1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
|
#include "bcftools.pysam.h"
/* The MIT License
Copyright (c) 2018 Genome Research Ltd.
Author: Petr Danecek <pd3@sanger.ac.uk>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <unistd.h> // for isatty
#include <inttypes.h>
#include <htslib/hts.h>
#include <htslib/vcf.h>
#include <htslib/kstring.h>
#include <htslib/kseq.h>
#include <htslib/synced_bcf_reader.h>
#include <htslib/vcfutils.h>
#include "bcftools.h"
#include "filter.h"
// Logic of the filters: include or exclude sites which match the filters?
#define FLT_INCLUDE 1
#define FLT_EXCLUDE 2
static int NVAF = 20;
static int MAX_LEN = 20;
static inline int len2bin(int len)
{
if ( len < -MAX_LEN ) return 0;
if ( len > MAX_LEN ) return 2*MAX_LEN;
return MAX_LEN + len;
}
HTS_UNUSED static inline int bin2len(int bin)
{
return bin - MAX_LEN;
}
static inline int vaf2bin(float vaf)
{
return vaf*(NVAF-1);
}
HTS_UNUSED static inline float bin2vaf(int bin)
{
return (float)bin/(NVAF-1);
}
typedef struct
{
uint32_t
*nvaf, // number of indels genotypes with low VAF (<=0.2) and high VAF (>0.2); use vaf2bin and bin2vaf
*nlen, // length distribution (-MAX_LEN,MAX_LEN); use len2bin and bin2len; site-wise unless samples are present
npass_gt, // number of indel genotypes passing the filter
npass, // number of sites passing the filter
nsites, // number of sites total
nins, ndel, // number of insertions and deletions, site-wise, not genotype-wise
nframeshift, ninframe, // site-wise
*nfrac; // number of het indels contributing to dfrac
double
*dfrac; // minor allele fraction at HET indel genotypes, determined from FORMAT/AD
}
stats_t;
typedef struct
{
stats_t stats;
filter_t *filter;
char *expr;
}
flt_stats_t;
#define iCHILD 0
#define iFATHER 1
#define iMOTHER 2
typedef struct
{
int idx[3]; // VCF sample index for father, mother and child
int pass; // do all three pass the filters?
}
trio_t;
typedef struct
{
int argc, filter_logic, regions_is_file, targets_is_file;
int nflt_str;
char *filter_str, **flt_str;
char **argv, *output_fname, *fname, *regions, *targets, *csq_tag, *ped_fname;
trio_t *trio;
int ntrio, mtrio;
bcf_srs_t *sr;
bcf_hdr_t *hdr;
flt_stats_t *filters;
int nfilters, nsmpl;
char *csq_str;
int32_t *gt_arr, *ad_arr, *ac;
int mgt_arr, mad_arr, mac, mcsq_str;
int ngt, ngt1, nad, nad1;
int allow_alt2ref_DNMs; // is "0/0 0/1 1/1" (child,father,mother) a valid DNM?
}
args_t;
args_t args;
const char *about(void)
{
return "Calculate indel stats scanning over a range of thresholds simultaneously.\n";
}
static const char *usage_text(void)
{
return
"\n"
"About: Calculates indel stats. Use curly brackets to scan a range of values simultaneously\n"
"Usage: bcftools +indel-stats [Plugin Options]\n"
"Plugin options:\n"
" --alt2ref-DNM consider GT errors such as 0/1 + 1/1 -> 0/0 a valid DNM\n"
" -c, --csq-tag STR VEP or BCSQ tag to determine inframe and frameshift variants [CSQ]\n"
" -e, --exclude EXPR exclude sites and samples for which the expression is true\n"
" -i, --include EXPR include sites and samples for which the expression is true\n"
" --max-len INT maximum indel length to consider [20]\n"
" --nvaf INT number of variant allele frequency bins [20]\n"
" -o, --output FILE output file name [bcftools_stdout]\n"
" -p, --ped FILE limit the stats to de novo indels\n"
" -r, --regions REG restrict to comma-separated list of regions\n"
" -R, --regions-file FILE restrict to regions listed in a file\n"
" -t, --targets REG similar to -r but streams rather than index-jumps\n"
" -T, --targets-file FILE similar to -R but streams rather than index-jumps\n"
"\n"
"Example:\n"
" bcftools +indel-stats -i 'GQ>{10,20,30,40,50}' file.bcf\n"
"\n";
}
static void parse_filters(args_t *args)
{
if ( !args->filter_str ) return;
int mflt = 1;
args->nflt_str = 1;
args->flt_str = (char**) malloc(sizeof(char*));
args->flt_str[0] = strdup(args->filter_str);
while (1)
{
int i, expanded = 0;
for (i=args->nflt_str-1; i>=0; i--)
{
char *exp_beg = strchr(args->flt_str[i], '{');
if ( !exp_beg ) continue;
char *exp_end = strchr(exp_beg+1, '}');
if ( !exp_end ) error("Could not parse the expression: %s\n", args->filter_str);
char *beg = exp_beg+1, *mid = beg;
while ( mid<exp_end )
{
while ( mid<exp_end && *mid!=',' ) mid++;
kstring_t tmp = {0,0,0};
kputsn(args->flt_str[i], exp_beg - args->flt_str[i], &tmp);
kputsn(beg, mid - beg, &tmp);
kputs(exp_end+1, &tmp);
args->nflt_str++;
hts_expand(char*, args->nflt_str, mflt, args->flt_str);
args->flt_str[args->nflt_str-1] = tmp.s;
beg = ++mid;
}
expanded = 1;
free(args->flt_str[i]);
memmove(&args->flt_str[i], &args->flt_str[i+1], (args->nflt_str-i-1)*sizeof(*args->flt_str));
args->nflt_str--;
args->flt_str[args->nflt_str] = NULL;
}
if ( !expanded ) break;
}
fprintf(bcftools_stderr,"Collecting data for %d filtering expressions\n", args->nflt_str);
}
static int cmp_trios(const void *_a, const void *_b)
{
trio_t *a = (trio_t *) _a;
trio_t *b = (trio_t *) _b;
int i;
int amin = a->idx[0];
for (i=1; i<3; i++)
if ( amin > a->idx[i] ) amin = a->idx[i];
int bmin = b->idx[0];
for (i=1; i<3; i++)
if ( bmin > b->idx[i] ) bmin = b->idx[i];
if ( amin < bmin ) return -1;
if ( amin > bmin ) return 1;
return 0;
}
static void parse_ped(args_t *args, char *fname)
{
htsFile *fp = hts_open(fname, "r");
if ( !fp ) error("Could not read: %s\n", fname);
kstring_t str = {0,0,0};
if ( hts_getline(fp, KS_SEP_LINE, &str) <= 0 ) error("Empty file: %s\n", fname);
int moff = 0, *off = NULL;
do
{
// familyID sampleID paternalID maternalID sex phenotype population relationship siblings secondOrder thirdOrder children comment
// BB03 HG01884 HG01885 HG01956 2 0 ACB child 0 0 0 0
int ncols = ksplit_core(str.s,0,&moff,&off);
if ( ncols<4 ) error("Could not parse the ped file: %s\n", str.s);
int father = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,&str.s[off[2]]);
if ( father<0 ) continue;
int mother = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,&str.s[off[3]]);
if ( mother<0 ) continue;
int child = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,&str.s[off[1]]);
if ( child<0 ) continue;
args->ntrio++;
hts_expand0(trio_t,args->ntrio,args->mtrio,args->trio);
trio_t *trio = &args->trio[args->ntrio-1];
trio->idx[iFATHER] = father;
trio->idx[iMOTHER] = mother;
trio->idx[iCHILD] = child;
}
while ( hts_getline(fp, KS_SEP_LINE, &str)>=0 );
fprintf(bcftools_stderr,"Identified %d complete trios in the VCF file\n", args->ntrio);
if ( !args->ntrio ) error("No complete trio identified\n");
// sort the sample by index so that they are accessed more or less sequentially
qsort(args->trio,args->ntrio,sizeof(trio_t),cmp_trios);
free(str.s);
free(off);
if ( hts_close(fp)!=0 ) error("[%s] Error: close failed .. %s\n", __func__,fname);
}
static void init_data(args_t *args)
{
args->sr = bcf_sr_init();
if ( args->regions )
{
args->sr->require_index = 1;
if ( bcf_sr_set_regions(args->sr, args->regions, args->regions_is_file)<0 ) error("Failed to read the regions: %s\n",args->regions);
}
if ( args->targets && bcf_sr_set_targets(args->sr, args->targets, args->targets_is_file, 0)<0 ) error("Failed to read the targets: %s\n",args->targets);
if ( !bcf_sr_add_reader(args->sr,args->fname) ) error("Error: %s\n", bcf_sr_strerror(args->sr->errnum));
args->hdr = bcf_sr_get_header(args->sr,0);
if ( args->ped_fname )
parse_ped(args, args->ped_fname);
parse_filters(args);
int i;
if ( !args->nflt_str )
{
args->filters = (flt_stats_t*) calloc(1, sizeof(flt_stats_t));
args->nfilters = 1;
args->filters[0].expr = strdup("all");
args->filters[0].stats.nvaf = (uint32_t*) calloc(NVAF, sizeof(uint32_t));
args->filters[0].stats.nlen = (uint32_t*) calloc(MAX_LEN*2+1, sizeof(uint32_t));
args->filters[0].stats.nfrac = (uint32_t*) calloc(MAX_LEN*2+1, sizeof(uint32_t));
args->filters[0].stats.dfrac = (double*) calloc(MAX_LEN*2+1, sizeof(double));
}
else
{
args->nfilters = args->nflt_str;
args->filters = (flt_stats_t*) calloc(args->nfilters, sizeof(flt_stats_t));
for (i=0; i<args->nfilters; i++)
{
args->filters[i].filter = filter_init(args->hdr, args->flt_str[i]);
args->filters[i].expr = strdup(args->flt_str[i]);
args->filters[i].stats.nvaf = (uint32_t*) calloc(NVAF, sizeof(uint32_t));
args->filters[i].stats.nlen = (uint32_t*) calloc(MAX_LEN*2+1, sizeof(uint32_t));
args->filters[i].stats.nfrac = (uint32_t*) calloc(MAX_LEN*2+1, sizeof(uint32_t));
args->filters[i].stats.dfrac = (double*) calloc(MAX_LEN*2+1, sizeof(double));
// replace tab's with spaces so that the output stays parsable
char *tmp = args->filters[i].expr;
while ( *tmp )
{
if ( *tmp=='\t' ) *tmp = ' ';
tmp++;
}
}
}
args->nsmpl = bcf_hdr_nsamples(args->hdr);
}
static void destroy_data(args_t *args)
{
int i;
for (i=0; i<args->nfilters; i++)
{
if ( args->filters[i].filter ) filter_destroy(args->filters[i].filter);
free(args->filters[i].stats.nvaf);
free(args->filters[i].stats.nlen);
free(args->filters[i].stats.nfrac);
free(args->filters[i].stats.dfrac);
free(args->filters[i].expr);
}
free(args->filters);
for (i=0; i<args->nflt_str; i++) free(args->flt_str[i]);
free(args->flt_str);
bcf_sr_destroy(args->sr);
free(args->ac);
free(args->trio);
free(args->csq_str);
free(args->gt_arr);
free(args->ad_arr);
free(args);
}
static void report_stats(args_t *args)
{
int i = 0,j;
FILE *fh = !args->output_fname || !strcmp("-",args->output_fname) ? bcftools_stdout : fopen(args->output_fname,"w");
if ( !fh ) error("Could not open the file for writing: %s\n", args->output_fname);
fprintf(fh,"# CMD line shows the command line used to generate this output\n");
fprintf(fh,"# DEF lines define expressions for all tested thresholds\n");
fprintf(fh,"# SN* summary number for every threshold:\n");
fprintf(fh,"# %d) SN*, filter id\n", ++i);
fprintf(fh,"# %d) number of samples (or trios with -p)\n", ++i);
fprintf(fh,"# %d) number of indel sites total\n", ++i);
fprintf(fh,"# %d) number of indel sites that pass the filter (and, with -p, have a de novo indel)\n", ++i);
fprintf(fh,"# %d) number of indel genotypes that pass the filter (and, with -p, are de novo)\n", ++i);
fprintf(fh,"# %d) number of insertions (site-wise, not genotype-wise)\n", ++i);
fprintf(fh,"# %d) number of deletions (site-wise, not genotype-wise)\n", ++i);
fprintf(fh,"# %d) number of frameshifts (site-wise, not genotype-wise)\n", ++i);
fprintf(fh,"# %d) number of inframe indels (site-wise, not genotype-wise)\n", ++i);
fprintf(fh,"#\n");
i = 0;
fprintf(fh,"# DVAF* lines report indel variant allele frequency (VAF) distribution for every threshold,\n");
fprintf(fh,"# k-th bin corresponds to the frequency k/(nVAF-1):\n");
fprintf(fh,"# %d) DVAF*, filter id\n", ++i);
fprintf(fh,"# %d) nVAF, number of bins which split the [0,1] VAF interval.\n", ++i);
fprintf(fh,"# %d-%d) counts of indel genotypes in the VAF bin. For non-reference hets, the VAF of the less supported allele is recorded\n", i+1, i+NVAF);
fprintf(fh,"#\n");
i = 0;
fprintf(fh,"# DLEN* lines report indel length distribution for every threshold. When genotype fields are available,\n");
fprintf(fh,"# the counts correspond to the number of genotypes, otherwise the number of sites are given.\n");
fprintf(fh,"# The k-th bin corresponds to the indel size k-MAX_LEN, negative for deletions, positive for insertions.\n");
fprintf(fh,"# The firt/last bin contains also all deletions/insertions larger than MAX_LEN:\n");
fprintf(fh,"# %d) DLEN*, filter id\n", ++i);
fprintf(fh,"# %d) maximum indel length\n", ++i);
fprintf(fh,"# %d-%d) counts of indel lengths (-max,..,0,..,max), all unique alleles in a genotype are recorded (alt hets increase the counters 2x, alt homs 1x)\n", i+1, i+MAX_LEN*2+1);
fprintf(fh,"#\n");
i = 0;
fprintf(fh,"# DFRAC* lines report the mean minor allele fraction at HET indel genotypes as a function of indel size.\n");
fprintf(fh,"# The format is the same as for DLEN:\n");
fprintf(fh,"# %d) DFRAC*, filter id\n", ++i);
fprintf(fh,"# %d) maximum indel length\n", ++i);
fprintf(fh,"# %d-%d) mean fraction at indel lengths (-max,..,0,..,max)\n", i+1, i+MAX_LEN*2+1);
fprintf(fh,"#\n");
i = 0;
fprintf(fh,"# NFRAC* lines report the number of indels informing the DFRAC distribution.\n");
fprintf(fh,"# %d) NFRAC*, filter id\n", ++i);
fprintf(fh,"# %d) maximum indel length\n", ++i);
fprintf(fh,"# %d-%d) counts at indel lengths (-max,..,0,..,max)\n", i+1, i+MAX_LEN*2+1);
fprintf(fh,"#\n");
fprintf(fh, "CMD\t%s", args->argv[0]);
for (i=1; i<args->argc; i++) fprintf(fh, " %s",args->argv[i]);
fprintf(fh, "\n");
for (i=0; i<args->nfilters; i++)
{
flt_stats_t *flt = &args->filters[i];
fprintf(fh,"DEF\tFLT%d\t%s\n", i, flt->expr);
}
for (i=0; i<args->nfilters; i++)
{
stats_t *stats = &args->filters[i].stats;
fprintf(fh,"SN%d", i);
fprintf(fh,"\t%u", args->ntrio ? args->ntrio : args->nsmpl);
fprintf(fh,"\t%u", stats->nsites);
fprintf(fh,"\t%u", stats->npass);
fprintf(fh,"\t%u", stats->npass_gt);
fprintf(fh,"\t%u", stats->nins);
fprintf(fh,"\t%u", stats->ndel);
fprintf(fh,"\t%u", stats->nframeshift);
fprintf(fh,"\t%u", stats->ninframe);
fprintf(fh,"\n");
fprintf(fh,"DVAF%d", i);
fprintf(fh,"\t%d", NVAF);
for (j=0; j<NVAF; j++) fprintf(fh,"\t%u",stats->nvaf[j]);
fprintf(fh,"\n");
fprintf(fh,"DLEN%d", i);
fprintf(fh,"\t%d", MAX_LEN);
for (j=0; j<MAX_LEN*2+1; j++) fprintf(fh,"\t%u",stats->nlen[j]);
fprintf(fh,"\n");
fprintf(fh,"DFRAC%d", i);
fprintf(fh,"\t%d", MAX_LEN);
for (j=0; j<MAX_LEN*2+1; j++)
if ( stats->nfrac[j] ) fprintf(fh,"\t%.2f",stats->dfrac[j]/stats->nfrac[j]);
else fprintf(fh,"\t.");
fprintf(fh,"\n");
fprintf(fh,"NFRAC%d", i);
fprintf(fh,"\t%d", MAX_LEN);
for (j=0; j<MAX_LEN*2+1; j++) fprintf(fh,"\t%u",stats->nfrac[j]);
fprintf(fh,"\n");
}
if ( fclose(fh)!=0 ) error("Close failed: %s\n", (!args->output_fname || !strcmp("-",args->output_fname)) ? "bcftools_stdout" : args->output_fname);
}
static inline int parse_genotype(int32_t *arr, int ngt1, int idx, int als[2])
{
int32_t *ptr = arr + ngt1 * idx;
if ( bcf_gt_is_missing(ptr[0]) ) return -1;
als[0] = bcf_gt_allele(ptr[0]);
if ( ngt1==1 || ptr[1]==bcf_int32_vector_end ) { ptr[1] = ptr[0]; return -2; }
if ( bcf_gt_is_missing(ptr[1]) ) return -1;
als[1] = bcf_gt_allele(ptr[1]);
return 0;
}
static inline void update_indel_stats(args_t *args, bcf1_t *rec, stats_t *stats, int ismpl, int *als)
{
int j;
if ( als[0] >= args->nad1 || als[1] >= args->nad1 ) error("Incorrect GT allele at %s:%"PRId64" .. %d/%d\n", bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1,als[0],als[1]);
int32_t *ad_ptr = args->ad_arr + ismpl*args->nad1;
// find the allele with most support
uint32_t ntot = 0;
for (j=0; j<args->nad1; j++)
{
if ( ad_ptr[j]==bcf_int32_missing ) continue;
if ( ad_ptr[j]==bcf_int32_vector_end ) break;
ntot += ad_ptr[j];
}
if ( !ntot ) return;
// Find the alternate allele fraction, total and relative. Set al0 to be the more frequent indel allele.
// The genotypes have been already sanitized in parse_genotype().
int al0 = als[0], al1 = als[1];
if ( !(bcf_get_variant_type(rec,al0) & VCF_INDEL) )
{
if ( !(bcf_get_variant_type(rec,al1) & VCF_INDEL) ) error("FIXME: this should not happen .. %s:%"PRId64" .. %d/%d\n", bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1,al0,al1);
al0 = als[1]; al1 = als[0];
}
else if ( (bcf_get_variant_type(rec,al1) & VCF_INDEL) && al0!=al1 )
{
// Select the more frequent indel allele.
if ( ad_ptr[al0] < ad_ptr[al1] ) al0 = als[1], al1 = als[0];
// Record length of both indel alleles
int bin = len2bin(rec->d.var[al1].n);
if ( bin >= 0 ) stats->nlen[bin]++;
}
float vaf = (float)ad_ptr[al0] / ntot;
int bin = vaf2bin(vaf);
stats->nvaf[bin]++;
// al0 is now the major indel allele
int len_bin = len2bin(rec->d.var[al0].n);
if ( len_bin < 0 ) return;
stats->nlen[len_bin]++;
if ( al0!=al1 )
{
ntot = ad_ptr[al0] + ad_ptr[al1];
if ( ntot )
{
stats->nfrac[len_bin]++;
stats->dfrac[len_bin]+= (double)ad_ptr[al0] / ntot;
}
}
}
static void process_record(args_t *args, bcf1_t *rec, flt_stats_t *flt)
{
int i,j;
uint8_t *smpl_pass = NULL;
stats_t *stats = &flt->stats;
stats->nsites++;
// Find out which samples/trios pass and if the site passes
if ( flt->filter )
{
int pass_site = filter_test(flt->filter, rec, (const uint8_t**) &smpl_pass);
if ( args->ntrio )
{
if ( args->filter_logic & FLT_EXCLUDE )
{
if ( pass_site )
{
if ( !smpl_pass ) return;
pass_site = 0;
for (i=0; i<args->ntrio; i++)
{
int pass_trio = 1;
for (j=0; j<3; j++)
{
int idx = args->trio[i].idx[j];
if ( smpl_pass[idx] ) { pass_trio = 0; break; }
}
args->trio[i].pass = pass_trio;
if ( pass_trio ) pass_site = 1;
}
if ( !pass_site ) return;
}
else
for (i=0; i<args->ntrio; i++) args->trio[i].pass = 1;
}
else if ( !pass_site ) return;
else if ( smpl_pass )
{
pass_site = 0;
for (i=0; i<args->ntrio; i++)
{
int pass_trio = 1;
for (j=0; j<3; j++)
{
int idx = args->trio[i].idx[j];
if ( !smpl_pass[idx] ) { pass_trio = 0; break; }
}
args->trio[i].pass = pass_trio;
if ( pass_trio ) pass_site = 1;
}
if ( !pass_site ) return;
}
else
for (i=0; i<args->ntrio; i++) args->trio[i].pass = 1;
}
else
{
if ( args->filter_logic & FLT_EXCLUDE )
{
if ( pass_site )
{
if ( !smpl_pass ) return;
pass_site = 0;
for (i=0; i<args->nsmpl; i++)
{
if ( smpl_pass[i] ) smpl_pass[i] = 0;
else { smpl_pass[i] = 1; pass_site = 1; }
}
if ( !pass_site ) return;
}
else
for (i=0; i<args->nsmpl; i++) smpl_pass[i] = 1;
}
else if ( !pass_site ) return;
}
}
args->ngt = 0;
if ( args->nsmpl )
{
// Get the genotypes
args->ngt = bcf_get_genotypes(args->hdr, rec, &args->gt_arr, &args->mgt_arr);
args->ngt1 = args->ngt / rec->n_sample;
if ( args->ngt>0 )
{
// Get the AD counts
args->nad = bcf_get_format_int32(args->hdr, rec, "AD", &args->ad_arr, &args->mad_arr);
args->nad1 = args->nad / rec->n_sample;
if ( args->nad>0 && args->nad1 != rec->n_allele ) error("Incorrect number of FORMAT/AD values at %s:%"PRId64"\n", bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1);
}
}
// Is there a star allele? Don't count overlapping deletions twice
int star_allele = -1;
for (i=1; i<rec->n_allele; i++)
if ( !rec->d.allele[i][1] && rec->d.allele[i][0]=='*' ) { star_allele = i; break; }
if ( args->ngt>0 && args->ntrio )
{
int is_dnm = 0;
for (i=0; i<args->ntrio; i++)
{
if ( flt->filter && !args->trio[i].pass ) continue;
// Determine the alternate allele and the genotypes, skip if any of the alleles is missing.
// the order is: child, father, mother
int als[6], *als_child = als, *als_father = als+2, *als_mother = als+4;
if ( parse_genotype(args->gt_arr, args->ngt1, args->trio[i].idx[iCHILD], als_child) < 0 ) continue;
if ( parse_genotype(args->gt_arr, args->ngt1, args->trio[i].idx[iFATHER], als_father) < 0 ) continue;
if ( parse_genotype(args->gt_arr, args->ngt1, args->trio[i].idx[iMOTHER], als_mother) < 0 ) continue;
// Is it a DNM?
if ( !args->allow_alt2ref_DNMs && als_child[0]==0 && als_child[1]==0 ) continue;
if ( (als_child[0]==als_father[0] || als_child[0]==als_father[1]) && (als_child[1]==als_mother[0] || als_child[1]==als_mother[1]) ) continue;
if ( (als_child[1]==als_father[0] || als_child[1]==als_father[1]) && (als_child[0]==als_mother[0] || als_child[0]==als_mother[1]) ) continue;
if ( als_child[0]==star_allele || als_child[1]==star_allele ) continue; // don't count the same event multiple times
if ( als_father[0]==star_allele || als_father[1]==star_allele ) continue;
if ( als_mother[0]==star_allele || als_mother[1]==star_allele ) continue;
int child_is_indel = (bcf_get_variant_type(rec,als_child[0]) & VCF_INDEL) || (bcf_get_variant_type(rec,als_child[1]) & VCF_INDEL) ? 1 : 0;
if ( !args->allow_alt2ref_DNMs )
{
if ( !child_is_indel ) continue;
}
else
{
if ( !child_is_indel &&
!(bcf_get_variant_type(rec,als_father[0]) & VCF_INDEL) &&
!(bcf_get_variant_type(rec,als_father[1]) & VCF_INDEL) &&
!(bcf_get_variant_type(rec,als_mother[0]) & VCF_INDEL) &&
!(bcf_get_variant_type(rec,als_mother[1]) & VCF_INDEL) ) continue; // not an indel, in any sample
}
if ( child_is_indel )
update_indel_stats(args, rec, stats, args->trio[i].idx[iCHILD], als_child);
//printf("MERR\t%s\t%d\t%s\n", bcf_seqname(args->hdr,rec),rec->pos+1,args->hdr->samples[args->trio[i].idx[iCHILD]]);
stats->npass_gt++;
is_dnm = 1;
}
if ( !is_dnm ) return;
}
else if ( args->ngt>0 )
{
for (i=0; i<args->nsmpl; i++)
{
if ( smpl_pass && !smpl_pass[i] ) continue;
// Determine the alternate allele and the genotypes, skip if any of the alleles is missing.
int als[2] = {0,0};
int ret = parse_genotype(args->gt_arr, args->ngt1, i, als);
if ( ret==-1 ) continue; // missing genotype
if ( !(bcf_get_variant_type(rec,als[0]) & VCF_INDEL) && !(bcf_get_variant_type(rec,als[1]) & VCF_INDEL) ) continue; // not an indel
update_indel_stats(args, rec, stats, i, als);
stats->npass_gt++;
}
}
if ( bcf_get_info_string(args->hdr,rec,args->csq_tag,&args->csq_str,&args->mcsq_str) > 0 )
{
if ( strstr(args->csq_str,"inframe") ) stats->ninframe++;
if ( strstr(args->csq_str,"frameshift") ) stats->nframeshift++;
}
for (i=1; i<rec->n_allele; i++)
{
if ( !(bcf_get_variant_type(rec,i) & VCF_INDEL) ) continue;
if ( rec->d.var[i].n < 0 ) stats->ndel++;
else if ( rec->d.var[i].n > 0 ) stats->nins++;
if ( args->ngt <= 0 )
{
int bin = len2bin(rec->d.var[i].n);
if ( bin >= 0 ) stats->nlen[bin]++;
}
}
stats->npass++;
}
int run(int argc, char **argv)
{
args_t *args = (args_t*) calloc(1,sizeof(args_t));
args->argc = argc; args->argv = argv;
args->output_fname = "-";
args->csq_tag = "CSQ";
static struct option loptions[] =
{
{"max-len",required_argument,0,1},
{"nvaf",required_argument,0,2},
{"alt2ref-DNM",no_argument,0,3},
{"ped",required_argument,0,'p'},
{"csq-tag",required_argument,0,'c'},
{"include",required_argument,0,'i'},
{"exclude",required_argument,0,'e'},
{"output",required_argument,NULL,'o'},
{"regions",1,0,'r'},
{"regions-file",1,0,'R'},
{"targets",1,0,'t'},
{"targets-file",1,0,'T'},
{NULL,0,NULL,0}
};
char *tmp;
int c, i;
while ((c = getopt_long(argc, argv, "o:s:i:e:r:R:t:T:c:p:",loptions,NULL)) >= 0)
{
switch (c)
{
case 1 :
MAX_LEN = strtod(optarg,&tmp);
if ( *tmp ) error("Could not parse: --max-len %s\n", optarg);
if ( MAX_LEN<=0 ) error("Expected value bigger than 0 --max-len\n");
break;
case 2 :
NVAF = strtod(optarg,&tmp);
if ( *tmp ) error("Could not parse: --max-len %s\n", optarg);
if ( NVAF<0 || NVAF>1 ) error("Expected value from the interval [0,1] with --nvaf\n");
break;
case 3 : args->allow_alt2ref_DNMs = 1; break;
case 'p': args->ped_fname = optarg; break;
case 'c': args->csq_tag = optarg; break;
case 'e': args->filter_str = optarg; args->filter_logic |= FLT_EXCLUDE; break;
case 'i': args->filter_str = optarg; args->filter_logic |= FLT_INCLUDE; break;
case 't': args->targets = optarg; break;
case 'T': args->targets = optarg; args->targets_is_file = 1; break;
case 'r': args->regions = optarg; break;
case 'R': args->regions = optarg; args->regions_is_file = 1; break;
case 'o': args->output_fname = optarg; break;
case 'h':
case '?':
default: error("%s", usage_text()); break;
}
}
if ( optind==argc )
{
if ( !isatty(fileno((FILE *)stdin)) ) args->fname = "-"; // reading from stdin
else { error("%s",usage_text()); }
}
else if ( optind+1!=argc ) error("%s",usage_text());
else args->fname = argv[optind];
init_data(args);
while ( bcf_sr_next_line(args->sr) )
{
bcf1_t *rec = bcf_sr_get_line(args->sr,0);
if ( !(bcf_get_variant_types(rec) & VCF_INDEL) ) continue;
for (i=0; i<args->nfilters; i++)
process_record(args, rec, &args->filters[i]);
}
report_stats(args);
destroy_data(args);
return 0;
}
|