1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
|
#include "bcftools.pysam.h"
/* The MIT License
Copyright (c) 2018-2019 Genome Research Ltd.
Author: Petr Danecek <pd3@sanger.ac.uk>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <getopt.h>
#include <unistd.h> // for isatty
#include <inttypes.h>
#include <htslib/hts.h>
#include <htslib/vcf.h>
#include <htslib/kstring.h>
#include <htslib/kseq.h>
#include <htslib/synced_bcf_reader.h>
#include <htslib/vcfutils.h>
#include <htslib/kbitset.h>
#include "bcftools.h"
#include "filter.h"
// Logic of the filters: include or exclude sites which match the filters?
#define FLT_INCLUDE 1
#define FLT_EXCLUDE 2
#define iCHILD 0
#define iFATHER 1
#define iMOTHER 2
#define VERBOSE_MENDEL 1
#define VERBOSE_TRANSMITTED 2
typedef struct
{
int idx[3]; // VCF sample index for father, mother and child
int pass; // do all three pass the filters?
}
trio_t;
typedef struct
{
uint32_t
npass, // number of genotypes passing the filter
nnon_ref, // number of non-reference genotypes
nmendel_err, // number of DNMs / mendelian errors
nnovel, // a singleton allele, but observed only in the child. Counted as mendel_err as well.
nsingleton, // het mother or father different from everyone else
ndoubleton, // het mother+child or father+child different from everyone else (transmitted alleles)
nts, ntv, // number of transitions and transversions
ndnm_recurrent, // number of recurrent DNMs / mendelian errors (counted as GTs, not sites; in ambiguous cases the allele with smaller AF is chosen)
ndnm_hom; // number of homozygous DNMs / mendelian errors
}
trio_stats_t;
typedef struct
{
trio_stats_t *stats;
filter_t *filter;
char *expr;
}
flt_stats_t;
typedef struct
{
kbitset_t *sd_bset; // singleton (1) or doubleton (0) trio?
uint32_t
nalt, // number of all alternate trios
nsd, // number of singleton or doubleton trios
*idx; // indexes of the singleton and doubleon trios
}
alt_trios_t; // for one alt allele
typedef struct
{
int max_alt_trios; // maximum number of alternate trios [1]
int malt_trios;
alt_trios_t *alt_trios;
int argc, filter_logic, regions_is_file, targets_is_file;
int nflt_str;
char *filter_str, **flt_str;
char **argv, *ped_fname, *pfm, *output_fname, *fname, *regions, *targets;
bcf_srs_t *sr;
bcf_hdr_t *hdr;
trio_t *trio;
int ntrio, mtrio;
flt_stats_t *filters;
int nfilters;
int32_t *gt_arr, *ac, *ac_trio, *dnm_als;
int mgt_arr, mac, mac_trio, mdnm_als;
int verbose;
FILE *fp_out;
}
args_t;
args_t args;
const char *about(void)
{
return "Calculate transmission rate and other stats in trio children.\n";
}
static const char *usage_text(void)
{
return
"\n"
"About: Calculate transmission rate in trio children. Use curly brackets to scan\n"
" a range of values simultaneously\n"
"Usage: bcftools +trio-stats [Plugin Options]\n"
"Plugin options:\n"
" -a, --alt-trios INT for transmission rate consider only sites with at most this\n"
" many alternate trios, 0 for unlimited [0]\n"
" -d, --debug TYPE comma-separted list of features: {mendel-errors,transmitted}\n"
" -e, --exclude EXPR exclude sites and samples for which the expression is true\n"
" -i, --include EXPR include sites and samples for which the expression is true\n"
" -o, --output FILE output file name [bcftools_stdout]\n"
" -p, --ped FILE PED file\n"
" -P, --pfm P,F,M sample names of proband, father, and mother\n"
" -r, --regions REG restrict to comma-separated list of regions\n"
" -R, --regions-file FILE restrict to regions listed in a file\n"
" -t, --targets REG similar to -r but streams rather than index-jumps\n"
" -T, --targets-file FILE similar to -R but streams rather than index-jumps\n"
"\n"
"Example:\n"
" bcftools +trio-stats -p file.ped -i 'GQ>{10,20,30,40,50}' file.bcf\n"
"\n";
}
static int cmp_trios(const void *_a, const void *_b)
{
trio_t *a = (trio_t *) _a;
trio_t *b = (trio_t *) _b;
int i;
int amin = a->idx[0];
for (i=1; i<3; i++)
if ( amin > a->idx[i] ) amin = a->idx[i];
int bmin = b->idx[0];
for (i=1; i<3; i++)
if ( bmin > b->idx[i] ) bmin = b->idx[i];
if ( amin < bmin ) return -1;
if ( amin > bmin ) return 1;
return 0;
}
static void parse_ped(args_t *args, char *fname)
{
htsFile *fp = hts_open(fname, "r");
if ( !fp ) error("Could not read: %s\n", fname);
kstring_t str = {0,0,0};
if ( hts_getline(fp, KS_SEP_LINE, &str) <= 0 ) error("Empty file: %s\n", fname);
int moff = 0, *off = NULL;
do
{
// familyID sampleID paternalID maternalID sex phenotype population relationship siblings secondOrder thirdOrder children comment
// BB03 HG01884 HG01885 HG01956 2 0 ACB child 0 0 0 0
int ncols = ksplit_core(str.s,0,&moff,&off);
if ( ncols<4 ) error("Could not parse the ped file: %s\n", str.s);
int father = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,&str.s[off[2]]);
if ( father<0 ) continue;
int mother = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,&str.s[off[3]]);
if ( mother<0 ) continue;
int child = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,&str.s[off[1]]);
if ( child<0 ) continue;
args->ntrio++;
hts_expand0(trio_t,args->ntrio,args->mtrio,args->trio);
trio_t *trio = &args->trio[args->ntrio-1];
trio->idx[iFATHER] = father;
trio->idx[iMOTHER] = mother;
trio->idx[iCHILD] = child;
}
while ( hts_getline(fp, KS_SEP_LINE, &str)>=0 );
fprintf(bcftools_stderr,"Identified %d complete trios in the VCF file\n", args->ntrio);
if ( !args->ntrio ) error("No complete trio identified\n");
// sort the sample by index so that they are accessed more or less sequentially
qsort(args->trio,args->ntrio,sizeof(trio_t),cmp_trios);
free(str.s);
free(off);
if ( hts_close(fp)!=0 ) error("[%s] Error: close failed .. %s\n", __func__,fname);
}
static void parse_filters(args_t *args)
{
if ( !args->filter_str ) return;
int mflt = 1;
args->nflt_str = 1;
args->flt_str = (char**) malloc(sizeof(char*));
args->flt_str[0] = strdup(args->filter_str);
while (1)
{
int i, expanded = 0;
for (i=args->nflt_str-1; i>=0; i--)
{
char *exp_beg = strchr(args->flt_str[i], '{');
if ( !exp_beg ) continue;
char *exp_end = strchr(exp_beg+1, '}');
if ( !exp_end ) error("Could not parse the expression: %s\n", args->filter_str);
char *beg = exp_beg+1, *mid = beg;
while ( mid<exp_end )
{
while ( mid<exp_end && *mid!=',' ) mid++;
kstring_t tmp = {0,0,0};
kputsn(args->flt_str[i], exp_beg - args->flt_str[i], &tmp);
kputsn(beg, mid - beg, &tmp);
kputs(exp_end+1, &tmp);
args->nflt_str++;
hts_expand(char*, args->nflt_str, mflt, args->flt_str);
args->flt_str[args->nflt_str-1] = tmp.s;
beg = ++mid;
}
expanded = 1;
free(args->flt_str[i]);
memmove(&args->flt_str[i], &args->flt_str[i+1], (args->nflt_str-i-1)*sizeof(*args->flt_str));
args->nflt_str--;
args->flt_str[args->nflt_str] = NULL;
}
if ( !expanded ) break;
}
fprintf(bcftools_stderr,"Collecting data for %d filtering expressions\n", args->nflt_str);
}
static void init_data(args_t *args)
{
args->sr = bcf_sr_init();
if ( args->regions )
{
args->sr->require_index = 1;
if ( bcf_sr_set_regions(args->sr, args->regions, args->regions_is_file)<0 ) error("Failed to read the regions: %s\n",args->regions);
}
if ( args->targets && bcf_sr_set_targets(args->sr, args->targets, args->targets_is_file, 0)<0 ) error("Failed to read the targets: %s\n",args->targets);
if ( !bcf_sr_add_reader(args->sr,args->fname) ) error("Error: %s\n", bcf_sr_strerror(args->sr->errnum));
args->hdr = bcf_sr_get_header(args->sr,0);
if ( args->ped_fname )
parse_ped(args, args->ped_fname);
else
{
args->ntrio = 1;
args->trio = (trio_t*) calloc(1,sizeof(trio_t));
int ibeg, iend = 0;
while ( args->pfm[iend] && args->pfm[iend]!=',' ) iend++;
if ( !args->pfm[iend] ) error("Could not parse -P %s\n", args->pfm);
args->pfm[iend] = 0;
int child = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,args->pfm);
if ( child<0 ) error("No such sample: \"%s\"\n", args->pfm);
args->pfm[iend] = ',';
ibeg = ++iend;
while ( args->pfm[iend] && args->pfm[iend]!=',' ) iend++;
if ( !args->pfm[iend] ) error("Could not parse -P %s\n", args->pfm);
args->pfm[iend] = 0;
int father = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,args->pfm+ibeg);
if ( father<0 ) error("No such sample: \"%s\"\n", args->pfm+ibeg);
args->pfm[iend] = ',';
ibeg = ++iend;
int mother = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,args->pfm+ibeg);
if ( mother<0 ) error("No such sample: \"%s\"\n", args->pfm+ibeg);
args->trio[0].idx[iFATHER] = father;
args->trio[0].idx[iMOTHER] = mother;
args->trio[0].idx[iCHILD] = child;
}
parse_filters(args);
int i;
if ( !args->nflt_str )
{
args->filters = (flt_stats_t*) calloc(1, sizeof(flt_stats_t));
args->nfilters = 1;
args->filters[0].expr = strdup("all");
}
else
{
args->nfilters = args->nflt_str;
args->filters = (flt_stats_t*) calloc(args->nfilters, sizeof(flt_stats_t));
for (i=0; i<args->nfilters; i++)
{
args->filters[i].filter = filter_init(args->hdr, args->flt_str[i]);
args->filters[i].expr = strdup(args->flt_str[i]);
// replace tab's with spaces so that the output stays parsable
char *tmp = args->filters[i].expr;
while ( *tmp )
{
if ( *tmp=='\t' ) *tmp = ' ';
tmp++;
}
}
}
for (i=0; i<args->nfilters; i++)
args->filters[i].stats = (trio_stats_t*) calloc(args->ntrio,sizeof(trio_stats_t));
args->fp_out = !args->output_fname || !strcmp("-",args->output_fname) ? bcftools_stdout : fopen(args->output_fname,"w");
if ( !args->fp_out ) error("Could not open the file for writing: %s\n", args->output_fname);
fprintf(args->fp_out,"# CMD line shows the command line used to generate this output\n");
fprintf(args->fp_out,"# DEF lines define expressions for all tested thresholds\n");
fprintf(args->fp_out,"# FLT* lines report numbers for every threshold and every trio:\n");
i = 0;
fprintf(args->fp_out,"# %d) filter id\n", ++i);
fprintf(args->fp_out,"# %d) child\n", ++i);
fprintf(args->fp_out,"# %d) father\n", ++i);
fprintf(args->fp_out,"# %d) mother\n", ++i);
fprintf(args->fp_out,"# %d) number of valid trio genotypes (all trio members pass filters, all non-missing)\n", ++i);
fprintf(args->fp_out,"# %d) number of non-reference trio GTs (at least one trio member carries an alternate allele)\n", ++i);
fprintf(args->fp_out,"# %d) number of DNMs/Mendelian errors\n", ++i);
fprintf(args->fp_out,"# %d) number of novel singleton alleles in the child (counted also as DNM / Mendelian error)\n", ++i);
fprintf(args->fp_out,"# %d) number of untransmitted trio singletons (one alternate allele present in one parent)\n", ++i);
fprintf(args->fp_out,"# %d) number of transmitted trio singletons (one alternate allele present in one parent and the child)\n", ++i);
fprintf(args->fp_out,"# %d) number of transitions, all distinct ALT alleles present in the trio are considered\n", ++i);
fprintf(args->fp_out,"# %d) number of transversions, all distinct ALT alleles present in the trio are considered\n", ++i);
fprintf(args->fp_out,"# %d) overall ts/tv, all distinct ALT alleles present in the trio are considered\n", ++i);
fprintf(args->fp_out,"# %d) number of homozygous DNMs/Mendelian errors (likely genotyping errors)\n", ++i);
fprintf(args->fp_out,"# %d) number of recurrent DNMs/Mendelian errors (non-inherited alleles present in other samples; counts GTs, not sites)\n", ++i);
fprintf(args->fp_out, "CMD\t%s", args->argv[0]);
for (i=1; i<args->argc; i++) fprintf(args->fp_out, " %s",args->argv[i]);
fprintf(args->fp_out, "\n");
}
static void alt_trios_reset(args_t *args, int nals)
{
int i;
hts_expand0(alt_trios_t, nals, args->malt_trios, args->alt_trios);
for (i=0; i<nals; i++)
{
alt_trios_t *tr = &args->alt_trios[i];
if ( !tr->idx )
{
tr->idx = (uint32_t*)malloc(sizeof(*tr->idx)*args->ntrio);
tr->sd_bset = kbs_init(args->ntrio);
}
else
kbs_clear(tr->sd_bset);
tr->nsd = 0;
tr->nalt = 0;
}
}
static void alt_trios_destroy(args_t *args)
{
if ( !args->max_alt_trios ) return;
int i;
for (i=0; i<args->malt_trios; i++)
{
free(args->alt_trios[i].idx);
kbs_destroy(args->alt_trios[i].sd_bset);
}
free(args->alt_trios);
}
static inline void alt_trios_add(args_t *args, int itrio, int ial, int is_singleton)
{
alt_trios_t *tr = &args->alt_trios[ial];
if ( is_singleton ) kbs_insert(tr->sd_bset, tr->nsd);
tr->idx[ tr->nsd++ ] = itrio;
}
static void destroy_data(args_t *args)
{
int i;
for (i=0; i<args->nfilters; i++)
{
if ( args->filters[i].filter ) filter_destroy(args->filters[i].filter);
free(args->filters[i].stats);
free(args->filters[i].expr);
}
free(args->filters);
for (i=0; i<args->nflt_str; i++) free(args->flt_str[i]);
free(args->flt_str);
bcf_sr_destroy(args->sr);
alt_trios_destroy(args);
free(args->trio);
free(args->ac);
free(args->ac_trio);
free(args->gt_arr);
free(args->dnm_als);
if ( fclose(args->fp_out)!=0 ) error("Close failed: %s\n", (!args->output_fname || !strcmp("-",args->output_fname)) ? "bcftools_stdout" : args->output_fname);
free(args);
}
static void report_stats(args_t *args)
{
int i = 0,j;
for (i=0; i<args->nfilters; i++)
{
flt_stats_t *flt = &args->filters[i];
fprintf(args->fp_out,"DEF\tFLT%d\t%s\n", i, flt->expr);
}
for (i=0; i<args->nfilters; i++)
{
flt_stats_t *flt = &args->filters[i];
for (j=0; j<args->ntrio; j++)
{
fprintf(args->fp_out,"FLT%d", i);
fprintf(args->fp_out,"\t%s",args->hdr->samples[args->trio[j].idx[iCHILD]]);
fprintf(args->fp_out,"\t%s",args->hdr->samples[args->trio[j].idx[iFATHER]]);
fprintf(args->fp_out,"\t%s",args->hdr->samples[args->trio[j].idx[iMOTHER]]);
trio_stats_t *stats = &flt->stats[j];
fprintf(args->fp_out,"\t%d", stats->npass);
fprintf(args->fp_out,"\t%d", stats->nnon_ref);
fprintf(args->fp_out,"\t%d", stats->nmendel_err);
fprintf(args->fp_out,"\t%d", stats->nnovel);
fprintf(args->fp_out,"\t%d", stats->nsingleton);
fprintf(args->fp_out,"\t%d", stats->ndoubleton);
fprintf(args->fp_out,"\t%d", stats->nts);
fprintf(args->fp_out,"\t%d", stats->ntv);
fprintf(args->fp_out,"\t%.2f", stats->ntv ? (float)stats->nts/stats->ntv : INFINITY);
fprintf(args->fp_out,"\t%d", stats->ndnm_hom);
fprintf(args->fp_out,"\t%d", stats->ndnm_recurrent);
fprintf(args->fp_out,"\n");
}
}
}
static inline int parse_genotype(int32_t *arr, int ngt1, int idx, int als[2])
{
int32_t *ptr = arr + ngt1 * idx;
if ( bcf_gt_is_missing(ptr[0]) ) return -1;
als[0] = bcf_gt_allele(ptr[0]);
// treat haploid GTs as homozygous diploid
if ( ngt1==1 || ptr[1]==bcf_int32_vector_end ) { als[1] = als[0]; return 0; }
if ( bcf_gt_is_missing(ptr[1]) ) return -1;
als[1] = bcf_gt_allele(ptr[1]);
return 0;
}
static void process_record(args_t *args, bcf1_t *rec, flt_stats_t *flt)
{
int i,j;
// Find out which trios pass and if the site passes
if ( flt->filter )
{
uint8_t *smpl_pass = NULL;
int pass_site = filter_test(flt->filter, rec, (const uint8_t**) &smpl_pass);
if ( args->filter_logic & FLT_EXCLUDE )
{
if ( pass_site )
{
if ( !smpl_pass ) return;
pass_site = 0;
for (i=0; i<args->ntrio; i++)
{
int pass_trio = 1;
for (j=0; j<3; j++)
{
int idx = args->trio[i].idx[j];
if ( smpl_pass[idx] ) { pass_trio = 0; break; }
}
args->trio[i].pass = pass_trio;
if ( pass_trio ) pass_site = 1;
}
if ( !pass_site ) return;
}
else
for (i=0; i<args->ntrio; i++) args->trio[i].pass = 1;
}
else if ( !pass_site ) return;
else if ( smpl_pass )
{
pass_site = 0;
for (i=0; i<args->ntrio; i++)
{
int pass_trio = 1;
for (j=0; j<3; j++)
{
int idx = args->trio[i].idx[j];
if ( !smpl_pass[idx] ) { pass_trio = 0; break; }
}
args->trio[i].pass = pass_trio;
if ( pass_trio ) pass_site = 1;
}
if ( !pass_site ) return;
}
else
for (i=0; i<args->ntrio; i++) args->trio[i].pass = 1;
}
// Find out the allele counts. Try to use INFO/AC, if not present, determine from the genotypes
hts_expand(int, rec->n_allele, args->mac, args->ac);
if ( !bcf_calc_ac(args->hdr, rec, args->ac, BCF_UN_INFO|BCF_UN_FMT) ) return;
hts_expand(int, rec->n_allele, args->mac_trio, args->ac_trio);
hts_expand(int, rec->n_allele, args->mdnm_als, args->dnm_als);
// Get the genotypes
int ngt = bcf_get_genotypes(args->hdr, rec, &args->gt_arr, &args->mgt_arr);
if ( ngt<0 ) return;
int ngt1 = ngt / rec->n_sample;
// For ts/tv: numeric code of the reference allele, -1 for insertions
int ref = !rec->d.allele[0][1] ? bcf_acgt2int(*rec->d.allele[0]) : -1;
int star_allele = -1;
for (i=1; i<rec->n_allele; i++)
if ( !rec->d.allele[i][1] && rec->d.allele[i][0]=='*' ) { star_allele = i; break; }
// number of non-reference trios
if ( args->max_alt_trios ) alt_trios_reset(args, rec->n_allele);
// Run the stats
for (i=0; i<args->ntrio; i++)
{
if ( flt->filter && !args->trio[i].pass ) continue;
trio_stats_t *stats = &flt->stats[i];
// Determine the alternate allele and the genotypes, skip if any of the alleles is missing.
// the order is: child, father, mother
int als[6], *als_child = als, *als_father = als+2, *als_mother = als+4;
if ( parse_genotype(args->gt_arr, ngt1, args->trio[i].idx[iCHILD], als_child) < 0 ) continue;
if ( parse_genotype(args->gt_arr, ngt1, args->trio[i].idx[iFATHER], als_father) < 0 ) continue;
if ( parse_genotype(args->gt_arr, ngt1, args->trio[i].idx[iMOTHER], als_mother) < 0 ) continue;
stats->npass++;
// Has the trio an alternate allele other than *?
int has_star_allele = 0, has_nonref = 0;
memset(args->ac_trio,0,rec->n_allele*sizeof(*args->ac_trio));
for (j=0; j<6; j++)
{
if ( als[j]==star_allele ) { has_star_allele = 1; continue; }
if ( als[j]!=0 ) has_nonref = 1;
args->ac_trio[ als[j] ]++;
}
if ( !has_nonref ) continue; // only ref or * in this trio
stats->nnon_ref++;
// Calculate ts/tv. It does the right thing and handles also HetAA genotypes
if ( ref != -1 )
{
int has_ts = 0, has_tv = 0;
for (j=0; j<6; j++)
{
if ( als[j]==0 || als[j]==star_allele ) continue;
if ( als[j] >= rec->n_allele )
error("The GT index is out of range at %s:%"PRId64" in %s\n", bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1,args->hdr->samples[args->trio[i].idx[j/2]]);
if ( rec->d.allele[als[j]][1] ) continue;
int alt = bcf_acgt2int(rec->d.allele[als[j]][0]);
if ( abs(ref-alt)==2 ) has_ts = 1;
else has_tv = 1;
}
if ( has_ts ) stats->nts++;
if ( has_tv ) stats->ntv++;
}
// Skip some stats if the star allele is present as it was already checked at the primary record, we do not want to count the same
// thing multiple times. There can be other alternate allele, but we ignore that for simplicity.
if ( has_star_allele ) continue;
// Detect mendelian errors
int a0F = als_child[0]==als_father[0] || als_child[0]==als_father[1] ? 1 : 0;
int a1M = als_child[1]==als_mother[0] || als_child[1]==als_mother[1] ? 1 : 0;
if ( !a0F || !a1M )
{
int a0M = als_child[0]==als_mother[0] || als_child[0]==als_mother[1] ? 1 : 0;
int a1F = als_child[1]==als_father[0] || als_child[1]==als_father[1] ? 1 : 0;
if ( !a0M || !a1F )
{
stats->nmendel_err++;
int dnm_hom = 0;
if ( als_child[0]==als_child[1] ) { stats->ndnm_hom++; dnm_hom = 1; }
int culprit; // neglecting the unlikely possibility of alt het 1/2 DNM genotype
if ( !a0F && !a0M ) culprit = als_child[0];
else if ( !a1F && !a1M ) culprit = als_child[1];
else if ( args->ac[als_child[0]] < args->ac[als_child[1]] ) culprit = als_child[0];
else culprit = als_child[1];
int dnm_recurrent = 0;
if ( (!dnm_hom && args->ac[culprit]>1) || (dnm_hom && args->ac[culprit]>2) ) { stats->ndnm_recurrent++; dnm_recurrent = 1; }
if ( args->verbose & VERBOSE_MENDEL )
fprintf(args->fp_out,"MERR\t%s\t%"PRId64"\t%s\t%s\t%s\t%s\t%s\n", bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1,
args->hdr->samples[args->trio[i].idx[iCHILD]],
args->hdr->samples[args->trio[i].idx[iFATHER]],
args->hdr->samples[args->trio[i].idx[iMOTHER]],
dnm_hom ? "HOM" : "-",
dnm_recurrent ? "RECURRENT" : "-"
);
}
}
// Is this a singleton, doubleton, neither?
for (j=0; j<rec->n_allele; j++)
{
if ( !args->ac_trio[j] ) continue;
if ( args->max_alt_trios ) args->alt_trios[j].nalt++;
if ( args->ac_trio[j]==1 ) // singleton (in parent) or novel (in child)
{
if ( als_child[0]==j || als_child[1]==j ) stats->nnovel++;
else
{
if ( !args->max_alt_trios )
{
stats->nsingleton++;
if ( args->verbose & VERBOSE_TRANSMITTED )
fprintf(args->fp_out,"TRANSMITTED\t%s\t%"PRId64"\t%s\t%s\t%s\tNO\n", bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1,
args->hdr->samples[args->trio[i].idx[iCHILD]],
args->hdr->samples[args->trio[i].idx[iFATHER]],
args->hdr->samples[args->trio[i].idx[iMOTHER]]
);
}
else alt_trios_add(args, i,j,1);
}
}
else if ( args->ac_trio[j]==2 ) // possibly a doubleton
{
if ( (als_child[0]!=j && als_child[1]!=j) || (als_child[0]==j && als_child[1]==j) ) continue;
if ( (als_father[0]==j && als_father[1]==j) || (als_mother[0]==j && als_mother[1]==j) ) continue;
if ( !args->max_alt_trios )
{
stats->ndoubleton++;
if ( args->verbose & VERBOSE_TRANSMITTED )
fprintf(args->fp_out,"TRANSMITTED\t%s\t%"PRId64"\t%s\t%s\t%s\tYES\n", bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1,
args->hdr->samples[args->trio[i].idx[iCHILD]],
args->hdr->samples[args->trio[i].idx[iFATHER]],
args->hdr->samples[args->trio[i].idx[iMOTHER]]
);
}
else alt_trios_add(args, i,j,0);
}
}
}
if ( args->max_alt_trios )
{
for (j=0; j<rec->n_allele; j++)
{
alt_trios_t *tr = &args->alt_trios[j];
if ( !tr->nsd || tr->nalt > args->max_alt_trios ) continue;
for (i=0; i<tr->nsd; i++)
{
int itr = tr->idx[i];
trio_stats_t *stats = &flt->stats[itr];
if ( kbs_exists(tr->sd_bset,i) )
{
stats->nsingleton++;
if ( args->verbose & VERBOSE_TRANSMITTED )
fprintf(args->fp_out,"TRANSMITTED\t%s\t%"PRId64"\t%s\t%s\t%s\tNO\n", bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1,
args->hdr->samples[args->trio[itr].idx[iCHILD]],
args->hdr->samples[args->trio[itr].idx[iFATHER]],
args->hdr->samples[args->trio[itr].idx[iMOTHER]]
);
}
else
{
stats->ndoubleton++;
if ( args->verbose & VERBOSE_TRANSMITTED )
fprintf(args->fp_out,"TRANSMITTED\t%s\t%"PRId64"\t%s\t%s\t%s\tYES\n", bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1,
args->hdr->samples[args->trio[itr].idx[iCHILD]],
args->hdr->samples[args->trio[itr].idx[iFATHER]],
args->hdr->samples[args->trio[itr].idx[iMOTHER]]
);
}
}
}
}
}
int run(int argc, char **argv)
{
args_t *args = (args_t*) calloc(1,sizeof(args_t));
args->argc = argc; args->argv = argv;
args->output_fname = "-";
static struct option loptions[] =
{
{"debug",required_argument,0,'d'},
{"alt-trios",required_argument,0,'a'},
{"include",required_argument,0,'i'},
{"exclude",required_argument,0,'e'},
{"output",required_argument,NULL,'o'},
{"ped",required_argument,NULL,'p'},
{"pfm",required_argument,NULL,'P'},
{"regions",1,0,'r'},
{"regions-file",1,0,'R'},
{"targets",1,0,'t'},
{"targets-file",1,0,'T'},
{NULL,0,NULL,0}
};
int c, i;
while ((c = getopt_long(argc, argv, "P:p:o:s:i:e:r:R:t:T:a:d:",loptions,NULL)) >= 0)
{
switch (c)
{
case 'd':
{
int n;
char **tmp = hts_readlist(optarg, 0, &n);
for(i=0; i<n; i++)
{
if ( !strcasecmp(tmp[i],"mendel-errors") ) args->verbose |= VERBOSE_MENDEL;
else if ( !strcasecmp(tmp[i],"transmitted") ) args->verbose |= VERBOSE_TRANSMITTED;
else error("Error: The argument \"%s\" to option --debug is not recognised\n", tmp[i]);
free(tmp[i]);
}
free(tmp);
break;
}
case 'a': args->max_alt_trios = atoi(optarg); break;
case 'e': args->filter_str = optarg; args->filter_logic |= FLT_EXCLUDE; break;
case 'i': args->filter_str = optarg; args->filter_logic |= FLT_INCLUDE; break;
case 't': args->targets = optarg; break;
case 'T': args->targets = optarg; args->targets_is_file = 1; break;
case 'r': args->regions = optarg; break;
case 'R': args->regions = optarg; args->regions_is_file = 1; break;
case 'o': args->output_fname = optarg; break;
case 'p': args->ped_fname = optarg; break;
case 'P': args->pfm = optarg; break;
case 'h':
case '?':
default: error("%s", usage_text()); break;
}
}
if ( optind==argc )
{
if ( !isatty(fileno((FILE *)stdin)) ) args->fname = "-"; // reading from stdin
else { error("%s", usage_text()); }
}
else if ( optind+1!=argc ) error("%s", usage_text());
else args->fname = argv[optind];
if ( !args->ped_fname && !args->pfm ) error("Missing the -p or -P option\n");
init_data(args);
while ( bcf_sr_next_line(args->sr) )
{
bcf1_t *rec = bcf_sr_get_line(args->sr,0);
for (i=0; i<args->nfilters; i++)
process_record(args, rec, &args->filters[i]);
}
report_stats(args);
destroy_data(args);
return 0;
}
|