1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
|
// VariantKey
//
// variantkey.h
//
// @category Libraries
// @author Nicola Asuni <nicola.asuni@genomicsplc.com>
// @copyright 2017-2018 GENOMICS plc
// @license MIT (see LICENSE)
// @link https://github.com/genomicsplc/variantkey
//
// LICENSE
//
// Copyright (c) 2017-2018 GENOMICS plc
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
/**
* @file variantkey.h
* @brief VariantKey main functions.
*
* The functions provided here allows to generate and process a 64 bit Unsigned Integer Keys for Human Genetic Variants.
* The VariantKey is sortable for chromosome and position,
* and it is also fully reversible for variants with up to 11 bases between Reference and Alternate alleles.
* It can be used to sort, search and match variant-based data easily and very quickly.
*/
#ifndef VARIANTKEY_H
#define VARIANTKEY_H
#include <inttypes.h>
#include <stddef.h>
#include <stdio.h>
#include "hex.h"
#define VKMASK_CHROM 0xF800000000000000 //!< VariantKey binary mask for CHROM [ 11111000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 ]
#define VKMASK_POS 0x07FFFFFF80000000 //!< VariantKey binary mask for POS [ 00000111 11111111 11111111 11111111 10000000 00000000 00000000 00000000 ]
#define VKMASK_CHROMPOS 0xFFFFFFFF80000000 //!< VariantKey binary mask for CHROM+POS [ 11111111 11111111 11111111 11111111 10000000 00000000 00000000 00000000 ]
#define VKMASK_REFALT 0x000000007FFFFFFF //!< VariantKey binary mask for REF+ALT [ 00000000 00000000 00000000 00000000 01111111 11111111 11111111 11111111 ]
#define VKSHIFT_CHROM 59 //!< CHROM LSB position from the VariantKey LSB
#define VKSHIFT_POS 31 //!< POS LSB position from the VariantKey LSB
/**
* VariantKey struct.
* Contains the numerically encoded VariantKey components (CHROM, POS, REF+ALT).
*/
typedef struct variantkey_t
{
uint8_t chrom; //!< Chromosome encoded number (only the LSB 5 bit are used)
uint32_t pos; //!< Reference position, with the first base having position 0 (only the LSB 28 bit are used)
uint32_t refalt; //!< Code for Reference and Alternate allele (only the LSB 31 bits are used)
} variantkey_t;
/**
* Struct containing the minimum and maximum VariantKey values for range searches.
*/
typedef struct vkrange_t
{
uint64_t min; //!< Minimum VariantKey value for any given REF+ALT encoding
uint64_t max; //!< Maximum VariantKey value for any given REF+ALT encoding
} vkrange_t;
/** @brief Returns chromosome numerical encoding.
*
* @param chrom Chromosome. An identifier from the reference genome, no white-space permitted.
* @param size Length of the chrom string, excluding the terminating null byte.
*
* @return CHROM code
*/
static inline uint8_t encode_chrom(const char *chrom, size_t size)
{
// X > 23 ; Y > 24 ; M > 25
static const uint8_t onecharmap[] =
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* M X Y */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,23,24, 0, 0, 0, 0, 0, 0,
/* m x y */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,23,24, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
// remove "chr" prefix
if ((size > 3)
&& ((chrom[0] == 'c') || (chrom[0] == 'C'))
&& ((chrom[1] == 'h') || (chrom[1] == 'H'))
&& ((chrom[2] == 'r') || (chrom[2] == 'R')))
{
chrom += 3;
size -= 3;
}
if (size == 0)
{
return 0;
}
if ((chrom[0] <= '9') && (chrom[0] >= '0')) // Number
{
size_t i;
uint8_t v = (chrom[0] - '0');
for (i = 1; i < size; i++)
{
if ((chrom[i] > '9') || (chrom[i] < '0'))
{
return 0; // NA
}
v = ((v * 10) + (chrom[i] - '0'));
}
return v;
}
if ((size == 1) || ((size == 2) && ((chrom[1] == 'T') || (chrom[1] == 't'))))
{
return onecharmap[((uint8_t)chrom[0])];
}
return 0; // NA
}
/** @brief Decode the chromosome numerical code.
*
* @param code CHROM code.
* @param chrom CHROM string buffer to be returned. Its size should be enough to contain the results (max 4 bytes).
*
* @return If successful, the total number of characters written is returned,
* excluding the null-character appended at the end of the string,
* otherwise a negative number is returned in case of failure.
*/
static inline size_t decode_chrom(uint8_t code, char *chrom)
{
if ((code < 1) || (code > 25))
{
return sprintf(chrom, "NA");
}
if (code < 23)
{
return sprintf(chrom, "%" PRIu8, code);
}
static const char *map[] = {"X", "Y", "MT"};
return sprintf(chrom, "%s", map[(code - 23)]);
}
static inline uint32_t encode_base(const uint8_t c)
{
/*
Encode base:
A > 0
C > 1
G > 2
T > 3
*/
static const uint32_t map[] =
{
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
/*A C G T*/
4,0,4,1,4,4,4,2,4,4,4,4,4,4,4,4,4,4,4,4,3,4,4,4,4,4,4,4,4,4,4,4,
/*a c g t*/
4,0,4,1,4,4,4,2,4,4,4,4,4,4,4,4,4,4,4,4,3,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
};
return map[c];
}
static inline int encode_allele(uint32_t *h, uint8_t *bitpos, const char *str, size_t size)
{
uint32_t v;
while (size--)
{
v = encode_base(*str++);
if (v > 3)
{
return -1;
}
*bitpos -= 2;
*h |= (v << *bitpos);
}
return 0;
}
static inline uint32_t encode_refalt_rev(const char *ref, size_t sizeref, const char *alt, size_t sizealt)
{
//[******** ******** ******** ******** *RRRRAAA A1122334 45566778 8990011*]
uint32_t h = 0;
h |= ((uint32_t)(sizeref) << 27); // RRRR: length of (REF - 1)
h |= ((uint32_t)(sizealt) << 23); // AAAA: length of (ALT - 1)
uint8_t bitpos = 23;
if ((encode_allele(&h, &bitpos, ref, sizeref) < 0) || (encode_allele(&h, &bitpos, alt, sizealt) < 0))
{
return 0; // error code
}
return h;
}
// Mix two 32 bit hash numbers using a MurmurHash3-like algorithm
static inline uint32_t muxhash(uint32_t k, uint32_t h)
{
k *= 0xcc9e2d51;
k = (k >> 17) | (k << 15);
k *= 0x1b873593;
h ^= k;
h = (h >> 19) | (h << 13);
return ((h * 5) + 0xe6546b64);
}
static inline uint32_t encode_packchar(int c)
{
if (c < 'A')
{
return 27;
}
if (c >= 'a')
{
return (uint32_t)(c - 'a' + 1);
}
return (uint32_t)(c - 'A' + 1);
}
// pack blocks of 6 characters in 32 bit (6 x 5 bit + 2 spare bit) [ 01111122 22233333 44444555 55666660 ]
static inline uint32_t pack_chars_tail(const char *str, size_t size)
{
uint32_t h = 0;
const char *pos = (str + size - 1);
switch (size)
{
case 5:
h ^= encode_packchar(*pos--) << (1 + (5 * 1));
// fall through
case 4:
h ^= encode_packchar(*pos--) << (1 + (5 * 2));
// fall through
case 3:
h ^= encode_packchar(*pos--) << (1 + (5 * 3));
// fall through
case 2:
h ^= encode_packchar(*pos--) << (1 + (5 * 4));
// fall through
case 1:
h ^= encode_packchar(*pos) << (1 + (5 * 5));
}
return h;
}
static inline uint32_t pack_chars(const char *str)
{
const char *pos = (str + 5);
return ((encode_packchar(*pos) << 1)
^ (encode_packchar(*(pos-1)) << (1 + (5 * 1)))
^ (encode_packchar(*(pos-2)) << (1 + (5 * 2)))
^ (encode_packchar(*(pos-3)) << (1 + (5 * 3)))
^ (encode_packchar(*(pos-4)) << (1 + (5 * 4)))
^ (encode_packchar(*(pos-5)) << (1 + (5 * 5))));
}
// Return a 32 bit hash of a nucleotide string
static inline uint32_t hash32(const char *str, size_t size)
{
uint32_t h = 0;
size_t len = 6;
while (size >= len)
{
h = muxhash(pack_chars(str), h);
str += len;
size -= len;
}
if (size > 0)
{
h = muxhash(pack_chars_tail(str, size), h);
}
return h;
}
static inline uint32_t encode_refalt_hash(const char *ref, size_t sizeref, const char *alt, size_t sizealt)
{
// 0x3 is the separator character between REF and ALT [00000000 00000000 00000000 00000011]
uint32_t h = muxhash(hash32(alt, sizealt), muxhash(0x3, hash32(ref, sizeref)));
// MurmurHash3 finalization mix - force all bits of a hash block to avalanche
h ^= h >> 16;
h *= 0x85ebca6b;
h ^= h >> 13;
h *= 0xc2b2ae35;
h ^= h >> 16;
return ((h >> 1) | 0x1); // 0x1 is the set bit to indicate HASH mode [00000000 00000000 00000000 00000001]
}
/** @brief Returns reference+alternate numerical encoding.
*
* @param ref Reference allele. String containing a sequence of nucleotide letters.
* The value in the pos field refers to the position of the first nucleotide in the String.
* Characters must be A-Z, a-z or *
* @param sizeref Length of the ref string, excluding the terminating null byte.
* @param alt Alternate non-reference allele string.
* Characters must be A-Z, a-z or *
* @param sizealt Length of the alt string, excluding the terminating null byte.
*
* @return REF+ALT code
*/
static inline uint32_t encode_refalt(const char *ref, size_t sizeref, const char *alt, size_t sizealt)
{
if ((sizeref + sizealt) <= 11)
{
uint32_t h = encode_refalt_rev(ref, sizeref, alt, sizealt);
if (h != 0)
{
return h;
}
}
return encode_refalt_hash(ref, sizeref, alt, sizealt);
}
static inline char decode_base(uint32_t code, int bitpos)
{
static const char base[4] = {'A', 'C', 'G', 'T'};
return base[((code >> bitpos) & 0x3)]; // 0x3 is the 2 bit mask [00000011]
}
static inline size_t decode_refalt_rev(uint32_t code, char *ref, size_t *sizeref, char *alt, size_t *sizealt)
{
*sizeref = (size_t)((code & 0x78000000) >> 27); // [01111000 00000000 00000000 00000000]
*sizealt = (size_t)((code & 0x07800000) >> 23); // [00000111 10000000 00000000 00000000]
switch (*sizeref)
{
case 10:
ref[9] = decode_base(code, (3 + (2 * 0)));
// fall through
case 9:
ref[8] = decode_base(code, (3 + (2 * 1)));
// fall through
case 8:
ref[7] = decode_base(code, (3 + (2 * 2)));
// fall through
case 7:
ref[6] = decode_base(code, (3 + (2 * 3)));
// fall through
case 6:
ref[5] = decode_base(code, (3 + (2 * 4)));
// fall through
case 5:
ref[4] = decode_base(code, (3 + (2 * 5)));
// fall through
case 4:
ref[3] = decode_base(code, (3 + (2 * 6)));
// fall through
case 3:
ref[2] = decode_base(code, (3 + (2 * 7)));
// fall through
case 2:
ref[1] = decode_base(code, (3 + (2 * 8)));
// fall through
case 1:
ref[0] = decode_base(code, (3 + (2 * 9)));
}
ref[*sizeref] = 0;
uint8_t bitpos = (23 - ((*sizeref) << 1));
switch (*sizealt)
{
case 10:
alt[9] = decode_base(code, bitpos - (2 * 10));
// fall through
case 9:
alt[8] = decode_base(code, bitpos - (2 * 9));
// fall through
case 8:
alt[7] = decode_base(code, bitpos - (2 * 8));
// fall through
case 7:
alt[6] = decode_base(code, bitpos - (2 * 7));
// fall through
case 6:
alt[5] = decode_base(code, bitpos - (2 * 6));
// fall through
case 5:
alt[4] = decode_base(code, bitpos - (2 * 5));
// fall through
case 4:
alt[3] = decode_base(code, bitpos - (2 * 4));
// fall through
case 3:
alt[2] = decode_base(code, bitpos - (2 * 3));
// fall through
case 2:
alt[1] = decode_base(code, bitpos - (2 * 2));
// fall through
case 1:
alt[0] = decode_base(code, bitpos - (2 * 1));
}
alt[*sizealt] = 0;
return (*sizeref + *sizealt);
}
/** @brief Decode the 32 bit REF+ALT code if reversible (if it has 11 or less bases in total and only contains ACGT letters).
*
* @param code REF+ALT code
* @param ref REF string buffer to be returned.
* @param sizeref Pointer to the size of the ref buffer, excluding the terminating null byte.
* This will contain the final ref size.
* @param alt ALT string buffer to be returned.
* @param sizealt Pointer to the size of the alt buffer, excluding the terminating null byte.
* This will contain the final alt size.
*
* @return If the code is reversible, then the total number of characters of REF+ALT is returned.
* Otherwise 0 is returned.
*/
static inline size_t decode_refalt(uint32_t code, char *ref, size_t *sizeref, char *alt, size_t *sizealt)
{
if (code & 0x1) // check last bit
{
return 0; // non-reversible encoding
}
return decode_refalt_rev(code, ref, sizeref, alt, sizealt);
}
/** @brief Returns a 64 bit variant key based on the pre-encoded CHROM, POS (0-based) and REF+ALT.
*
* @param chrom Encoded Chromosome (see encode_chrom).
* @param pos Position. The reference position, with the first base having position 0.
* @param refalt Encoded Reference + Alternate (see encode_refalt).
*
* @return VariantKey 64 bit code.
*/
static inline uint64_t encode_variantkey(uint8_t chrom, uint32_t pos, uint32_t refalt)
{
return (((uint64_t)chrom << VKSHIFT_CHROM) | ((uint64_t)pos << VKSHIFT_POS) | (uint64_t)refalt);
}
/** @brief Extract the CHROM code from VariantKey.
*
* @param vk VariantKey code.
*
* @return CHROM code.
*/
static inline uint8_t extract_variantkey_chrom(uint64_t vk)
{
return (uint8_t)((vk & VKMASK_CHROM) >> VKSHIFT_CHROM);
}
/** @brief Extract the POS code from VariantKey.
*
* @param vk VariantKey code.
*
* @return POS.
*/
static inline uint32_t extract_variantkey_pos(uint64_t vk)
{
return (uint32_t)((vk & VKMASK_POS) >> VKSHIFT_POS);
}
/** @brief Extract the REF+ALT code from VariantKey.
*
* @param vk VariantKey code.
*
* @return REF+ALT code.
*/
static inline uint32_t extract_variantkey_refalt(uint64_t vk)
{
return (uint32_t)(vk & VKMASK_REFALT);
}
/** @brief Decode a VariantKey code and returns the components as variantkey_t structure.
*
* @param code VariantKey code.
* @param vk Decoded variantkey structure.
*/
static inline void decode_variantkey(uint64_t code, variantkey_t *vk)
{
vk->chrom = extract_variantkey_chrom(code);
vk->pos = extract_variantkey_pos(code);
vk->refalt = extract_variantkey_refalt(code);
}
/** @brief Returns a 64 bit variant key based on CHROM, POS (0-based), REF, ALT.
*
* @param chrom Chromosome. An identifier from the reference genome, no white-space or leading zeros permitted.
* @param sizechrom Length of the chrom string, excluding the terminating null byte.
* @param pos Position. The reference position, with the first base having position 0.
* @param ref Reference allele. String containing a sequence of nucleotide letters.
* The value in the pos field refers to the position of the first nucleotide in the String.
* Characters must be A-Z, a-z or *
* @param sizeref Length of the ref string, excluding the terminating null byte.
* @param alt Alternate non-reference allele string.
* Characters must be A-Z, a-z or *
* @param sizealt Length of the alt string, excluding the terminating null byte.
*
* @return VariantKey 64 bit code.
*/
static inline uint64_t variantkey(const char *chrom, size_t sizechrom, uint32_t pos, const char *ref, size_t sizeref, const char *alt, size_t sizealt)
{
return encode_variantkey(encode_chrom(chrom, sizechrom), pos, encode_refalt(ref, sizeref, alt, sizealt));
}
/** @brief Returns minimum and maximum VariantKeys for range searches.
*
* @param chrom Chromosome encoded number.
* @param pos_min Start reference position, with the first base having position 0.
* @param pos_max End reference position, with the first base having position 0.
* @param range VariantKey range values.
*/
static inline void variantkey_range(uint8_t chrom, uint32_t pos_min, uint32_t pos_max, vkrange_t *range)
{
uint64_t c = ((uint64_t)chrom << VKSHIFT_CHROM);
range->min = (c | ((uint64_t)pos_min << VKSHIFT_POS));
range->max = (c | ((uint64_t)pos_max << VKSHIFT_POS) | VKMASK_REFALT);
}
static inline int8_t compare_uint64_t(uint64_t a, uint64_t b)
{
return (a < b) ? -1 : (a > b);
}
/** @brief Compares two VariantKeys by chromosome only.
*
* @param vka The first VariantKey to be compared.
* @param vkb The second VariantKey to be compared.
*
* @return -1 if the first chromosome is smaller than the second, 0 if they are equal and 1 if the first is greater than the second.
*/
static inline int8_t compare_variantkey_chrom(uint64_t vka, uint64_t vkb)
{
return compare_uint64_t((vka >> VKSHIFT_CHROM), (vkb >> VKSHIFT_CHROM));
}
/** @brief Compares two VariantKeys by chromosome and position.
*
* @param vka The first VariantKey to be compared.
* @param vkb The second VariantKey to be compared.
*
* @return -1 if the first CHROM+POS is smaller than the second, 0 if they are equal and 1 if the first is greater than the second.
*/
static inline int8_t compare_variantkey_chrom_pos(uint64_t vka, uint64_t vkb)
{
return compare_uint64_t((vka >> VKSHIFT_POS), (vkb >> VKSHIFT_POS));
}
/** @brief Returns VariantKey hexadecimal string (16 characters).
*
* The string represent a 64 bit number or:
* - 5 bit for CHROM
* - 28 bit for POS
* - 31 bit for REF+ALT
*
* @param vk VariantKey code.
* @param str String buffer to be returned (it must be sized 17 bytes at least).
*
* @return Upon successful return, these function returns the number of characters processed
* (excluding the null byte used to end output to strings).
* If the buffer size is not sufficient, then the return value is the number of characters required for
* buffer string, including the terminating null byte.
*/
static inline size_t variantkey_hex(uint64_t vk, char *str)
{
return hex_uint64_t(vk, str);
}
/** @brief Parses a VariantKey hexadecimal string and returns the code.
*
* @param vs VariantKey hexadecimal string (it must contain 16 hexadecimal characters).
*
* @return A VariantKey code.
*/
static inline uint64_t parse_variantkey_hex(const char *vs)
{
return parse_hex_uint64_t(vs);
}
#endif // VARIANTKEY_H
|