1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
|
/* The MIT License
Copyright (c) 2018 Genome Research Ltd.
Author: Petr Danecek <pd3@sanger.ac.uk>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <unistd.h> // for isatty
#include <inttypes.h>
#include <htslib/hts.h>
#include <htslib/vcf.h>
#include <htslib/kstring.h>
#include <htslib/kseq.h>
#include <htslib/synced_bcf_reader.h>
#include <htslib/vcfutils.h>
#include "bcftools.h"
#include "filter.h"
// Logic of the filters: include or exclude sites which match the filters?
#define FLT_INCLUDE 1
#define FLT_EXCLUDE 2
typedef struct
{
uint32_t
npass, // number of genotypes passing the filter
nnon_ref, // number of non-reference genotypes
nhomRR,
nhomAA,
nhemi,
nhet,
nSNV,
nIndel,
nmissing,
nsingleton, // het different from everyone else
nts, ntv; // number of transitions and transversions
}
stats_t;
typedef struct
{
stats_t *stats, site_stats;
filter_t *filter;
char *expr;
}
flt_stats_t;
typedef struct
{
int argc, filter_logic, regions_is_file, targets_is_file;
int nflt_str;
char *filter_str, **flt_str;
char **argv, *output_fname, *fname, *regions, *targets;
bcf_srs_t *sr;
bcf_hdr_t *hdr;
flt_stats_t *filters;
int nfilters, nsmpl;
int32_t *gt_arr, *ac;
int mgt_arr, mac;
}
args_t;
args_t args;
const char *about(void)
{
return "Calculate basic per-sample stats scanning over a range of thresholds simultaneously.\n";
}
static const char *usage_text(void)
{
return
"\n"
"About: Calculates basic per-sample stats. Use curly brackets to scan a range of values simultaneously\n"
"Usage: bcftools +smpl-stats [Plugin Options]\n"
"Plugin options:\n"
" -e, --exclude EXPR exclude sites and samples for which the expression is true\n"
" -i, --include EXPR include sites and samples for which the expression is true\n"
" -o, --output FILE output file name [stdout]\n"
" -r, --regions REG restrict to comma-separated list of regions\n"
" -R, --regions-file FILE restrict to regions listed in a file\n"
" -t, --targets REG similar to -r but streams rather than index-jumps\n"
" -T, --targets-file FILE similar to -R but streams rather than index-jumps\n"
"\n"
"Example:\n"
" bcftools +smpl-stats -i 'GQ>{10,20,30,40,50}' file.bcf\n"
"\n";
}
static void parse_filters(args_t *args)
{
if ( !args->filter_str ) return;
int mflt = 1;
args->nflt_str = 1;
args->flt_str = (char**) malloc(sizeof(char*));
args->flt_str[0] = strdup(args->filter_str);
while (1)
{
int i, expanded = 0;
for (i=args->nflt_str-1; i>=0; i--)
{
char *exp_beg = strchr(args->flt_str[i], '{');
if ( !exp_beg ) continue;
char *exp_end = strchr(exp_beg+1, '}');
if ( !exp_end ) error("Could not parse the expression: %s\n", args->filter_str);
char *beg = exp_beg+1, *mid = beg;
while ( mid<exp_end )
{
while ( mid<exp_end && *mid!=',' ) mid++;
kstring_t tmp = {0,0,0};
kputsn(args->flt_str[i], exp_beg - args->flt_str[i], &tmp);
kputsn(beg, mid - beg, &tmp);
kputs(exp_end+1, &tmp);
args->nflt_str++;
hts_expand(char*, args->nflt_str, mflt, args->flt_str);
args->flt_str[args->nflt_str-1] = tmp.s;
beg = ++mid;
}
expanded = 1;
free(args->flt_str[i]);
memmove(&args->flt_str[i], &args->flt_str[i+1], (args->nflt_str-i-1)*sizeof(*args->flt_str));
args->nflt_str--;
args->flt_str[args->nflt_str] = NULL;
}
if ( !expanded ) break;
}
fprintf(stderr,"Collecting data for %d filtering expressions\n", args->nflt_str);
}
static void init_data(args_t *args)
{
args->sr = bcf_sr_init();
if ( args->regions )
{
args->sr->require_index = 1;
if ( bcf_sr_set_regions(args->sr, args->regions, args->regions_is_file)<0 ) error("Failed to read the regions: %s\n",args->regions);
}
if ( args->targets && bcf_sr_set_targets(args->sr, args->targets, args->targets_is_file, 0)<0 ) error("Failed to read the targets: %s\n",args->targets);
if ( !bcf_sr_add_reader(args->sr,args->fname) ) error("Error: %s\n", bcf_sr_strerror(args->sr->errnum));
args->hdr = bcf_sr_get_header(args->sr,0);
parse_filters(args);
int i;
if ( !args->nflt_str )
{
args->filters = (flt_stats_t*) calloc(1, sizeof(flt_stats_t));
args->nfilters = 1;
args->filters[0].expr = strdup("all");
}
else
{
args->nfilters = args->nflt_str;
args->filters = (flt_stats_t*) calloc(args->nfilters, sizeof(flt_stats_t));
for (i=0; i<args->nfilters; i++)
{
args->filters[i].filter = filter_init(args->hdr, args->flt_str[i]);
args->filters[i].expr = strdup(args->flt_str[i]);
// replace tab's with spaces so that the output stays parsable
char *tmp = args->filters[i].expr;
while ( *tmp )
{
if ( *tmp=='\t' ) *tmp = ' ';
tmp++;
}
}
}
args->nsmpl = bcf_hdr_nsamples(args->hdr);
for (i=0; i<args->nfilters; i++)
args->filters[i].stats = (stats_t*) calloc(args->nsmpl,sizeof(stats_t));
}
static void destroy_data(args_t *args)
{
int i;
for (i=0; i<args->nfilters; i++)
{
if ( args->filters[i].filter ) filter_destroy(args->filters[i].filter);
free(args->filters[i].stats);
free(args->filters[i].expr);
}
free(args->filters);
for (i=0; i<args->nflt_str; i++) free(args->flt_str[i]);
free(args->flt_str);
bcf_sr_destroy(args->sr);
free(args->ac);
free(args->gt_arr);
free(args);
}
static void report_stats(args_t *args)
{
int i = 0,j;
FILE *fh = !args->output_fname || !strcmp("-",args->output_fname) ? stdout : fopen(args->output_fname,"w");
if ( !fh ) error("Could not open the file for writing: %s\n", args->output_fname);
fprintf(fh,"# CMD line shows the command line used to generate this output\n");
fprintf(fh,"# DEF lines define expressions for all tested thresholds\n");
fprintf(fh,"# FLT* lines report numbers for every threshold and every sample:\n");
fprintf(fh,"# %d) filter id\n", ++i);
fprintf(fh,"# %d) sample\n", ++i);
fprintf(fh,"# %d) number of genotypes which pass the filter\n", ++i);
fprintf(fh,"# %d) number of non-reference genotypes\n", ++i);
fprintf(fh,"# %d) number of homozygous ref genotypes (0/0 or 0)\n", ++i);
fprintf(fh,"# %d) number of homozygous alt genotypes (1/1, 2/2, etc)\n", ++i);
fprintf(fh,"# %d) number of heterozygous genotypes (0/1, 1/2, etc)\n", ++i);
fprintf(fh,"# %d) number of hemizygous genotypes (0, 1, etc)\n", ++i);
fprintf(fh,"# %d) number of SNVs\n", ++i);
fprintf(fh,"# %d) number of indels\n", ++i);
fprintf(fh,"# %d) number of singletons\n", ++i);
fprintf(fh,"# %d) number of missing genotypes (./., ., ./0, etc)\n", ++i);
fprintf(fh,"# %d) number of transitions (alt het genotypes such as \"1/2\" are counted twice)\n", ++i);
fprintf(fh,"# %d) number of transversions (alt het genotypes such as \"1/2\" are counted twice)\n", ++i);
fprintf(fh,"# %d) overall ts/tv\n", ++i);
i = 0;
fprintf(fh,"# SITE* lines report numbers for every threshold:\n");
fprintf(fh,"# %d) filter id\n", ++i);
fprintf(fh,"# %d) number of sites which pass the filter\n", ++i);
fprintf(fh,"# %d) number of SNVs\n", ++i);
fprintf(fh,"# %d) number of indels\n", ++i);
fprintf(fh,"# %d) number of singletons\n", ++i);
fprintf(fh,"# %d) number of transitions (counted at most once at multiallelic sites)\n", ++i);
fprintf(fh,"# %d) number of transversions (counted at most once at multiallelic sites)\n", ++i);
fprintf(fh,"# %d) overall ts/tv\n", ++i);
fprintf(fh, "CMD\t%s", args->argv[0]);
for (i=1; i<args->argc; i++) fprintf(fh, " %s",args->argv[i]);
fprintf(fh, "\n");
for (i=0; i<args->nfilters; i++)
{
flt_stats_t *flt = &args->filters[i];
fprintf(fh,"DEF\tFLT%d\t%s\n", i, flt->expr);
}
for (i=0; i<args->nfilters; i++)
{
flt_stats_t *flt = &args->filters[i];
for (j=0; j<args->nsmpl; j++)
{
fprintf(fh,"FLT%d", i);
fprintf(fh,"\t%s",args->hdr->samples[j]);
stats_t *stats = &flt->stats[j];
fprintf(fh,"\t%d", stats->npass);
fprintf(fh,"\t%d", stats->nnon_ref);
fprintf(fh,"\t%d", stats->nhomRR);
fprintf(fh,"\t%d", stats->nhomAA);
fprintf(fh,"\t%d", stats->nhet);
fprintf(fh,"\t%d", stats->nhemi);
fprintf(fh,"\t%d", stats->nSNV);
fprintf(fh,"\t%d", stats->nIndel);
fprintf(fh,"\t%d", stats->nsingleton);
fprintf(fh,"\t%d", stats->nmissing);
fprintf(fh,"\t%d", stats->nts);
fprintf(fh,"\t%d", stats->ntv);
fprintf(fh,"\t%.2f", stats->ntv ? (float)stats->nts/stats->ntv : INFINITY);
fprintf(fh,"\n");
}
fprintf(fh,"SITE%d", i);
stats_t *stats = &flt->site_stats;
fprintf(fh,"\t%d", stats->npass);
fprintf(fh,"\t%d", stats->nSNV);
fprintf(fh,"\t%d", stats->nIndel);
fprintf(fh,"\t%d", stats->nsingleton);
fprintf(fh,"\t%d", stats->nts);
fprintf(fh,"\t%d", stats->ntv);
fprintf(fh,"\t%.2f", stats->ntv ? (float)stats->nts/stats->ntv : INFINITY);
fprintf(fh,"\n");
}
if ( fclose(fh)!=0 ) error("Close failed: %s\n", (!args->output_fname || !strcmp("-",args->output_fname)) ? "stdout" : args->output_fname);
}
static inline int parse_genotype(int32_t *arr, int ngt1, int idx, int als[2])
{
int32_t *ptr = arr + ngt1 * idx;
if ( bcf_gt_is_missing(ptr[0]) ) return -1;
als[0] = bcf_gt_allele(ptr[0]);
if ( ngt1==1 || ptr[1]==bcf_int32_vector_end ) { ptr[1] = ptr[0]; return -2; }
if ( bcf_gt_is_missing(ptr[1]) ) return -1;
als[1] = bcf_gt_allele(ptr[1]);
return 0;
}
static void process_record(args_t *args, bcf1_t *rec, flt_stats_t *flt)
{
int i,j;
uint8_t *smpl_pass = NULL;
// Find out which trios pass and if the site passes
if ( flt->filter )
{
int pass_site = filter_test(flt->filter, rec, (const uint8_t**) &smpl_pass);
if ( args->filter_logic & FLT_EXCLUDE )
{
if ( pass_site )
{
if ( !smpl_pass ) return;
pass_site = 0;
for (i=0; i<args->nsmpl; i++)
{
if ( smpl_pass[i] ) smpl_pass[i] = 0;
else { smpl_pass[i] = 1; pass_site = 1; }
}
if ( !pass_site ) return;
}
else
for (i=0; i<args->nsmpl; i++) smpl_pass[i] = 1;
}
else if ( !pass_site ) return;
}
// Find out the allele counts. Try to use INFO/AC, if not present, determine from the genotypes
hts_expand(int, rec->n_allele, args->mac, args->ac);
if ( !bcf_calc_ac(args->hdr, rec, args->ac, BCF_UN_INFO|BCF_UN_FMT) ) return;
// Get the genotypes
int ngt = bcf_get_genotypes(args->hdr, rec, &args->gt_arr, &args->mgt_arr);
if ( ngt<0 ) return;
int ngt1 = ngt / rec->n_sample;
// For ts/tv: numeric code of the reference allele, -1 for insertions
int ref = !rec->d.allele[0][1] ? bcf_acgt2int(*rec->d.allele[0]) : -1;
int star_allele = -1;
for (i=1; i<rec->n_allele; i++)
if ( !rec->d.allele[i][1] && rec->d.allele[i][0]=='*' ) { star_allele = i; break; }
// Run the stats
int site_pass = 0;
int site_SNV = 0;
int site_Indel = 0;
int site_has_ts = 0;
int site_has_tv = 0;
int site_singleton = 0;
for (i=0; i<args->nsmpl; i++)
{
if ( smpl_pass && !smpl_pass[i] ) continue;
stats_t *stats = &flt->stats[i];
// Determine the alternate allele and the genotypes, skip if any of the alleles is missing.
int als[2];
int ret = parse_genotype(args->gt_arr, ngt1, i, als);
if ( ret==-1 ) { stats->nmissing++; continue; } // missing allele
if ( ret==-2 ) stats->nhemi++;
else if ( als[0]!=als[1] ) stats->nhet++;
else if ( als[0]==0 ) stats->nhomRR++;
else stats->nhomAA++;
stats->npass++;
site_pass = 1;
// Is there an alternate allele other than *?
int has_nonref = 0;
for (j=0; j<2; j++)
{
if ( als[j]==star_allele ) continue;
if ( als[j]==0 ) continue;
has_nonref = 1;
}
if ( !has_nonref ) continue; // only ref or * in this genotype
stats->nnon_ref++;
// Calculate ts/tv, count SNPs, indels. It does the right thing and handles also HetAA genotypes
{
int has_ts = 0, has_tv = 0, has_snv = 0, has_indel = 0;
for (j=0; j<2; j++)
{
if ( als[j]==0 || als[j]==star_allele ) continue;
if ( als[j] >= rec->n_allele )
error("The GT index is out of range at %s:%"PRId64" in %s\n", bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1,args->hdr->samples[j]);
if ( args->ac[als[j]]==1 ) { stats->nsingleton++; site_singleton = 1; }
int var_type = bcf_get_variant_type(rec, als[j]);
if ( var_type==VCF_SNP || var_type==VCF_MNP )
{
int k = 0;
while ( rec->d.allele[0][k] && rec->d.allele[als[j]][k] )
{
if ( rec->d.allele[0][k]==rec->d.allele[als[j]][k] ) { k++; continue; }
int alt = bcf_acgt2int(rec->d.allele[als[j]][k]);
if ( abs(ref-alt)==2 ) has_ts = 1;
else has_tv = 1;
has_snv = 1;
k++;
}
}
else if ( var_type==VCF_INDEL ) has_indel = 1;
}
if ( has_ts ) { stats->nts++; site_has_ts = 1; }
if ( has_tv ) { stats->ntv++; site_has_tv = 1; }
if ( has_snv ) { stats->nSNV++; site_SNV = 1; }
if ( has_indel ) { stats->nIndel++; site_Indel = 1; }
}
}
flt->site_stats.npass += site_pass;
flt->site_stats.nSNV += site_SNV;
flt->site_stats.nIndel += site_Indel;
flt->site_stats.nts += site_has_ts;
flt->site_stats.ntv += site_has_tv;
flt->site_stats.nsingleton += site_singleton;
}
int run(int argc, char **argv)
{
args_t *args = (args_t*) calloc(1,sizeof(args_t));
args->argc = argc; args->argv = argv;
args->output_fname = "-";
static struct option loptions[] =
{
{"include",required_argument,0,'i'},
{"exclude",required_argument,0,'e'},
{"output",required_argument,NULL,'o'},
{"regions",1,0,'r'},
{"regions-file",1,0,'R'},
{"targets",1,0,'t'},
{"targets-file",1,0,'T'},
{NULL,0,NULL,0}
};
int c, i;
while ((c = getopt_long(argc, argv, "o:s:i:e:r:R:t:T:",loptions,NULL)) >= 0)
{
switch (c)
{
case 'e': args->filter_str = optarg; args->filter_logic |= FLT_EXCLUDE; break;
case 'i': args->filter_str = optarg; args->filter_logic |= FLT_INCLUDE; break;
case 't': args->targets = optarg; break;
case 'T': args->targets = optarg; args->targets_is_file = 1; break;
case 'r': args->regions = optarg; break;
case 'R': args->regions = optarg; args->regions_is_file = 1; break;
case 'o': args->output_fname = optarg; break;
case 'h':
case '?':
default: error("%s", usage_text()); break;
}
}
if ( optind==argc )
{
if ( !isatty(fileno((FILE *)stdin)) ) args->fname = "-"; // reading from stdin
else { error("%s",usage_text()); }
}
else if ( optind+1!=argc ) error("%s",usage_text());
else args->fname = argv[optind];
init_data(args);
while ( bcf_sr_next_line(args->sr) )
{
bcf1_t *rec = bcf_sr_get_line(args->sr,0);
for (i=0; i<args->nfilters; i++)
process_record(args, rec, &args->filters[i]);
}
report_stats(args);
destroy_data(args);
return 0;
}
|