content per cycle. Use `grep ^GCC | cut -f 2-` to extract this part. The columns are: cycle; A,C,G,T base counts as a percentage of all A/C/G/T bases [%%]; and N and O counts as a percentage of all A/C/G/T bases [%%]\n");
    for (ibase=0; ibase<stats->max_len; ibase++)
    {
        acgtno_count_t *acgtno_count = &(stats->acgtno_cycles[ibase]);
        uint64_t acgt_sum = acgtno_count->a + acgtno_count->c + acgtno_count->g + acgtno_count->t;
        if ( ! acgt_sum ) continue;
        fprintf(to, "GCC\t%d\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", ibase+1, 100.*acgtno_count->a/acgt_sum, 100.*acgtno_count->c/acgt_sum, 100.*acgtno_count->g/acgt_sum, 100.*acgtno_count->t/acgt_sum, 100.*acgtno_count->n/acgt_sum, 100.*acgtno_count->other/acgt_sum);
    }
    fprintf(to, "# Insert sizes. Use `grep ^IS | cut -f 2-` to extract this part. The columns are: insert size, pairs total, inward oriented pairs, outward oriented pairs, other pairs\n");
    for (isize=0; isize<ibulk; isize++) {
        long in = (long)(stats->isize->inward(stats->isize->data, isize));
        long out = (long)(stats->isize->outward(stats->isize->data, isize));
        long other = (long)(stats->isize->other(stats->isize->data, isize));
        if (!sparse || in + out + other > 0) {
            fprintf(to, "IS\t%d\t%ld\t%ld\t%ld\t%ld\n", isize,  in+out+other,
                in , out, other);
        }
    }

    fprintf(to, "# Read lengths. Use `grep ^RL | cut -f 2-` to extract this part. The columns are: read length, count\n");
    int ilen;
    for (ilen=0; ilen<stats->max_len; ilen++)
    {
        if ( stats->read_lengths[ilen]>0 )
            fprintf(to, "RL\t%d\t%ld\n", ilen, (long)stats->read_lengths[ilen]);
    }

    fprintf(to, "# Indel distribution. Use `grep ^ID | cut -f 2-` to extract this part. The columns are: length, number of insertions, number of deletions\n");
    for (ilen=0; ilen<stats->nindels; ilen++)
    {
        if ( stats->insertions[ilen]>0 || stats->deletions[ilen]>0 )
            fprintf(to, "ID\t%d\t%ld\t%ld\n", ilen+1, (long)stats->insertions[ilen], (long)stats->deletions[ilen]);
    }

    fprintf(to, "# Indels per cycle. Use `grep ^IC | cut -f 2-` to extract this part. The columns are: cycle, number of insertions (fwd), .. (rev) , number of deletions (fwd), .. (rev)\n");
    for (ilen=0; ilen<=stats->nbases; ilen++)
    {
        // For deletions we print the index of the cycle before the deleted base (1-based) and for insertions
        //  the index of the cycle of the first inserted base (also 1-based)
        if ( stats->ins_cycles_1st[ilen]>0 || stats->ins_cycles_2nd[ilen]>0 || stats->del_cycles_1st[ilen]>0 || stats->del_cycles_2nd[ilen]>0 )
            fprintf(to, "IC\t%d\t%ld\t%ld\t%ld\t%ld\n", ilen+1, (long)stats->ins_cycles_1st[ilen], (long)stats->ins_cycles_2nd[ilen], (long)stats->del_cycles_1st[ilen], (long)stats->del_cycles_2nd[ilen]);
    }

    fprintf(to, "# Coverage distribution. Use `grep ^COV | cut -f 2-` to extract this part.\n");
    if  ( stats->cov[0] )
        fprintf(to, "COV\t[<%d]\t%d\t%ld\n",stats->info->cov_min,stats->info->cov_min-1, (long)stats->cov[0]);
    int icov;
    for (icov=1; icov<stats->ncov-1; icov++)
        if ( stats->cov[icov] )
            fprintf(to, "COV\t[%d-%d]\t%d\t%ld\n",stats->info->cov_min + (icov-1)*stats->info->cov_step, stats->info->cov_min + icov*stats->info->cov_step-1,stats->info->cov_min + icov*stats->info->cov_step-1, (long)stats->cov[icov]);
    if ( stats->cov[stats->ncov-1] )
        fprintf(to, "COV\t[%d<]\t%d\t%ld\n",stats->info->cov_min + (stats->ncov-2)*stats->info->cov_step-1,stats->info->cov_min + (stats->ncov-2)*stats->info->cov_step-1, (long)stats->cov[stats->ncov-1]);

    // Calculate average GC content, then sort by GC and depth
    fprintf(to, "# GC-depth. Use `grep ^GCD | cut -f 2-` to extract this part. The columns are: GC%%, unique sequence percentiles, 10th, 25th, 50th, 75th and 90th depth percentile\n");
    uint32_t igcd;
    for (igcd=0; igcd<stats->igcd; igcd++)
    {
        if ( stats->info->fai )
            stats->gcd[igcd].gc = rint(100. * stats->gcd[igcd].gc);
        else
            if ( stats->gcd[igcd].depth )
                stats->gcd[igcd].gc = rint(100. * stats->gcd[igcd].gc / stats->gcd[igcd].depth);
    }
    qsort(stats->gcd, stats->igcd+1, sizeof(gc_depth_t), gcd_cmp);
    igcd = 0;
    while ( igcd < stats->igcd )
    {
        // Calculate percentiles (10,25,50,75,90th) for the current GC content and print
        uint32_t nbins=0, itmp=igcd;
        float gc = stats->gcd[igcd].gc;
        while ( itmp<stats->igcd && fabs(stats->gcd[itmp].gc-gc)<0.1 )
        {
            nbins++;
            itmp++;
        }
        fprintf(to, "GCD\t%.1f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\n", gc, (igcd+nbins+1)*100./(stats->igcd+1),
                gcd_percentile(&(stats->gcd[igcd]),nbins,10) *avg_read_length/stats->info->gcd_bin_size,
                gcd_percentile(&(stats->gcd[igcd]),nbins,25) *avg_read_length/stats->info->gcd_bin_size,
                gcd_percentile(&(stats->gcd[igcd]),nbins,50) *avg_read_length/stats->info->gcd_bin_size,
                gcd_percentile(&(stats->gcd[igcd]),nbins,75) *avg_read_length/stats->info->gcd_bin_size,
                gcd_percentile(&(stats->gcd[igcd]),nbins,90) *avg_read_length/stats->info->gcd_bin_size
              );
        igcd += nbins;
    }
}

void init_regions(stats_t *stats, const char *file)
{
    FILE *fp = fopen(file,"r");
    if ( !fp ) error("%s: %s\n",file,strerror(errno));

    kstring_t line = { 0, 0, NULL };
    int warned = 0;
    int prev_tid=-1, prev_pos=-1;
    while (line.l = 0, kgetline(&line, (kgets_func *)fgets, fp) >= 0)
    {
        if ( line.s[0] == '#' ) continue;

        int i = 0;
        while ( i<line.l && !isspace(line.s[i]) ) i++;
        if ( i>=line.l ) error("Could not parse the file: %s [%s]\n", file, line.s);
        line.s[i] = '\0';

        int tid = bam_name2id(stats->info->sam_header, line.s);
        if ( tid < 0 )
        {
            if ( !warned )
                fprintf(pysam_stderr,"Warning: Some sequences not present in the BAM, e.g. \"%s\". This message is printed only once.\n", line.s);
            warned = 1;
            continue;
        }

        if ( tid >= stats->nregions )
        {
            stats->regions = realloc(stats->regions,sizeof(regions_t)*(stats->nregions+100));
            int j;
            for (j=stats->nregions; j<stats->nregions+100; j++)
            {
                stats->regions[j].npos = stats->regions[j].mpos = stats->regions[j].cpos = 0;
                stats->regions[j].pos = NULL;
            }
            stats->nregions += 100;
        }
        int npos = stats->regions[tid].npos;
        if ( npos >= stats->regions[tid].mpos )
        {
            stats->regions[tid].mpos += 1000;
            stats->regions[tid].pos = realloc(stats->regions[tid].pos,sizeof(pos_t)*stats->regions[tid].mpos);
        }

        if ( (sscanf(&line.s[i+1],"%d %d",&stats->regions[tid].pos[npos].from,&stats->regions[tid].pos[npos].to))!=2 ) error("Could not parse the region [%s]\n", &line.s[i+1]);
        if ( prev_tid==-1 || prev_tid!=tid )
        {
            prev_tid = tid;
            prev_pos = stats->regions[tid].pos[npos].from;
        }
        if ( prev_pos>stats->regions[tid].pos[npos].from )
            error("The positions are not in chromosomal order (%s:%d comes after %d)\n", line.s,stats->regions[tid].pos[npos].from,prev_pos);
        stats->regions[tid].npos++;
    }
    free(line.s);
    if ( !stats->regions ) error("Unable to map the -t sequences to the BAM sequences.\n");
    fclose(fp);
}

void destroy_regions(stats_t *stats)
{
    int i;
    for (i=0; i<stats->nregions; i++)
    {
        if ( !stats->regions[i].mpos ) continue;
        free(stats->regions[i].pos);
    }
    if ( stats->regions ) free(stats->regions);
}

void reset_regions(stats_t *stats)
{
    int i;
    for (i=0; i<stats->nregions; i++)
        stats->regions[i].cpos = 0;
}

int is_in_regions(bam1_t *bam_line, stats_t *stats)
{
    if ( !stats->regions ) return 1;

    if ( bam_line->core.tid >= stats->nregions || bam_line->core.tid<0 ) return 0;
    if ( !stats->is_sorted ) error("The BAM must be sorted in order for -t to work.\n");

    regions_t *reg = &stats->regions[bam_line->core.tid];
    if ( reg->cpos==reg->npos ) return 0;       // done for this chr

    // Find a matching interval or skip this read. No splicing of reads is done, no indels or soft clips considered,
    //  even small overlap is enough to include the read in the stats.
    int i = reg->cpos;
    while ( i<reg->npos && reg->pos[i].to<=bam_line->core.pos ) i++;
    if ( i>=reg->npos ) { reg->cpos = reg->npos; return 0; }
    if ( bam_line->core.pos + bam_line->core.l_qseq + 1 < reg->pos[i].from ) return 0;
    reg->cpos = i;
    stats->reg_from = reg->pos[i].from;
    stats->reg_to   = reg->pos[i].to;

    return 1;
}

void init_group_id(stats_t *stats, const char *id)
{
#if 0
    if ( !stats->sam_header->dict )
        stats->sam_header->dict = sam_header_parse2(stats->sam_header->text);
    void *iter = stats->sam_header->dict;
    const char *key, *val;
    int n = 0;
    stats->rg_hash = khash_str2int_init();
    while ( (iter = sam_header2key_val(iter, "RG","ID","SM", &key, &val)) )
    {
        if ( !strcmp(id,key) || (val && !strcmp(id,val)) )
        {
            khiter_t k = kh_get(kh_rg, stats->rg_hash, key);
            if ( k != kh_end(stats->rg_hash) )
                fprintf(pysam_stderr, "[init_group_id] The group ID not unique: \"%s\"\n", key);
            int ret;
            k = kh_put(kh_rg, stats->rg_hash, key, &ret);
            kh_value(stats->rg_hash, k) = val;
            n++;
        }
    }
    if ( !n )
        error("The sample or read group \"%s\" not present.\n", id);
#else
    fprintf(pysam_stderr, "Samtools-htslib: init_group_id() header parsing not yet implemented\n");
    abort();
#endif
}


static void error(const char *format, ...)
{
    if ( !format )
    {
        fprintf(pysam_stdout, "About: The program collects statistics from BAM files. The output can be visualized using plot-bamstats.\n");
        fprintf(pysam_stdout, "Usage: samtools stats [OPTIONS] file.bam\n");
        fprintf(pysam_stdout, "       samtools stats [OPTIONS] file.bam chr:from-to\n");
        fprintf(pysam_stdout, "Options:\n");
        fprintf(pysam_stdout, "    -c, --coverage <int>,<int>,<int>    Coverage distribution min,max,step [1,1000,1]\n");
        fprintf(pysam_stdout, "    -d, --remove-dups                   Exclude from statistics reads marked as duplicates\n");
        fprintf(pysam_stdout, "    -f, --required-flag  <str|int>      Required flag, 0 for unset. See also `samtools flags` [0]\n");
        fprintf(pysam_stdout, "    -F, --filtering-flag <str|int>      Filtering flag, 0 for unset. See also `samtools flags` [0]\n");
        fprintf(pysam_stdout, "        --GC-depth <float>              the size of GC-depth bins (decreasing bin size increases memory requirement) [2e4]\n");
        fprintf(pysam_stdout, "    -h, --help                          This help message\n");
        fprintf(pysam_stdout, "    -i, --insert-size <int>             Maximum insert size [8000]\n");
        fprintf(pysam_stdout, "    -I, --id <string>                   Include only listed read group or sample name\n");
        fprintf(pysam_stdout, "    -l, --read-length <int>             Include in the statistics only reads with the given read length []\n");
        fprintf(pysam_stdout, "    -m, --most-inserts <float>          Report only the main part of inserts [0.99]\n");
        fprintf(pysam_stdout, "    -P, --split-prefix <str>            Path or string prefix for filepaths output by -S (default is input filename)\n");
        fprintf(pysam_stdout, "    -q, --trim-quality <int>            The BWA trimming parameter [0]\n");
        fprintf(pysam_stdout, "    -r, --ref-seq <file>                Reference sequence (required for GC-depth and mismatches-per-cycle calculation).\n");
        fprintf(pysam_stdout, "    -s, --sam                           Ignored (input format is auto-detected).\n");
        fprintf(pysam_stdout, "    -S, --split <tag>                   Also write statistics to separate files split by tagged field.\n");
        fprintf(pysam_stdout, "    -t, --target-regions <file>         Do stats in these regions only. Tab-delimited file chr,from,to, 1-based, inclusive.\n");
        fprintf(pysam_stdout, "    -x, --sparse                        Suppress outputting IS rows where there are no insertions.\n");
        sam_global_opt_help(pysam_stdout, "-.--.");
        fprintf(pysam_stdout, "\n");
    }
    else
    {
        va_list ap;
        va_start(ap, format);
        vfprintf(pysam_stderr, format, ap);
        va_end(ap);
    }
    exit(1);
}

void cleanup_stats_info(stats_info_t* info){
    if (info->fai) fai_destroy(info->fai);
    sam_close(info->sam);
    free(info);
}

void cleanup_stats(stats_t* stats)
{
    free(stats->cov_rbuf.buffer); free(stats->cov);
    free(stats->quals_1st); free(stats->quals_2nd);
    free(stats->gc_1st); free(stats->gc_2nd);
    stats->isize->isize_free(stats->isize->data);
    free(stats->isize);
    free(stats->gcd);
    free(stats->rseq_buf);
    free(stats->mpc_buf);
    free(stats->acgtno_cycles);
    free(stats->read_lengths);
    free(stats->insertions);
    free(stats->deletions);
    free(stats->ins_cycles_1st);
    free(stats->ins_cycles_2nd);
    free(stats->del_cycles_1st);
    free(stats->del_cycles_2nd);
    destroy_regions(stats);
    if ( stats->rg_hash ) khash_str2int_destroy(stats->rg_hash);
    free(stats->split_name);
    free(stats);
}

void output_split_stats(khash_t(c2stats) *split_hash, char* bam_fname, int sparse)
{
    int i = 0;
    kstring_t output_filename = { 0, 0, NULL };
    stats_t *curr_stats = NULL;
    for(i = kh_begin(split_hash); i != kh_end(split_hash); ++i){
        if(!kh_exist(split_hash, i)) continue;
        curr_stats = kh_value(split_hash, i);
        round_buffer_flush(curr_stats, -1);

        output_filename.l = 0;
        if (curr_stats->info->split_prefix)
            kputs(curr_stats->info->split_prefix, &output_filename);
        else
            kputs(bam_fname, &output_filename);
        kputc('_', &output_filename);
        kputs(curr_stats->split_name, &output_filename);
        kputs(".bamstat", &output_filename);

        FILE *to = fopen(output_filename.s, "w");
        if(to == NULL){
            error("Could not open '%s' for writing.\n", output_filename.s);
        }
        output_stats(to, curr_stats, sparse);
        fclose(to);
    }

    free(output_filename.s);
}

void destroy_split_stats(khash_t(c2stats) *split_hash)
{
    int i = 0;
    stats_t *curr_stats = NULL;
    for(i = kh_begin(split_hash); i != kh_end(split_hash); ++i){
        if(!kh_exist(split_hash, i)) continue;
            curr_stats = kh_value(split_hash, i);
            cleanup_stats(curr_stats);
    }
    kh_destroy(c2stats, split_hash);
}

stats_info_t* stats_info_init(int argc, char *argv[])
{
    stats_info_t* info = calloc(1, sizeof(stats_info_t));
    info->nisize = 8000;
    info->isize_main_bulk = 0.99;   // There are always outliers at the far end
    info->gcd_bin_size = 20e3;
    info->cov_min  = 1;
    info->cov_max  = 1000;
    info->cov_step = 1;
    info->filter_readlen = -1;
    info->argc = argc;
    info->argv = argv;

    return info;
}

int init_stat_info_fname(stats_info_t* info, const char* bam_fname, const htsFormat* in_fmt)
{
    // .. bam
    samFile* sam;
    if ((sam = sam_open_format(bam_fname, "r", in_fmt)) == 0) {
        error("Failed to open: %s\n", bam_fname);
        return 1;
    }
    info->sam = sam;
    info->sam_header = sam_hdr_read(sam);
    if (info->sam_header == NULL) {
        error("Failed to read header for '%s'\n", bam_fname);
        return 1;
    }
    return 0;
}

stats_t* stats_init()
{
    stats_t *stats = calloc(1,sizeof(stats_t));
    stats->ngc    = 200;
    stats->nquals = 256;
    stats->nbases = 300;
    stats->max_len   = 30;
    stats->max_qual  = 40;
    stats->rseq_pos     = -1;
    stats->tid = stats->gcd_pos = -1;
    stats->igcd = 0;
    stats->is_sorted = 1;
    stats->nindels = stats->nbases;
    stats->split_name = NULL;

    return stats;
}

static void init_stat_structs(stats_t* stats, stats_info_t* info, const char* group_id, const char* targets)
{
    // Give stats_t a pointer to the info struct
    // This saves us having to pass the stats_info_t to every function
    stats->info = info;

    // Init structures
    //  .. coverage bins and round buffer
    if ( info->cov_step > info->cov_max - info->cov_min + 1 )
    {
        info->cov_step = info->cov_max - info->cov_min;
        if ( info->cov_step <= 0 )
            info->cov_step = 1;
    }
    stats->ncov = 3 + (info->cov_max-info->cov_min) / info->cov_step;
    info->cov_max = info->cov_min + ((info->cov_max-info->cov_min)/info->cov_step +1)*info->cov_step - 1;
    stats->cov = calloc(sizeof(uint64_t),stats->ncov);
    stats->cov_rbuf.size = stats->nbases*5;
    stats->cov_rbuf.buffer = calloc(sizeof(int32_t),stats->cov_rbuf.size);

    if ( group_id ) init_group_id(stats, group_id);
    // .. arrays
    stats->quals_1st      = calloc(stats->nquals*stats->nbases,sizeof(uint64_t));
    stats->quals_2nd      = calloc(stats->nquals*stats->nbases,sizeof(uint64_t));
    stats->gc_1st         = calloc(stats->ngc,sizeof(uint64_t));
    stats->gc_2nd         = calloc(stats->ngc,sizeof(uint64_t));
    stats->isize          = init_isize_t(info->nisize);
    stats->gcd            = calloc(stats->ngcd,sizeof(gc_depth_t));
    stats->mpc_buf        = info->fai ? calloc(stats->nquals*stats->nbases,sizeof(uint64_t)) : NULL;
    stats->acgtno_cycles  = calloc(stats->nbases,sizeof(acgtno_count_t));
    stats->read_lengths   = calloc(stats->nbases,sizeof(uint64_t));
    stats->insertions     = calloc(stats->nbases,sizeof(uint64_t));
    stats->deletions      = calloc(stats->nbases,sizeof(uint64_t));
    stats->ins_cycles_1st = calloc(stats->nbases+1,sizeof(uint64_t));
    stats->ins_cycles_2nd = calloc(stats->nbases+1,sizeof(uint64_t));
    stats->del_cycles_1st = calloc(stats->nbases+1,sizeof(uint64_t));
    stats->del_cycles_2nd = calloc(stats->nbases+1,sizeof(uint64_t));
    realloc_rseq_buffer(stats);
    if ( targets )
        init_regions(stats, targets);
}

static stats_t* get_curr_split_stats(bam1_t* bam_line, khash_t(c2stats)* split_hash, stats_info_t* info, char* targets)
{
    stats_t *curr_stats = NULL;
    const uint8_t *tag_val = bam_aux_get(bam_line, info->split_tag);
    if(tag_val == 0){
        error("Tag '%s' not found in bam_line.\n", info->split_tag);
    }
    char* split_name = strdup(bam_aux2Z(tag_val));

    // New stats object, under split
    khiter_t k = kh_get(c2stats, split_hash, split_name);
    if(k == kh_end(split_hash)){
        curr_stats = stats_init(); // mallocs new instance
        init_stat_structs(curr_stats, info, NULL, targets);
        curr_stats->split_name = split_name;

        // Record index in hash
        int ret = 0;
        khiter_t iter = kh_put(c2stats, split_hash, split_name, &ret);
        if( ret < 0 ){
            error("Failed to insert key '%s' into split_hash", split_name);
        }
        kh_val(split_hash, iter) = curr_stats; // store pointer to stats
    }
    else{
        curr_stats = kh_value(split_hash, k);
        free(split_name); // don't need to hold on to this if it wasn't new
    }
    return curr_stats;
}

int main_stats(int argc, char *argv[])
{
    char *targets = NULL;
    char *bam_fname = NULL;
    char *group_id = NULL;
    int sparse = 0;
    sam_global_args ga = SAM_GLOBAL_ARGS_INIT;

    stats_info_t *info = stats_info_init(argc, argv);

    static const struct option loptions[] =
    {
        SAM_OPT_GLOBAL_OPTIONS('-', 0, '-', '-', 0),
        {"help", no_argument, NULL, 'h'},
        {"remove-dups", no_argument, NULL, 'd'},
        {"sam", no_argument, NULL, 's'},
        {"ref-seq", required_argument, NULL, 'r'},
        {"coverage", required_argument, NULL, 'c'},
        {"read-length", required_argument, NULL, 'l'},
        {"insert-size", required_argument, NULL, 'i'},
        {"most-inserts", required_argument, NULL, 'm'},
        {"trim-quality", required_argument, NULL, 'q'},
        {"target-regions", required_argument, NULL, 't'},
        {"required-flag", required_argument, NULL, 'f'},
        {"filtering-flag", required_argument, NULL, 'F'},
        {"id", required_argument, NULL, 'I'},
        {"GC-depth", required_argument, NULL, 1},
        {"sparse", no_argument, NULL, 'x'},
        {"split", required_argument, NULL, 'S'},
        {"split-prefix", required_argument, NULL, 'P'},
        {NULL, 0, NULL, 0}
    };
    int opt;

    while ( (opt=getopt_long(argc,argv,"?hdsxr:c:l:i:t:m:q:f:F:I:1:S:P:",loptions,NULL))>0 )
    {
        switch (opt)
        {
            case 'f': info->flag_require = bam_str2flag(optarg); break;
            case 'F': info->flag_filter = bam_str2flag(optarg); break;
            case 'd': info->flag_filter |= BAM_FDUP; break;
            case 's': break;
            case 'r': info->fai = fai_load(optarg);
                      if (info->fai==NULL)
                          error("Could not load faidx: %s\n", optarg);
                      break;
            case  1 : info->gcd_bin_size = atof(optarg); break;
            case 'c': if ( sscanf(optarg,"%d,%d,%d",&info->cov_min,&info->cov_max,&info->cov_step)!= 3 )
                          error("Unable to parse -c %s\n", optarg);
                      break;
            case 'l': info->filter_readlen = atoi(optarg); break;
            case 'i': info->nisize = atoi(optarg); break;
            case 'm': info->isize_main_bulk = atof(optarg); break;
            case 'q': info->trim_qual = atoi(optarg); break;
            case 't': targets = optarg; break;
            case 'I': group_id = optarg; break;
            case 'x': sparse = 1; break;
            case 'S': info->split_tag = optarg; break;
            case 'P': info->split_prefix = optarg; break;
            case '?':
            case 'h': error(NULL);
            default:
                if (parse_sam_global_opt(opt, optarg, loptions, &ga) != 0)
                    error("Unknown argument: %s\n", optarg);
                break;
        }
    }
    if ( optind<argc )
        bam_fname = argv[optind++];

    if ( !bam_fname )
    {
        if ( isatty(STDIN_FILENO) )
            error(NULL);
        bam_fname = "-";
    }

    if (init_stat_info_fname(info, bam_fname, &ga.in)) return 1;

    stats_t *all_stats = stats_init();
    stats_t *curr_stats = NULL;
    init_stat_structs(all_stats, info, group_id, targets);
    // Init
    // .. hash
    khash_t(c2stats)* split_hash = kh_init(c2stats);

    // Collect statistics
    bam1_t *bam_line = bam_init1();
    if ( optind<argc )
    {
        // Collect stats in selected regions only
        hts_idx_t *bam_idx = sam_index_load(info->sam,bam_fname);
        if (bam_idx == 0)
            error("Random alignment retrieval only works for indexed BAM files.\n");

        int i;
        for (i=optind; i<argc; i++)
        {
            hts_itr_t* iter = bam_itr_querys(bam_idx, info->sam_header, argv[i]);
            while (sam_itr_next(info->sam, iter, bam_line) >= 0) {
                if (info->split_tag) {
                    curr_stats = get_curr_split_stats(bam_line, split_hash, info, targets);
                    collect_stats(bam_line, curr_stats);
                }
                collect_stats(bam_line, all_stats);
            }
            reset_regions(all_stats);
            bam_itr_destroy(iter);
        }
        hts_idx_destroy(bam_idx);
    }
    else
    {
        // Stream through the entire BAM ignoring off-target regions if -t is given
        int ret;
        while ((ret = sam_read1(info->sam, info->sam_header, bam_line)) >= 0) {
            if (info->split_tag) {
                curr_stats = get_curr_split_stats(bam_line, split_hash, info, targets);
                collect_stats(bam_line, curr_stats);
            }
            collect_stats(bam_line, all_stats);
        }

        if (ret < -1) {
            fprintf(pysam_stderr, "Failure while decoding file\n");
            return 1;
        }
    }

    round_buffer_flush(all_stats, -1);
    output_stats(pysam_stdout, all_stats, sparse);
    if (info->split_tag)
        output_split_stats(split_hash, bam_fname, sparse);

    bam_destroy1(bam_line);
    bam_hdr_destroy(info->sam_header);
    sam_global_args_free(&ga);

    cleanup_stats(all_stats);
    cleanup_stats_info(info);
    destroy_split_stats(split_hash);

    return 0;
}