File: trio-stats.c

package info (click to toggle)
python-pysam 0.15.4%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 27,992 kB
  • sloc: ansic: 140,738; python: 7,881; sh: 265; makefile: 223; perl: 41
file content (763 lines) | stat: -rw-r--r-- 30,932 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
/* The MIT License

   Copyright (c) 2018-2019 Genome Research Ltd.

   Author: Petr Danecek <pd3@sanger.ac.uk>
   
   Permission is hereby granted, free of charge, to any person obtaining a copy
   of this software and associated documentation files (the "Software"), to deal
   in the Software without restriction, including without limitation the rights
   to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
   copies of the Software, and to permit persons to whom the Software is
   furnished to do so, subject to the following conditions:
   
   The above copyright notice and this permission notice shall be included in
   all copies or substantial portions of the Software.
   
   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
   OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
   THE SOFTWARE.

 */

#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <getopt.h>
#include <unistd.h>     // for isatty
#include <inttypes.h>
#include <htslib/hts.h>
#include <htslib/vcf.h>
#include <htslib/kstring.h>
#include <htslib/kseq.h>
#include <htslib/synced_bcf_reader.h>
#include <htslib/vcfutils.h>
#include <htslib/kbitset.h>
#include "bcftools.h"
#include "filter.h"


// Logic of the filters: include or exclude sites which match the filters?
#define FLT_INCLUDE 1
#define FLT_EXCLUDE 2

#define iCHILD  0
#define iFATHER 1
#define iMOTHER 2

#define VERBOSE_MENDEL 1
#define VERBOSE_TRANSMITTED 2

typedef struct
{
    int idx[3];     // VCF sample index for father, mother and child
    int pass;       // do all three pass the filters?
}
trio_t;

typedef struct
{
    uint32_t
        npass,          // number of genotypes passing the filter
        nnon_ref,       // number of non-reference genotypes
        nmendel_err,    // number of DNMs / mendelian errors
        nnovel,         // a singleton allele, but observed only in the child. Counted as mendel_err as well.
        nsingleton,     // het mother or father different from everyone else
        ndoubleton,     // het mother+child or father+child different from everyone else (transmitted alleles)
        nts, ntv,       // number of transitions and transversions
        ndnm_recurrent, // number of recurrent DNMs / mendelian errors (counted as GTs, not sites; in ambiguous cases the allele with smaller AF is chosen)
        ndnm_hom;       // number of homozygous DNMs / mendelian errors
}
trio_stats_t;

typedef struct
{
    trio_stats_t *stats;
    filter_t *filter;
    char *expr;
}
flt_stats_t;

typedef struct
{
    kbitset_t *sd_bset; // singleton (1) or doubleton (0) trio?
    uint32_t
        nalt,   // number of all alternate trios
        nsd,    // number of singleton or doubleton trios
        *idx;   // indexes of the singleton and doubleon trios 
}
alt_trios_t;    // for one alt allele

typedef struct
{
    int max_alt_trios;      // maximum number of alternate trios [1]
    int malt_trios;
    alt_trios_t *alt_trios;
    int argc, filter_logic, regions_is_file, targets_is_file;
    int nflt_str;
    char *filter_str, **flt_str;
    char **argv, *ped_fname, *pfm, *output_fname, *fname, *regions, *targets;
    bcf_srs_t *sr;
    bcf_hdr_t *hdr;
    trio_t *trio;
    int ntrio, mtrio;
    flt_stats_t *filters;
    int nfilters;
    int32_t *gt_arr, *ac, *ac_trio, *dnm_als;
    int mgt_arr, mac, mac_trio, mdnm_als;
    int verbose;
    FILE *fp_out;
}
args_t;

args_t args;

const char *about(void)
{
    return "Calculate transmission rate and other stats in trio children.\n";
}

static const char *usage_text(void)
{
    return 
        "\n"
        "About: Calculate transmission rate in trio children. Use curly brackets to scan\n"
        "       a range of values simultaneously\n"
        "Usage: bcftools +trio-stats [Plugin Options]\n"
        "Plugin options:\n"
        "   -a, --alt-trios INT         for transmission rate consider only sites with at most this\n"
        "                                   many alternate trios, 0 for unlimited [0]\n"
        "   -d, --debug TYPE            comma-separted list of features: {mendel-errors,transmitted}\n"
        "   -e, --exclude EXPR          exclude sites and samples for which the expression is true\n"
        "   -i, --include EXPR          include sites and samples for which the expression is true\n"
        "   -o, --output FILE           output file name [stdout]\n"
        "   -p, --ped FILE              PED file\n"
        "   -P, --pfm P,F,M             sample names of proband, father, and mother\n"
        "   -r, --regions REG           restrict to comma-separated list of regions\n"
        "   -R, --regions-file FILE     restrict to regions listed in a file\n"
        "   -t, --targets REG           similar to -r but streams rather than index-jumps\n"
        "   -T, --targets-file FILE     similar to -R but streams rather than index-jumps\n"
        "\n"
        "Example:\n"
        "   bcftools +trio-stats -p file.ped -i 'GQ>{10,20,30,40,50}' file.bcf\n"
        "\n";
}

static int cmp_trios(const void *_a, const void *_b)
{
    trio_t *a = (trio_t *) _a;
    trio_t *b = (trio_t *) _b;
    int i;
    int amin = a->idx[0];
    for (i=1; i<3; i++)
        if ( amin > a->idx[i] ) amin = a->idx[i];
    int bmin = b->idx[0];
    for (i=1; i<3; i++)
        if ( bmin > b->idx[i] ) bmin = b->idx[i];
    if ( amin < bmin ) return -1;
    if ( amin > bmin ) return 1;
    return 0;
}

static void parse_ped(args_t *args, char *fname)
{
    htsFile *fp = hts_open(fname, "r");
    if ( !fp ) error("Could not read: %s\n", fname);

    kstring_t str = {0,0,0};
    if ( hts_getline(fp, KS_SEP_LINE, &str) <= 0 ) error("Empty file: %s\n", fname);

    int moff = 0, *off = NULL;
    do
    {
        // familyID    sampleID paternalID maternalID sex   phenotype   population relationship   siblings   secondOrder   thirdOrder   children    comment
        // BB03    HG01884 HG01885 HG01956 2   0   ACB child   0   0   0   0
        int ncols = ksplit_core(str.s,0,&moff,&off);
        if ( ncols<4 ) error("Could not parse the ped file: %s\n", str.s);

        int father = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,&str.s[off[2]]);
        if ( father<0 ) continue;
        int mother = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,&str.s[off[3]]);
        if ( mother<0 ) continue;
        int child = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,&str.s[off[1]]);
        if ( child<0 ) continue;

        args->ntrio++;
        hts_expand0(trio_t,args->ntrio,args->mtrio,args->trio);
        trio_t *trio = &args->trio[args->ntrio-1];
        trio->idx[iFATHER] = father;
        trio->idx[iMOTHER] = mother;
        trio->idx[iCHILD]  = child;
    }
    while ( hts_getline(fp, KS_SEP_LINE, &str)>=0 );

    fprintf(stderr,"Identified %d complete trios in the VCF file\n", args->ntrio);
    if ( !args->ntrio ) error("No complete trio identified\n");

    // sort the sample by index so that they are accessed more or less sequentially
    qsort(args->trio,args->ntrio,sizeof(trio_t),cmp_trios);
    
    free(str.s);
    free(off);
    if ( hts_close(fp)!=0 ) error("[%s] Error: close failed .. %s\n", __func__,fname);
}

static void parse_filters(args_t *args)
{
    if ( !args->filter_str ) return;
    int mflt = 1;
    args->nflt_str = 1;
    args->flt_str  = (char**) malloc(sizeof(char*));
    args->flt_str[0] = strdup(args->filter_str);
    while (1)
    {
        int i, expanded = 0;
        for (i=args->nflt_str-1; i>=0; i--)
        {
            char *exp_beg = strchr(args->flt_str[i], '{');
            if ( !exp_beg ) continue;
            char *exp_end = strchr(exp_beg+1, '}');
            if ( !exp_end ) error("Could not parse the expression: %s\n", args->filter_str);
            char *beg = exp_beg+1, *mid = beg;
            while ( mid<exp_end )
            {
                while ( mid<exp_end && *mid!=',' ) mid++;
                kstring_t tmp = {0,0,0};
                kputsn(args->flt_str[i], exp_beg - args->flt_str[i], &tmp);
                kputsn(beg, mid - beg, &tmp);
                kputs(exp_end+1, &tmp);
                args->nflt_str++;
                hts_expand(char*, args->nflt_str, mflt, args->flt_str);
                args->flt_str[args->nflt_str-1] = tmp.s;
                beg = ++mid;
            }
            expanded = 1;
            free(args->flt_str[i]);
            memmove(&args->flt_str[i], &args->flt_str[i+1], (args->nflt_str-i-1)*sizeof(*args->flt_str));
            args->nflt_str--;
            args->flt_str[args->nflt_str] = NULL;
        }
        if ( !expanded ) break;
    }
    
    fprintf(stderr,"Collecting data for %d filtering expressions\n", args->nflt_str);
}

static void init_data(args_t *args)
{
    args->sr = bcf_sr_init();
    if ( args->regions )
    {
        args->sr->require_index = 1;
        if ( bcf_sr_set_regions(args->sr, args->regions, args->regions_is_file)<0 ) error("Failed to read the regions: %s\n",args->regions);
    }
    if ( args->targets && bcf_sr_set_targets(args->sr, args->targets, args->targets_is_file, 0)<0 ) error("Failed to read the targets: %s\n",args->targets);
    if ( !bcf_sr_add_reader(args->sr,args->fname) ) error("Error: %s\n", bcf_sr_strerror(args->sr->errnum));
    args->hdr = bcf_sr_get_header(args->sr,0);

    if ( args->ped_fname )
        parse_ped(args, args->ped_fname);
    else
    {
        args->ntrio = 1;
        args->trio = (trio_t*) calloc(1,sizeof(trio_t));
        int ibeg, iend = 0;
        while ( args->pfm[iend] && args->pfm[iend]!=',' ) iend++;
        if ( !args->pfm[iend] ) error("Could not parse -P %s\n", args->pfm);
        args->pfm[iend] = 0;
        int child = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,args->pfm);
        if ( child<0 ) error("No such sample: \"%s\"\n", args->pfm);
        args->pfm[iend] = ',';
        ibeg = ++iend;
        while ( args->pfm[iend] && args->pfm[iend]!=',' ) iend++;
        if ( !args->pfm[iend] ) error("Could not parse -P %s\n", args->pfm);
        args->pfm[iend] = 0;
        int father = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,args->pfm+ibeg);
        if ( father<0 ) error("No such sample: \"%s\"\n", args->pfm+ibeg);
        args->pfm[iend] = ',';
        ibeg = ++iend;
        int mother = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,args->pfm+ibeg);
        if ( mother<0 ) error("No such sample: \"%s\"\n", args->pfm+ibeg);
        args->trio[0].idx[iFATHER] = father;
        args->trio[0].idx[iMOTHER] = mother;
        args->trio[0].idx[iCHILD]  = child;
    }
    parse_filters(args);

    int i;
    if ( !args->nflt_str )
    {
        args->filters = (flt_stats_t*) calloc(1, sizeof(flt_stats_t));
        args->nfilters = 1;
        args->filters[0].expr = strdup("all");
    }
    else
    {
        args->nfilters = args->nflt_str;
        args->filters = (flt_stats_t*) calloc(args->nfilters, sizeof(flt_stats_t));
        for (i=0; i<args->nfilters; i++)
        {
            args->filters[i].filter = filter_init(args->hdr, args->flt_str[i]);
            args->filters[i].expr   = strdup(args->flt_str[i]);

            // replace tab's with spaces so that the output stays parsable
            char *tmp = args->filters[i].expr;
            while ( *tmp )
            { 
                if ( *tmp=='\t' ) *tmp = ' '; 
                tmp++; 
            }
        }
    }
    for (i=0; i<args->nfilters; i++)
        args->filters[i].stats = (trio_stats_t*) calloc(args->ntrio,sizeof(trio_stats_t));

    args->fp_out = !args->output_fname || !strcmp("-",args->output_fname) ? stdout : fopen(args->output_fname,"w");
    if ( !args->fp_out ) error("Could not open the file for writing: %s\n", args->output_fname);
    fprintf(args->fp_out,"# CMD line shows the command line used to generate this output\n");
    fprintf(args->fp_out,"# DEF lines define expressions for all tested thresholds\n");
    fprintf(args->fp_out,"# FLT* lines report numbers for every threshold and every trio:\n");
    i = 0;
    fprintf(args->fp_out,"#   %d) filter id\n", ++i);
    fprintf(args->fp_out,"#   %d) child\n", ++i);
    fprintf(args->fp_out,"#   %d) father\n", ++i);
    fprintf(args->fp_out,"#   %d) mother\n", ++i);
    fprintf(args->fp_out,"#   %d) number of valid trio genotypes (all trio members pass filters, all non-missing)\n", ++i);
    fprintf(args->fp_out,"#   %d) number of non-reference trio GTs (at least one trio member carries an alternate allele)\n", ++i);
    fprintf(args->fp_out,"#   %d) number of DNMs/Mendelian errors\n", ++i);
    fprintf(args->fp_out,"#   %d) number of novel singleton alleles in the child (counted also as DNM / Mendelian error)\n", ++i);
    fprintf(args->fp_out,"#   %d) number of untransmitted trio singletons (one alternate allele present in one parent)\n", ++i);
    fprintf(args->fp_out,"#   %d) number of transmitted trio singletons (one alternate allele present in one parent and the child)\n", ++i);
    fprintf(args->fp_out,"#   %d) number of transitions, all distinct ALT alleles present in the trio are considered\n", ++i);
    fprintf(args->fp_out,"#   %d) number of transversions, all distinct ALT alleles present in the trio are considered\n", ++i);
    fprintf(args->fp_out,"#   %d) overall ts/tv, all distinct ALT alleles present in the trio are considered\n", ++i);
    fprintf(args->fp_out,"#   %d) number of homozygous DNMs/Mendelian errors (likely genotyping errors)\n", ++i);
    fprintf(args->fp_out,"#   %d) number of recurrent DNMs/Mendelian errors (non-inherited alleles present in other samples; counts GTs, not sites)\n", ++i);
    fprintf(args->fp_out, "CMD\t%s", args->argv[0]);
    for (i=1; i<args->argc; i++) fprintf(args->fp_out, " %s",args->argv[i]);
    fprintf(args->fp_out, "\n");
}
static void alt_trios_reset(args_t *args, int nals)
{
    int i;
    hts_expand0(alt_trios_t, nals, args->malt_trios, args->alt_trios);
    for (i=0; i<nals; i++) 
    {
        alt_trios_t *tr = &args->alt_trios[i];
        if ( !tr->idx )
        {
            tr->idx = (uint32_t*)malloc(sizeof(*tr->idx)*args->ntrio);
            tr->sd_bset = kbs_init(args->ntrio);
        }
        else
            kbs_clear(tr->sd_bset);
        tr->nsd  = 0;
        tr->nalt = 0;
    }
}
static void alt_trios_destroy(args_t *args)
{
    if ( !args->max_alt_trios ) return;
    int i;
    for (i=0; i<args->malt_trios; i++)
    {
        free(args->alt_trios[i].idx);
        kbs_destroy(args->alt_trios[i].sd_bset);
    }
    free(args->alt_trios);
}
static inline void alt_trios_add(args_t *args, int itrio, int ial, int is_singleton)
{
    alt_trios_t *tr = &args->alt_trios[ial];
    if ( is_singleton ) kbs_insert(tr->sd_bset, tr->nsd);
    tr->idx[ tr->nsd++ ] = itrio;
}
static void destroy_data(args_t *args)
{
    int i;
    for (i=0; i<args->nfilters; i++)
    {
        if ( args->filters[i].filter ) filter_destroy(args->filters[i].filter);
        free(args->filters[i].stats);
        free(args->filters[i].expr);
    }
    free(args->filters);
    for (i=0; i<args->nflt_str; i++) free(args->flt_str[i]);
    free(args->flt_str);
    bcf_sr_destroy(args->sr);
    alt_trios_destroy(args);
    free(args->trio);
    free(args->ac);
    free(args->ac_trio);
    free(args->gt_arr);
    free(args->dnm_als);
    if ( fclose(args->fp_out)!=0 ) error("Close failed: %s\n", (!args->output_fname || !strcmp("-",args->output_fname)) ? "stdout" : args->output_fname);
    free(args);
}
static void report_stats(args_t *args)
{
    int i = 0,j;
    for (i=0; i<args->nfilters; i++)
    {
        flt_stats_t *flt = &args->filters[i];
        fprintf(args->fp_out,"DEF\tFLT%d\t%s\n", i, flt->expr);
    }
    for (i=0; i<args->nfilters; i++)
    {
        flt_stats_t *flt = &args->filters[i];
        for (j=0; j<args->ntrio; j++)
        {
            fprintf(args->fp_out,"FLT%d", i);
            fprintf(args->fp_out,"\t%s",args->hdr->samples[args->trio[j].idx[iCHILD]]);
            fprintf(args->fp_out,"\t%s",args->hdr->samples[args->trio[j].idx[iFATHER]]);
            fprintf(args->fp_out,"\t%s",args->hdr->samples[args->trio[j].idx[iMOTHER]]);
            trio_stats_t *stats = &flt->stats[j];
            fprintf(args->fp_out,"\t%d", stats->npass);
            fprintf(args->fp_out,"\t%d", stats->nnon_ref);
            fprintf(args->fp_out,"\t%d", stats->nmendel_err);
            fprintf(args->fp_out,"\t%d", stats->nnovel);
            fprintf(args->fp_out,"\t%d", stats->nsingleton);
            fprintf(args->fp_out,"\t%d", stats->ndoubleton);
            fprintf(args->fp_out,"\t%d", stats->nts);
            fprintf(args->fp_out,"\t%d", stats->ntv);
            fprintf(args->fp_out,"\t%.2f", stats->ntv ? (float)stats->nts/stats->ntv : INFINITY);
            fprintf(args->fp_out,"\t%d", stats->ndnm_hom);
            fprintf(args->fp_out,"\t%d", stats->ndnm_recurrent);
            fprintf(args->fp_out,"\n");
        }
    }
}

static inline int parse_genotype(int32_t *arr, int ngt1, int idx, int als[2])
{
    int32_t *ptr = arr + ngt1 * idx;
    if ( bcf_gt_is_missing(ptr[0]) ) return -1;
    als[0] = bcf_gt_allele(ptr[0]);

    // treat haploid GTs as homozygous diploid
    if ( ngt1==1 || ptr[1]==bcf_int32_vector_end ) { als[1] = als[0]; return 0; }

    if ( bcf_gt_is_missing(ptr[1]) ) return -1;
    als[1] = bcf_gt_allele(ptr[1]);

    return 0;
}

static void process_record(args_t *args, bcf1_t *rec, flt_stats_t *flt)
{
    int i,j;

    // Find out which trios pass and if the site passes
    if ( flt->filter )
    {
        uint8_t *smpl_pass = NULL;
        int pass_site = filter_test(flt->filter, rec, (const uint8_t**) &smpl_pass);
        if ( args->filter_logic & FLT_EXCLUDE )
        {
            if ( pass_site )
            {
                if ( !smpl_pass ) return;
                pass_site = 0;
                for (i=0; i<args->ntrio; i++)
                {
                    int pass_trio = 1;
                    for (j=0; j<3; j++)
                    {
                        int idx = args->trio[i].idx[j];
                        if ( smpl_pass[idx] ) { pass_trio = 0; break; }
                    }
                    args->trio[i].pass = pass_trio;
                    if ( pass_trio ) pass_site = 1;
                }
                if ( !pass_site ) return;
            }
            else
                for (i=0; i<args->ntrio; i++) args->trio[i].pass = 1;
        }
        else if ( !pass_site ) return;
        else if ( smpl_pass )
        {
            pass_site = 0;
            for (i=0; i<args->ntrio; i++)
            {
                int pass_trio = 1;
                for (j=0; j<3; j++)
                {
                    int idx = args->trio[i].idx[j];
                    if ( !smpl_pass[idx] ) { pass_trio = 0; break; }
                }
                args->trio[i].pass = pass_trio;
                if ( pass_trio ) pass_site = 1;
            }
            if ( !pass_site ) return;
        }
        else
            for (i=0; i<args->ntrio; i++) args->trio[i].pass = 1;
    }

    // Find out the allele counts. Try to use INFO/AC, if not present, determine from the genotypes
    hts_expand(int, rec->n_allele, args->mac, args->ac);
    if ( !bcf_calc_ac(args->hdr, rec, args->ac, BCF_UN_INFO|BCF_UN_FMT) ) return;
    hts_expand(int, rec->n_allele, args->mac_trio, args->ac_trio);
    hts_expand(int, rec->n_allele, args->mdnm_als, args->dnm_als);

    // Get the genotypes
    int ngt = bcf_get_genotypes(args->hdr, rec, &args->gt_arr, &args->mgt_arr);
    if ( ngt<0 ) return;
    int ngt1 = ngt / rec->n_sample;
    

    // For ts/tv: numeric code of the reference allele, -1 for insertions
    int ref = !rec->d.allele[0][1] ? bcf_acgt2int(*rec->d.allele[0]) : -1;

    int star_allele = -1;
    for (i=1; i<rec->n_allele; i++)
        if ( !rec->d.allele[i][1] && rec->d.allele[i][0]=='*' ) { star_allele = i; break; }

    // number of non-reference trios
    if ( args->max_alt_trios ) alt_trios_reset(args, rec->n_allele);

    // Run the stats
    for (i=0; i<args->ntrio; i++)
    {
        if ( flt->filter && !args->trio[i].pass ) continue;
        trio_stats_t *stats = &flt->stats[i];

        // Determine the alternate allele and the genotypes, skip if any of the alleles is missing.
        // the order is: child, father, mother
        int als[6], *als_child = als, *als_father = als+2, *als_mother = als+4; 
        if ( parse_genotype(args->gt_arr, ngt1, args->trio[i].idx[iCHILD], als_child) < 0 ) continue;
        if ( parse_genotype(args->gt_arr, ngt1, args->trio[i].idx[iFATHER], als_father) < 0 ) continue;
        if ( parse_genotype(args->gt_arr, ngt1, args->trio[i].idx[iMOTHER], als_mother) < 0 ) continue;

        stats->npass++;

        // Has the trio an alternate allele other than *?
        int has_star_allele = 0, has_nonref = 0;
        memset(args->ac_trio,0,rec->n_allele*sizeof(*args->ac_trio));
        for (j=0; j<6; j++)
        {
            if ( als[j]==star_allele ) { has_star_allele = 1; continue; }
            if ( als[j]!=0 ) has_nonref = 1;
            args->ac_trio[ als[j] ]++;
        }
        if ( !has_nonref ) continue;   // only ref or * in this trio
        
        stats->nnon_ref++;

        // Calculate ts/tv. It does the right thing and handles also HetAA genotypes
        if ( ref != -1 )
        {
            int has_ts = 0, has_tv = 0;
            for (j=0; j<6; j++)
            {
                if ( als[j]==0 || als[j]==star_allele ) continue;
                if ( als[j] >= rec->n_allele )
                    error("The GT index is out of range at %s:%"PRId64" in %s\n", bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1,args->hdr->samples[args->trio[i].idx[j/2]]);
                if ( rec->d.allele[als[j]][1] ) continue;

                int alt = bcf_acgt2int(rec->d.allele[als[j]][0]);
                if ( abs(ref-alt)==2 ) has_ts = 1;
                else has_tv = 1;
            }
            if ( has_ts ) stats->nts++;
            if ( has_tv ) stats->ntv++;
        }

        // Skip some stats if the star allele is present as it was already checked at the primary record, we do not want to count the same
        // thing multiple times. There can be other alternate allele, but we ignore that for simplicity.
        if ( has_star_allele ) continue;

        // Detect mendelian errors
        int a0F = als_child[0]==als_father[0] || als_child[0]==als_father[1] ? 1 : 0;
        int a1M = als_child[1]==als_mother[0] || als_child[1]==als_mother[1] ? 1 : 0;
        if ( !a0F || !a1M )
        {
            int a0M = als_child[0]==als_mother[0] || als_child[0]==als_mother[1] ? 1 : 0;
            int a1F = als_child[1]==als_father[0] || als_child[1]==als_father[1] ? 1 : 0;
            if ( !a0M || !a1F )
            {
                stats->nmendel_err++;

                int dnm_hom = 0;
                if ( als_child[0]==als_child[1] ) { stats->ndnm_hom++; dnm_hom = 1; }

                int culprit;    // neglecting the unlikely possibility of alt het 1/2 DNM genotype
                if ( !a0F && !a0M ) culprit = als_child[0];
                else if ( !a1F && !a1M ) culprit = als_child[1];
                else if ( args->ac[als_child[0]] < args->ac[als_child[1]] ) culprit = als_child[0];
                else culprit = als_child[1];

                int dnm_recurrent = 0;
                if ( (!dnm_hom && args->ac[culprit]>1) || (dnm_hom && args->ac[culprit]>2) ) { stats->ndnm_recurrent++; dnm_recurrent = 1; }

                if ( args->verbose & VERBOSE_MENDEL )
                    fprintf(args->fp_out,"MERR\t%s\t%"PRId64"\t%s\t%s\t%s\t%s\t%s\n", bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1,
                            args->hdr->samples[args->trio[i].idx[iCHILD]],
                            args->hdr->samples[args->trio[i].idx[iFATHER]],
                            args->hdr->samples[args->trio[i].idx[iMOTHER]],
                            dnm_hom ? "HOM" : "-",
                            dnm_recurrent ? "RECURRENT" : "-"
                           );
            }
        }

        // Is this a singleton, doubleton, neither?
        for (j=0; j<rec->n_allele; j++)
        {
            if ( !args->ac_trio[j] ) continue;
            if ( args->max_alt_trios ) args->alt_trios[j].nalt++;

            if ( args->ac_trio[j]==1 )  // singleton (in parent) or novel (in child)
            {
                if ( als_child[0]==j || als_child[1]==j ) stats->nnovel++;
                else
                {
                    if ( !args->max_alt_trios )
                    {
                        stats->nsingleton++;
                        if ( args->verbose & VERBOSE_TRANSMITTED )
                            fprintf(args->fp_out,"TRANSMITTED\t%s\t%"PRId64"\t%s\t%s\t%s\tNO\n", bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1,
                                    args->hdr->samples[args->trio[i].idx[iCHILD]],
                                    args->hdr->samples[args->trio[i].idx[iFATHER]],
                                    args->hdr->samples[args->trio[i].idx[iMOTHER]]
                                   );
                    }
                    else alt_trios_add(args, i,j,1);
                }
            }
            else if ( args->ac_trio[j]==2 ) // possibly a doubleton
            {
                if ( (als_child[0]!=j && als_child[1]!=j) || (als_child[0]==j && als_child[1]==j) ) continue;
                if ( (als_father[0]==j && als_father[1]==j) || (als_mother[0]==j && als_mother[1]==j) ) continue;
                if ( !args->max_alt_trios ) 
                {
                    stats->ndoubleton++;
                    if ( args->verbose & VERBOSE_TRANSMITTED )
                        fprintf(args->fp_out,"TRANSMITTED\t%s\t%"PRId64"\t%s\t%s\t%s\tYES\n", bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1,
                                args->hdr->samples[args->trio[i].idx[iCHILD]],
                                args->hdr->samples[args->trio[i].idx[iFATHER]],
                                args->hdr->samples[args->trio[i].idx[iMOTHER]]
                               );
                }
                else alt_trios_add(args, i,j,0);
            }
        }
    }
    if ( args->max_alt_trios )
    {
        for (j=0; j<rec->n_allele; j++)
        {
            alt_trios_t *tr = &args->alt_trios[j];
            if ( !tr->nsd || tr->nalt > args->max_alt_trios ) continue;
            for (i=0; i<tr->nsd; i++)
            {
                int itr = tr->idx[i];
                trio_stats_t *stats = &flt->stats[itr];
                if ( kbs_exists(tr->sd_bset,i) )
                {
                    stats->nsingleton++;
                    if ( args->verbose & VERBOSE_TRANSMITTED )
                        fprintf(args->fp_out,"TRANSMITTED\t%s\t%"PRId64"\t%s\t%s\t%s\tNO\n", bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1,
                                args->hdr->samples[args->trio[itr].idx[iCHILD]],
                                args->hdr->samples[args->trio[itr].idx[iFATHER]],
                                args->hdr->samples[args->trio[itr].idx[iMOTHER]]
                               );
                }
                else
                {
                    stats->ndoubleton++;
                    if ( args->verbose & VERBOSE_TRANSMITTED )
                        fprintf(args->fp_out,"TRANSMITTED\t%s\t%"PRId64"\t%s\t%s\t%s\tYES\n", bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1,
                                args->hdr->samples[args->trio[itr].idx[iCHILD]],
                                args->hdr->samples[args->trio[itr].idx[iFATHER]],
                                args->hdr->samples[args->trio[itr].idx[iMOTHER]]
                               );
                }
            }
        }
    }
}

int run(int argc, char **argv)
{
    args_t *args = (args_t*) calloc(1,sizeof(args_t));
    args->argc   = argc; args->argv = argv;
    args->output_fname = "-";
    static struct option loptions[] =
    {
        {"debug",required_argument,0,'d'},
        {"alt-trios",required_argument,0,'a'},
        {"include",required_argument,0,'i'},
        {"exclude",required_argument,0,'e'},
        {"output",required_argument,NULL,'o'},
        {"ped",required_argument,NULL,'p'},
        {"pfm",required_argument,NULL,'P'},
        {"regions",1,0,'r'},
        {"regions-file",1,0,'R'},
        {"targets",1,0,'t'},
        {"targets-file",1,0,'T'},
        {NULL,0,NULL,0}
    };
    int c, i;
    while ((c = getopt_long(argc, argv, "P:p:o:s:i:e:r:R:t:T:a:d:",loptions,NULL)) >= 0)
    {
        switch (c) 
        {
            case 'd': 
            {
                int n;
                char **tmp = hts_readlist(optarg, 0, &n);
                for(i=0; i<n; i++)
                {
                    if ( !strcasecmp(tmp[i],"mendel-errors") ) args->verbose |= VERBOSE_MENDEL;
                    else if ( !strcasecmp(tmp[i],"transmitted") ) args->verbose |= VERBOSE_TRANSMITTED;
                    else error("Error: The argument \"%s\" to option --debug is not recognised\n", tmp[i]);
                    free(tmp[i]);
                }
                free(tmp);
                break;
            }
            case 'a': args->max_alt_trios = atoi(optarg); break;
            case 'e': args->filter_str = optarg; args->filter_logic |= FLT_EXCLUDE; break;
            case 'i': args->filter_str = optarg; args->filter_logic |= FLT_INCLUDE; break;
            case 't': args->targets = optarg; break;
            case 'T': args->targets = optarg; args->targets_is_file = 1; break;
            case 'r': args->regions = optarg; break;
            case 'R': args->regions = optarg; args->regions_is_file = 1; break;
            case 'o': args->output_fname = optarg; break;
            case 'p': args->ped_fname = optarg; break;
            case 'P': args->pfm = optarg; break;
            case 'h':
            case '?':
            default: error("%s", usage_text()); break;
        }
    }
    if ( optind==argc )
    {
        if ( !isatty(fileno((FILE *)stdin)) ) args->fname = "-";  // reading from stdin
        else { error("%s", usage_text()); }
    }
    else if ( optind+1!=argc ) error("%s", usage_text());
    else args->fname = argv[optind];

    if ( !args->ped_fname && !args->pfm ) error("Missing the -p or -P option\n");

    init_data(args);

    while ( bcf_sr_next_line(args->sr) )
    {
        bcf1_t *rec = bcf_sr_get_line(args->sr,0);
        for (i=0; i<args->nfilters; i++)
            process_record(args, rec, &args->filters[i]);
    }

    report_stats(args);
    destroy_data(args);

    return 0;
}