1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
|
#include "bcftools.pysam.h"
/* bam2bcf_indel.c -- indel caller.
Copyright (C) 2010, 2011 Broad Institute.
Copyright (C) 2012-2014,2016-2017, 2021 Genome Research Ltd.
Author: Heng Li <lh3@sanger.ac.uk>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE. */
#include <assert.h>
#include <ctype.h>
#include <string.h>
#include <math.h>
#include <htslib/hts.h>
#include <htslib/sam.h>
#include <htslib/khash_str2int.h>
#include "bam2bcf.h"
#include "str_finder.h"
#include <htslib/ksort.h>
KSORT_INIT_GENERIC(uint32_t)
#define MINUS_CONST 0x10000000
#define MAX_TYPES 64
// Take a reference position tpos and convert to a query position (returned).
// This uses the CIGAR string plus alignment c->pos to do the mapping.
//
// *_tpos is returned as tpos if query overlaps tpos, but for deletions
// it'll be either the start (is_left) or end (!is_left) ref position.
static int tpos2qpos(const bam1_core_t *c, const uint32_t *cigar, int32_t tpos, int is_left, int32_t *_tpos)
{
// x = pos in ref, y = pos in query seq
int k, x = c->pos, y = 0, last_y = 0;
*_tpos = c->pos;
for (k = 0; k < c->n_cigar; ++k) {
int op = cigar[k] & BAM_CIGAR_MASK;
int l = cigar[k] >> BAM_CIGAR_SHIFT;
if (op == BAM_CMATCH || op == BAM_CEQUAL || op == BAM_CDIFF) {
if (c->pos > tpos) return y;
if (x + l > tpos) {
*_tpos = tpos;
return y + (tpos - x);
}
x += l; y += l;
last_y = y;
} else if (op == BAM_CINS || op == BAM_CSOFT_CLIP) y += l;
else if (op == BAM_CDEL || op == BAM_CREF_SKIP) {
if (x + l > tpos) {
*_tpos = is_left? x : x + l;
return y;
}
x += l;
}
}
*_tpos = x;
return last_y;
}
// FIXME: check if the inserted sequence is consistent with the homopolymer run
// l is the relative gap length and l_run is the length of the homopolymer on the reference
static inline int est_seqQ(const bcf_callaux_t *bca, int l, int l_run)
{
int q, qh;
q = bca->openQ + bca->extQ * (abs(l) - 1);
qh = l_run >= 3? (int)(bca->tandemQ * (double)abs(l) / l_run + .499) : 1000;
return q < qh? q : qh;
}
static inline int est_indelreg(int pos, const char *ref, int l, char *ins4)
{
int i, j, max = 0, max_i = pos, score = 0;
l = abs(l);
for (i = pos + 1, j = 0; ref[i]; ++i, ++j) {
if (ins4) score += (toupper(ref[i]) != "ACGTN"[(int)ins4[j%l]])? -10 : 1;
else score += (toupper(ref[i]) != toupper(ref[pos+1+j%l]))? -10 : 1;
if (score < 0) break;
if (max < score) max = score, max_i = i;
}
return max_i - pos;
}
// Identify spft-clip length, position in seq, and clipped seq len
static inline void get_pos(const bcf_callaux_t *bca, bam_pileup1_t *p,
int *sc_len_r, int *slen_r, int *epos_r, int *end) {
bam1_t *b = p->b;
int sc_len = 0, sc_dist = -1, at_left = 1;
int epos = p->qpos, slen = b->core.l_qseq;
int k;
uint32_t *cigar = bam_get_cigar(b);
*end = -1;
for (k = 0; k < b->core.n_cigar; k++) {
int op = bam_cigar_op(cigar[k]);
if (op == BAM_CSOFT_CLIP) {
slen -= bam_cigar_oplen(cigar[k]);
if (at_left) {
// left end
sc_len += bam_cigar_oplen(cigar[k]);
epos -= sc_len; // don't count SC in seq pos
sc_dist = epos;
*end = 0;
} else {
// right end
int srlen = bam_cigar_oplen(cigar[k]);
int rd = b->core.l_qseq - srlen - p->qpos;
if (sc_dist < 0 || sc_dist > rd) {
// closer to right end than left
// FIXME: compensate for indel length too?
sc_dist = rd;
sc_len = srlen;
*end = 1;
}
}
} else if (op != BAM_CHARD_CLIP) {
at_left = 0;
}
}
if (p->indel > 0 && slen - (epos+p->indel) < epos)
epos += p->indel-1; // end of insertion, if near end of seq
// slen is now length of sequence minus soft-clips and
// epos is position of indel in seq minus left-clip.
*epos_r = (double)epos / (slen+1) * bca->npos;
if (sc_len) {
// scale importance of clip by distance to closest end
*sc_len_r = 15.0*sc_len / (sc_dist+1);
if (*sc_len_r > 99) *sc_len_r = 99;
} else {
*sc_len_r = 0;
}
*slen_r = slen;
}
// Part of bcf_call_gap_prep.
//
// Scans the pileup to identify all the different sizes of indels
// present.
//
// Returns types and fills out n_types_r, max_rd_len_r and ref_type_r,
// or NULL on error.
static int *bcf_cgp_find_types(int n, int *n_plp, bam_pileup1_t **plp,
int pos, bcf_callaux_t *bca, const char *ref,
int *max_rd_len_r, int *n_types_r,
int *ref_type_r, int *N_r) {
int i, j, t, s, N, m, max_rd_len, n_types;
int n_alt = 0, n_tot = 0, indel_support_ok = 0;
uint32_t *aux;
int *types;
// N is the total number of reads
for (s = N = 0; s < n; ++s)
N += n_plp[s];
bca->max_support = bca->max_frac = 0;
aux = (uint32_t*) calloc(N + 1, 4);
if (!aux)
return NULL;
m = max_rd_len = 0;
aux[m++] = MINUS_CONST; // zero indel is always a type (REF)
// Fill out aux[] array with all the non-zero indel sizes.
// Also tally number with indels (n_alt) and total (n_tot).
for (s = 0; s < n; ++s) {
int na = 0, nt = 0;
for (i = 0; i < n_plp[s]; ++i) {
const bam_pileup1_t *p = plp[s] + i;
++nt;
if (p->indel != 0) {
++na;
aux[m++] = MINUS_CONST + p->indel;
}
// FIXME: cache me in pileup struct.
j = bam_cigar2qlen(p->b->core.n_cigar, bam_get_cigar(p->b));
if (j > max_rd_len) max_rd_len = j;
}
double frac = (double)na/nt;
if ( !indel_support_ok && na >= bca->min_support
&& frac >= bca->min_frac )
indel_support_ok = 1;
if ( na > bca->max_support && frac > 0 )
bca->max_support = na, bca->max_frac = frac;
n_alt += na;
n_tot += nt;
}
// Sort aux[] and dedup
ks_introsort(uint32_t, m, aux);
for (i = 1, n_types = 1; i < m; ++i)
if (aux[i] != aux[i-1]) ++n_types;
// Taking totals makes it hard to call rare indels (IMF filter)
if ( !bca->per_sample_flt )
indel_support_ok = ( (double)n_alt / n_tot < bca->min_frac
|| n_alt < bca->min_support )
? 0 : 1;
if ( n_types == 1 || !indel_support_ok ) { // then skip
free(aux);
return NULL;
}
// Bail out if we have far too many types of indel
if (n_types >= MAX_TYPES) {
free(aux);
// TODO revisit how/whether to control printing this warning
if (hts_verbose >= 2)
fprintf(bcftools_stderr, "[%s] excessive INDEL alleles at position %d. "
"Skip the position.\n", __func__, pos + 1);
return NULL;
}
// To prevent long stretches of N's to be mistaken for indels
// (sometimes thousands of bases), check the number of N's in the
// sequence and skip places where half or more reference bases are Ns.
int nN=0, i_end = pos + (2*bca->indel_win_size < max_rd_len
?2*bca->indel_win_size : max_rd_len);
for (i=pos; i<i_end && ref[i]; i++)
nN += ref[i] == 'N';
if ( nN*2>(i-pos) ) {
free(aux);
return NULL;
}
// Finally fill out the types[] array detailing the size of insertion
// or deletion.
types = (int*)calloc(n_types, sizeof(int));
if (!types) {
free(aux);
return NULL;
}
t = 0;
types[t++] = aux[0] - MINUS_CONST;
for (i = 1; i < m; ++i)
if (aux[i] != aux[i-1])
types[t++] = aux[i] - MINUS_CONST;
free(aux);
// Find reference type; types[?] == 0)
for (t = 0; t < n_types; ++t)
if (types[t] == 0) break;
*ref_type_r = t;
*n_types_r = n_types;
*max_rd_len_r = max_rd_len;
*N_r = N;
return types;
}
// Part of bcf_call_gap_prep.
//
// Construct per-sample consensus.
//
// Returns an array of consensus seqs,
// or NULL on failure.
static char **bcf_cgp_ref_sample(int n, int *n_plp, bam_pileup1_t **plp,
int pos, bcf_callaux_t *bca, const char *ref,
int left, int right) {
int i, k, s, L = right - left + 1, max_i, max2_i;
char **ref_sample; // returned
uint32_t *cns = NULL, max, max2;
char *ref0 = NULL, *r;
ref_sample = (char**) calloc(n, sizeof(char*));
cns = (uint32_t*) calloc(L, 4);
ref0 = (char*) calloc(L, 1);
if (!ref_sample || !cns || !ref0) {
n = 0;
goto err;
}
// Convert ref ASCII to 0-15.
for (i = 0; i < right - left; ++i)
ref0[i] = seq_nt16_table[(int)ref[i+left]];
// NB: one consensus per sample 'n', not per indel type.
// FIXME: consider fixing this. We should compute alignments vs
// types, not vs samples? Or types/sample combined?
for (s = 0; s < n; ++s) {
r = ref_sample[s] = (char*) calloc(L, 1);
if (!r) {
n = s-1;
goto err;
}
memset(cns, 0, sizeof(int) * L);
// collect ref and non-ref counts in cns
for (i = 0; i < n_plp[s]; ++i) {
bam_pileup1_t *p = plp[s] + i;
bam1_t *b = p->b;
uint32_t *cigar = bam_get_cigar(b);
uint8_t *seq = bam_get_seq(b);
int x = b->core.pos, y = 0;
// TODO: pileup exposes pileup_ind, but we also need e.g.
// pileup_len to know how much of the current CIGAR op-len
// we've used (or have remaining). If we had that, we
// could start at p->qpos without having to scan through
// the entire CIGAR string until we find it.
//
// Without it about all we could do is have a side channel
// to cache the last known coords. Messy, so punt for now.
// This is no longer the bottle neck until we get to 1000s of
// CIGAR ops.
for (k = 0; k < b->core.n_cigar; ++k) {
int op = cigar[k]&0xf;
int j, l = cigar[k]>>4;
if (op == BAM_CMATCH || op == BAM_CEQUAL || op == BAM_CDIFF) {
if (x + l >= left) {
j = left - x > 0 ? left - x : 0;
int j_end = right - x < l ? right - x : l;
for (; j < j_end; j++)
// Append to cns. Note this is ref coords,
// so insertions aren't in cns and deletions
// will have lower coverage.
// FIXME: want true consensus (with ins) per
// type, so we can independently compare each
// seq to each consensus and see which it
// matches best, so we get proper GT analysis.
cns[x+j-left] +=
(bam_seqi(seq, y+j) == ref0[x+j-left])
? 1 // REF
: (1<<16); // ALT
}
x += l; y += l;
} else if (op == BAM_CDEL || op == BAM_CREF_SKIP) {
x += l;
} else if (op == BAM_CINS || op == BAM_CSOFT_CLIP) {
y += l;
}
if (x > right)
break;
}
}
// Determine a sample specific reference.
for (i = 0; i < right - left; ++i)
r[i] = ref0[i];
// Find deepest and 2nd deepest ALT region (max & max2).
max = max2 = 0; max_i = max2_i = -1;
for (i = 0; i < right - left; ++i) {
if (cns[i]>>16 >= max>>16)
max2 = max, max2_i = max_i, max = cns[i], max_i = i;
else if (cns[i]>>16 >= max2>>16)
max2 = cns[i], max2_i = i;
}
// Masks mismatches present in at least 70% of the reads with 'N'.
// This code is nREF/(nREF+n_ALT) >= 70% for deepest region.
// The effect is that at least 30% of bases differing to REF will
// use "N" in consensus, so we don't penalise ALT or REF when
// aligning against it. (A poor man IUPAC code)
//
// Why is it only done in two loci at most?
if ((double)(max&0xffff) / ((max&0xffff) + (max>>16)) >= 0.7)
max_i = -1;
if ((double)(max2&0xffff) / ((max2&0xffff) + (max2>>16)) >= 0.7)
max2_i = -1;
if (max_i >= 0) r[max_i] = 15;
if (max2_i >= 0) r[max2_i] = 15;
//for (i = 0; i < right - left; ++i)
// fputc("=ACMGRSVTWYHKDBN"[(int)r[i]], bcftools_stderr);
//fputc('\n', bcftools_stderr);
}
free(ref0);
free(cns);
return ref_sample;
err:
free(ref0);
free(cns);
if (ref_sample) {
for (s = 0; s < n; s++)
free(ref_sample[s]);
free(ref_sample);
}
return NULL;
}
// The length of the homopolymer run around the current position
static int bcf_cgp_l_run(const char *ref, int pos) {
int i, l_run;
int c = seq_nt16_table[(int)ref[pos + 1]];
if (c == 15) {
l_run = 1;
} else {
for (i = pos + 2; ref[i]; ++i)
if (seq_nt16_table[(int)ref[i]] != c) break;
l_run = i;
for (i = pos; i >= 0; --i)
if (seq_nt16_table[(int)ref[i]] != c) break;
l_run -= i + 1;
}
return l_run;
}
// Compute the consensus for this sample 's', minus indels which
// get added later.
static char *bcf_cgp_calc_cons(int n, int *n_plp, bam_pileup1_t **plp,
int pos, int *types, int n_types,
int max_ins, int s) {
int i, j, t, k;
int *inscns_aux = (int*)calloc(5 * n_types * max_ins, sizeof(int));
if (!inscns_aux)
return NULL;
// Count the number of occurrences of each base at each position for
// each type of insertion.
for (t = 0; t < n_types; ++t) {
if (types[t] > 0) {
for (s = 0; s < n; ++s) {
for (i = 0; i < n_plp[s]; ++i) {
bam_pileup1_t *p = plp[s] + i;
if (p->indel == types[t]) {
uint8_t *seq = bam_get_seq(p->b);
for (k = 1; k <= p->indel; ++k) {
int c = seq_nt16_int[bam_seqi(seq, p->qpos + k)];
assert(c<5);
++inscns_aux[(t*max_ins+(k-1))*5 + c];
}
}
}
}
}
}
// Use the majority rule to construct the consensus
char *inscns = (char *)calloc(n_types * max_ins, 1);
for (t = 0; t < n_types; ++t) {
for (j = 0; j < types[t]; ++j) {
int max = 0, max_k = -1, *ia = &inscns_aux[(t*max_ins+j)*5];
for (k = 0; k < 5; ++k)
if (ia[k] > max)
max = ia[k], max_k = k;
inscns[t*max_ins + j] = max ? max_k : 4;
if (max_k == 4) {
// discard insertions which contain N's
types[t] = 0;
break;
}
}
}
free(inscns_aux);
return inscns;
}
#ifndef MIN
# define MIN(a,b) ((a)<(b)?(a):(b))
#endif
// Part of bcf_call_gap_prep.
//
// Realign using BAQ to get an alignment score of a single read vs
// a haplotype consensus.
//
// Fills out score
// Returns 0 on success,
// <0 on error
static int bcf_cgp_align_score(bam_pileup1_t *p, bcf_callaux_t *bca,
int type, uint8_t *ref2, uint8_t *query,
int r_start, int r_end, int long_read,
int tbeg, int tend,
int left, int right,
int qbeg, int qend,
int qpos, int max_deletion,
int *score) {
// Illumina
probaln_par_t apf = { 1e-4, 1e-2, 10 };
// Parameters that work better on PacBio CCS 15k.
// We should consider querying the header and RG PU field.
// See also htslib/realn.c:sam_prob_realn()
if (long_read) {
apf.d = 1e-3;
apf.e = 1e-1;
}
type = abs(type);
apf.bw = type + 3;
int l, sc;
const uint8_t *qual = bam_get_qual(p->b), *bq;
uint8_t *qq;
// Get segment of quality, either ZQ tag or if absent QUAL.
if (!(qq = (uint8_t*) calloc(qend - qbeg, 1)))
return -1;
bq = (uint8_t*)bam_aux_get(p->b, "ZQ");
if (bq) ++bq; // skip type
for (l = qbeg; l < qend; ++l) {
int qval = bq? qual[l] + (bq[l] - 64) : qual[l];
if (qval > 30)
qval = 30;
if (qval < 7)
qval = 7;
qq[l - qbeg] = qval;
}
// The bottom 8 bits are length-normalised score while
// the top bits are unnormalised.
sc = probaln_glocal(ref2 + tbeg - left, tend - tbeg + type,
query, qend - qbeg, qq, &apf, 0, 0);
if (sc < 0) {
*score = 0xffffff;
free(qq);
return 0;
}
// used for adjusting indelQ below
l = (int)(100. * sc / (qend - qbeg) + .499) * bca->indel_bias;
*score = sc<<8 | MIN(255, l);
rep_ele *reps, *elt, *tmp;
uint8_t *seg = ref2 + tbeg - left;
int seg_len = tend - tbeg + type;
// Note: although seg moves (tbeg varies), ref2 is reused many times
// so we could factor out some find_STR calls. However it's not the
// bottleneck for now.
// FIXME: need to make this work on IUPAC.
reps = find_STR((char *)seg, seg_len, 0);
int iscore = 0;
// Identify STRs in ref covering the indel up to
// (or close to) the end of the sequence.
// Those having an indel and right at the sequence
// end do not confirm the total length of indel
// size. Specifically a *lack* of indel at the
// end, where we know indels occur in other
// sequences, is a possible reference bias.
//
// This is emphasised further if the sequence ends with
// soft clipping.
DL_FOREACH_SAFE(reps, elt, tmp) {
if (elt->start <= qpos && elt->end >= qpos) {
iscore += (elt->end-elt->start) / elt->rep_len; // c
if (elt->start+tbeg <= r_start ||
elt->end+tbeg >= r_end)
iscore += 2*(elt->end-elt->start);
}
DL_DELETE(reps, elt);
free(elt);
}
// Apply STR score to existing indelQ
l = (*score&0xff)*.8 + iscore*2;
*score = (*score & ~0xff) | MIN(255, l);
free(qq);
return 0;
}
// Part of bcf_call_gap_prep.
//
// Returns n_alt on success
// -1 on failure
static int bcf_cgp_compute_indelQ(int n, int *n_plp, bam_pileup1_t **plp,
bcf_callaux_t *bca, char *inscns,
int l_run, int max_ins,
int ref_type, int *types, int n_types,
int *score) {
// FIXME: n_types has a maximum; no need to alloc - use a #define?
int sc[MAX_TYPES], sumq[MAX_TYPES], s, i, j, t, K, n_alt, tmp;
memset(sumq, 0, n_types * sizeof(int));
for (s = K = 0; s < n; ++s) {
for (i = 0; i < n_plp[s]; ++i, ++K) {
bam_pileup1_t *p = plp[s] + i;
int *sct = &score[K*n_types], seqQ, indelQ;
for (t = 0; t < n_types; ++t) sc[t] = sct[t]<<6 | t;
for (t = 1; t < n_types; ++t) // insertion sort
for (j = t; j > 0 && sc[j] < sc[j-1]; --j)
tmp = sc[j], sc[j] = sc[j-1], sc[j-1] = tmp;
/* errmod_cal() assumes that if the call is wrong, the
* likelihoods of other events are equal. This is about
* right for substitutions, but is not desired for
* indels. To reuse errmod_cal(), I have to make
* compromise for multi-allelic indels.
*/
if ((sc[0]&0x3f) == ref_type) {
indelQ = (sc[1]>>14) - (sc[0]>>14);
seqQ = est_seqQ(bca, types[sc[1]&0x3f], l_run);
} else {
for (t = 0; t < n_types; ++t) // look for the reference type
if ((sc[t]&0x3f) == ref_type) break;
indelQ = (sc[t]>>14) - (sc[0]>>14);
seqQ = est_seqQ(bca, types[sc[0]&0x3f], l_run);
}
tmp = sc[0]>>6 & 0xff;
// reduce indelQ
indelQ = tmp > 111? 0 : (int)((1. - tmp/111.) * indelQ + .499);
// Doesn't really help accuracy, but permits -h to take
// affect still.
if (indelQ > seqQ) indelQ = seqQ;
if (indelQ > 255) indelQ = 255;
if (seqQ > 255) seqQ = 255;
p->aux = (sc[0]&0x3f)<<16 | seqQ<<8 | indelQ; // use 22 bits in total
sumq[sc[0]&0x3f] += indelQ < seqQ? indelQ : seqQ;
// fprintf(bcftools_stderr, "pos=%d read=%d:%d name=%s call=%d indelQ=%d seqQ=%d\n", pos, s, i, bam1_qname(p->b), types[sc[0]&0x3f], indelQ, seqQ);
}
}
// determine bca->indel_types[] and bca->inscns
bca->maxins = max_ins;
bca->inscns = (char*) realloc(bca->inscns, bca->maxins * 4);
if (bca->maxins && !bca->inscns)
return -1;
for (t = 0; t < n_types; ++t)
sumq[t] = sumq[t]<<6 | t;
for (t = 1; t < n_types; ++t) // insertion sort
for (j = t; j > 0 && sumq[j] > sumq[j-1]; --j)
tmp = sumq[j], sumq[j] = sumq[j-1], sumq[j-1] = tmp;
for (t = 0; t < n_types; ++t) // look for the reference type
if ((sumq[t]&0x3f) == ref_type) break;
if (t) { // then move the reference type to the first
tmp = sumq[t];
for (; t > 0; --t) sumq[t] = sumq[t-1];
sumq[0] = tmp;
}
for (t = 0; t < 4; ++t) bca->indel_types[t] = B2B_INDEL_NULL;
for (t = 0; t < 4 && t < n_types; ++t) {
bca->indel_types[t] = types[sumq[t]&0x3f];
if (bca->maxins)
memcpy(&bca->inscns[t * bca->maxins],
&inscns[(sumq[t]&0x3f) * max_ins], bca->maxins);
}
// update p->aux
for (s = n_alt = 0; s < n; ++s) {
for (i = 0; i < n_plp[s]; ++i) {
bam_pileup1_t *p = plp[s] + i;
int x = types[p->aux>>16&0x3f];
for (j = 0; j < 4; ++j)
if (x == bca->indel_types[j]) break;
p->aux = j<<16 | (j == 4? 0 : (p->aux&0xffff));
if ((p->aux>>16&0x3f) > 0) ++n_alt;
//fprintf(bcftools_stderr, "X pos=%d read=%d:%d name=%s call=%d type=%d seqQ=%d indelQ=%d\n", pos, s, i, bam_get_qname(p->b), (p->aux>>16)&0x3f, bca->indel_types[(p->aux>>16)&0x3f], (p->aux>>8)&0xff, p->aux&0xff);
}
}
return n_alt;
}
/*
FIXME: with high number of samples, do we handle IMF correctly? Is it
fraction of indels across entire data set, or just fraction for this
specific sample? Needs to check bca->per_sample_flt (--per-sample-mF) opt.
*/
/*
notes:
- n .. number of samples
- the routine sets bam_pileup1_t.aux of each read as follows:
- 6: unused
- 6: the call; index to bcf_callaux_t.indel_types .. (aux>>16)&0x3f
- 8: estimated sequence quality .. (aux>>8)&0xff
- 8: indel quality .. aux&0xff
*/
int bcf_call_gap_prep(int n, int *n_plp, bam_pileup1_t **plp, int pos,
bcf_callaux_t *bca, const char *ref)
{
if (ref == 0 || bca == 0) return -1;
int i, s, j, k, t, n_types, *types, max_rd_len, left, right, max_ins;
int *score, max_ref2;
int N, K, l_run, ref_type, n_alt;
char *inscns = 0, *ref2, *query, **ref_sample;
// determine if there is a gap
for (s = N = 0; s < n; ++s) {
for (i = 0; i < n_plp[s]; ++i)
if (plp[s][i].indel != 0) break;
if (i < n_plp[s]) break;
}
if (s == n)
// there is no indel at this position.
return -1;
// find out how many types of indels are present
types = bcf_cgp_find_types(n, n_plp, plp, pos, bca, ref,
&max_rd_len, &n_types, &ref_type, &N);
if (!types)
return -1;
// calculate left and right boundary
left = pos > bca->indel_win_size ? pos - bca->indel_win_size : 0;
right = pos + bca->indel_win_size;
if (types[0] < 0) right -= types[0];
// in case the alignments stand out the reference
for (i = pos; i < right; ++i)
if (ref[i] == 0) break;
right = i;
/* The following call fixes a long-existing flaw in the INDEL
* calling model: the interference of nearby SNPs. However, it also
* reduces the power because sometimes, substitutions caused by
* indels are not distinguishable from true mutations. Multiple
* sequence realignment helps to increase the power.
*
* Masks mismatches present in at least 70% of the reads with 'N'.
*/
ref_sample = bcf_cgp_ref_sample(n, n_plp, plp, pos, bca, ref, left, right);
// The length of the homopolymer run around the current position
l_run = bcf_cgp_l_run(ref, pos);
// construct the consensus sequence (minus indels, which are added later)
max_ins = types[n_types - 1]; // max_ins is at least 0
if (max_ins > 0) {
inscns = bcf_cgp_calc_cons(n, n_plp, plp, pos,
types, n_types, max_ins, s);
if (!inscns)
return -1;
}
// compute the likelihood given each type of indel for each read
max_ref2 = right - left + 2 + 2 * (max_ins > -types[0]? max_ins : -types[0]);
ref2 = (char*) calloc(max_ref2, 1);
query = (char*) calloc(right - left + max_rd_len + max_ins + 2, 1);
score = (int*) calloc(N * n_types, sizeof(int));
bca->indelreg = 0;
double nqual_over_60 = bca->nqual / 60.0;
for (t = 0; t < n_types; ++t) {
int l, ir;
// compute indelreg
if (types[t] == 0)
ir = 0;
else if (types[t] > 0)
ir = est_indelreg(pos, ref, types[t], &inscns[t*max_ins]);
else
ir = est_indelreg(pos, ref, -types[t], 0);
if (ir > bca->indelreg)
bca->indelreg = ir;
// Identify max deletion length
int max_deletion = 0;
for (s = 0; s < n; ++s) {
for (i = 0; i < n_plp[s]; ++i, ++K) {
bam_pileup1_t *p = plp[s] + i;
if (max_deletion < -p->indel)
max_deletion = -p->indel;
}
}
// Realignment score, computed via BAQ
for (s = K = 0; s < n; ++s) {
// Construct ref2 from ref_sample, inscns and indels.
// This is now the true sample consensus (possibly prepended
// and appended with reference if sample data doesn't span
// the full length).
for (k = 0, j = left; j <= pos; ++j)
ref2[k++] = seq_nt16_int[(int)ref_sample[s][j-left]];
if (types[t] <= 0)
j += -types[t];
else
for (l = 0; l < types[t]; ++l)
ref2[k++] = inscns[t*max_ins + l];
for (; j < right && ref[j]; ++j)
ref2[k++] = seq_nt16_int[(int)ref_sample[s][j-left]];
for (; k < max_ref2; ++k)
ref2[k] = 4;
if (right > j)
right = j;
// align each read to ref2
for (i = 0; i < n_plp[s]; ++i, ++K) {
bam_pileup1_t *p = plp[s] + i;
// Some basic ref vs alt stats.
int imq = p->b->core.qual > 59 ? 59 : p->b->core.qual;
imq *= nqual_over_60;
int sc_len, slen, epos, sc_end;
// Only need to gather stats on one type, as it's
// identical calculation for all the subsequent ones
// and we're sharing the same stats array
if (t == 0) {
// Gather stats for INFO field to aid filtering.
// mq and sc_len not very helpful for filtering, but could
// help in assigning a better QUAL value.
//
// Pos is slightly useful.
// Base qual can be useful, but need qual prior to BAQ?
// May need to cache orig quals in aux tag so we can fetch
// them even after mpileup step.
get_pos(bca, p, &sc_len, &slen, &epos, &sc_end);
assert(imq >= 0 && imq < bca->nqual);
assert(epos >= 0 && epos < bca->npos);
assert(sc_len >= 0 && sc_len < 100);
if (p->indel) {
bca->ialt_mq[imq]++;
bca->ialt_scl[sc_len]++;
bca->ialt_pos[epos]++;
} else {
bca->iref_mq[imq]++;
bca->iref_scl[sc_len]++;
bca->iref_pos[epos]++;
}
}
int qbeg, qpos, qend, tbeg, tend, kk;
uint8_t *seq = bam_get_seq(p->b);
uint32_t *cigar = bam_get_cigar(p->b);
if (p->b->core.flag & BAM_FUNMAP) continue;
// FIXME: the following loop should be better moved outside;
// nonetheless, realignment should be much slower anyway.
for (kk = 0; kk < p->b->core.n_cigar; ++kk)
if ((cigar[kk]&BAM_CIGAR_MASK) == BAM_CREF_SKIP)
break;
if (kk < p->b->core.n_cigar)
continue;
// determine the start and end of sequences for alignment
// FIXME: loops over CIGAR multiple times
int left2 = left, right2 = right;
if (p->b->core.l_qseq > 1000) {
// long read data needs less context. It also tends to
// have many more candidate indels to investigate so
// speed here matters more.
if (pos - left >= bca->indel_win_size)
left2 += bca->indel_win_size/2;
if (right-pos >= bca->indel_win_size)
right2 -= bca->indel_win_size/2;
}
int r_start = p->b->core.pos;
int r_end = bam_cigar2rlen(p->b->core.n_cigar,
bam_get_cigar(p->b))
-1 + r_start;
qbeg = tpos2qpos(&p->b->core, bam_get_cigar(p->b), left2,
0, &tbeg);
qpos = tpos2qpos(&p->b->core, bam_get_cigar(p->b), pos,
0, &tend) - qbeg;
qend = tpos2qpos(&p->b->core, bam_get_cigar(p->b), right2,
1, &tend);
if (types[t] < 0) {
int l = -types[t];
tbeg = tbeg - l > left? tbeg - l : left;
}
// write the query sequence
for (l = qbeg; l < qend; ++l)
query[l - qbeg] = seq_nt16_int[bam_seqi(seq, l)];
// A fudge for now. Consider checking SAM header for
// RG platform field.
int long_read = p->b->core.l_qseq > 1000;
// do realignment; this is the bottleneck
if (tend > tbeg) {
if (bcf_cgp_align_score(p, bca, types[t],
(uint8_t *)ref2 + left2-left,
(uint8_t *)query,
r_start, r_end, long_read,
tbeg, tend, left2, right2,
qbeg, qend, qpos, max_deletion,
&score[K*n_types + t]) < 0) {
score[K*n_types + t] = 0xffffff;
return -1;
}
} else {
// place holder large cost for reads that cover the
// region entirely within a deletion (thus tend < tbeg).
score[K*n_types + t] = 0xffffff;
}
#if 0
for (l = 0; l < tend - tbeg + abs(types[t]); ++l)
fputc("ACGTN"[(int)ref2[tbeg-left+l]], bcftools_stderr);
fputc('\n', bcftools_stderr);
for (l = 0; l < qend - qbeg; ++l)
fputc("ACGTN"[(int)query[l]], bcftools_stderr);
fputc('\n', bcftools_stderr);
fprintf(bcftools_stderr, "pos=%d type=%d read=%d:%d name=%s "
"qbeg=%d tbeg=%d score=%d\n",
pos, types[t], s, i, bam_get_qname(p->b),
qbeg, tbeg, sc);
#endif
}
}
}
// compute indelQ
n_alt = bcf_cgp_compute_indelQ(n, n_plp, plp, bca, inscns, l_run, max_ins,
ref_type, types, n_types, score);
// free
free(ref2);
free(query);
free(score);
for (i = 0; i < n; ++i)
free(ref_sample[i]);
free(ref_sample);
free(types); free(inscns);
return n_alt > 0? 0 : -1;
}
|