1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
|
/* bam2bcf_iaux.c -- modified indel caller
Copyright (C) 2022 Genome Research Ltd.
Author: pd3@sanger, jkb
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE
*/
#include <assert.h>
#include <ctype.h>
#include <string.h>
#include <math.h>
#include <htslib/hts.h>
#include <htslib/sam.h>
#include <htslib/khash_str2int.h>
#include "bcftools.h"
#include "bam2bcf.h"
#include "read_consensus.h"
#include "cigar_state.h"
#include <htslib/ksort.h>
KSORT_INIT_STATIC_GENERIC(uint32_t)
#ifndef DEBUG_ALN
#define DEBUG_ALN 0
#endif
#define MAX_TYPES 64
typedef struct
{
int pos; // current position
char *chr; // current chromosome
int nsmpl; // number of samples
int *nplp; // per-sample number of reads
bam_pileup1_t **plp; // per-sample reads
bcf_callaux_t *bca; // auxiliary bam2bcf structure
const char *ref; // reference genome (ASCII)
uint32_t *uitmp; // temporary unsigned int array
char *inscns; // insertions consensus "ACGTN"[itype*max_ins_len+i]
int muitmp, minscns; // size of uitmp, inscns
int iref_type, ntypes, types[MAX_TYPES]; // indel types
int max_ins_len; // largest insertion
int left, right; // consensus sequence boundaries, 0-based fa ref coordinates
read_cns_t *rcns; // read consensus
cns_seq_t *cns_seq; // array of consensus sequences
int *cns_pos; // array of relative pos indexes within cns_seq sequences
uint8_t *ref_seq, *qry_seq; // reference and query sequence to align
int nref_seq, nqry_seq; // the allocated size of ref_seq and qry_seq
uint8_t *qual;
int nqual;
int *read_scores, // read scores for each indel type [ntypes*iread+itype]
mread_scores,
ref_qual[MAX_TYPES], // refseq quality at pos for each indel type in the context of homopolymer runs
sum_qual[MAX_TYPES]; // qual contributions to each indel type from all reads
}
indel_aux_t;
#if DEBUG_ALN
static void debug_print_types(indel_aux_t *iaux)
{
int i,j;
fprintf(stderr,"types at %s:%d ntypes=%d... ",iaux->chr,iaux->pos+1,iaux->ntypes);
for (i=0; i<iaux->ntypes; i++)
{
fprintf(stderr," type%d=",i);
if ( iaux->types[i]<=0 )
{
if ( i==iaux->iref_type ) fprintf(stderr,"%d(ref)",iaux->types[i]);
else fprintf(stderr,"%d",iaux->types[i]);
continue;
}
char *cns = &iaux->inscns[i*iaux->max_ins_len];
for (j=0; j<iaux->types[i]; j++) fprintf(stderr,"%c","ACGTN"[(int)cns[j]]);
}
fprintf(stderr,"\n");
}
#else
#define debug_print_types(iaux)
#endif
void bcf_iaux_destroy(bcf_callaux_t *bca)
{
if ( !bca->iaux ) return;
indel_aux_t *iaux = (indel_aux_t*)bca->iaux;
free(iaux->uitmp);
free(iaux->inscns);
free(iaux->ref_seq);
free(iaux->qry_seq);
free(iaux->qual);
free(iaux->read_scores);
rcns_destroy(iaux->rcns);
free(iaux);
}
static void iaux_init_sequence_context(indel_aux_t *iaux)
{
// Calculate left and right boundary. The array types is sorted in ascending order, the first
// element is the largest deletion (if a deletion present)
iaux->left = iaux->pos > iaux->bca->indel_win_size ? iaux->pos - iaux->bca->indel_win_size : 0;
iaux->right = iaux->pos + iaux->bca->indel_win_size;
if ( iaux->types[0] < 0 ) iaux->right -= iaux->types[0]; // extend by the largest deletion length
// In case the alignments stand out the reference
int i;
for (i=iaux->pos; i<iaux->right; i++)
if ( !iaux->ref[i] ) break;
iaux->right = i;
// Sequence quality in the context of homopolymers for each indel type
int l_run = bcf_cgp_l_run(iaux->ref, iaux->pos); // The length of the homopolymer run around the current position
for (i=0; i<iaux->ntypes; i++)
{
int l = iaux->types[i];
// This is the original est_seqQ() code. FIXME: check if the inserted sequence is consistent with the homopolymer run
int q = iaux->bca->openQ + iaux->bca->extQ * (abs(l) - 1);
int qh = l_run >= 3? (int)(iaux->bca->tandemQ * (double)abs(l) / l_run + .499) : 1000;
if ( q > qh ) q = qh;
iaux->ref_qual[i] = q < 255 ? q : 255;
}
// Determine the indel region, this makes the difference between e.g. T>TA vs TA>TAA
iaux->bca->indelreg = 0;
for (i=0; i<iaux->ntypes; i++)
{
if ( !iaux->types[i] ) continue;
int ireg;
if ( iaux->types[i] > 0 )
ireg = est_indelreg(iaux->pos, iaux->ref, iaux->types[i], &iaux->inscns[i*iaux->max_ins_len]);
else
ireg = est_indelreg(iaux->pos, iaux->ref, -iaux->types[i], 0);
if ( ireg > iaux->bca->indelreg ) iaux->bca->indelreg = ireg;
}
}
static int iaux_init_scores(indel_aux_t *iaux, int ismpl)
{
int n = iaux->nplp[ismpl] * iaux->ntypes;
if ( iaux->mread_scores < n )
{
int *tmp = (int*) realloc(iaux->read_scores,n*sizeof(int));
if ( !tmp ) return -1;
iaux->mread_scores = n;
iaux->read_scores = tmp;
}
memset(iaux->read_scores,0,n);
return 0;
}
static int _have_indel_reads(indel_aux_t *iaux)
{
int i,j;
for (i=0; i<iaux->nsmpl; i++)
{
for (j=0; j<iaux->nplp[i]; j++)
if ( iaux->plp[i][j].indel ) return 1;
}
return 0;
}
// For insertions only their sizes were collected so far. Now go through the reads and
// create consensus sequence for each insert, therefore note that there can be only one
// sequence per insertion length
static int iaux_init_ins_types(indel_aux_t *iaux)
{
if ( !iaux->max_ins_len ) return 0;
uint32_t *aux;
int naux = 5 * iaux->ntypes * iaux->max_ins_len;
if ( iaux->muitmp < naux )
{
aux = (uint32_t*) realloc(iaux->uitmp,naux*sizeof(*aux));
if ( !aux ) return -1;
iaux->uitmp = aux;
iaux->muitmp = naux;
}
else aux = iaux->uitmp;
memset(aux,0,naux*sizeof(*aux));
// count the number of occurrences of each base at each position for each type of insertion
int t,s,i,j;
for (t=0; t<iaux->ntypes; t++)
{
if ( iaux->types[t] <= 0) continue;
for (s=0; s<iaux->nsmpl; s++)
{
for (i=0; i<iaux->nplp[s]; i++)
{
bam_pileup1_t *plp = iaux->plp[s] + i;
if ( plp->indel != iaux->types[t] ) continue;
uint8_t *seq = bam_get_seq(plp->b);
for (j=0; j<plp->indel; j++)
{
int c = seq_nt16_int[bam_seqi(seq, plp->qpos+j+1)];
assert(c<5);
aux[5*(t*iaux->max_ins_len+j) + c]++;
}
}
}
}
char *cns;
int ncns = iaux->ntypes * iaux->max_ins_len;
if ( iaux->minscns < ncns )
{
cns = (char*) realloc(iaux->inscns,naux*sizeof(*aux));
if ( !cns ) return -1;
iaux->inscns = cns;
iaux->minscns = ncns;
}
else cns = iaux->inscns;
memset(aux,0,ncns*sizeof(*cns));
// use the majority rule to construct the consensus
for (t=0; t<iaux->ntypes; t++)
{
for (i=0; i<iaux->types[t]; i++) // this naturally includes only insertions
{
uint32_t *tmp = &aux[5*(t*iaux->max_ins_len+i)], max = tmp[0], max_j = 0;
for (j=1; j<5; j++)
if ( max < tmp[j] ) max = tmp[j], max_j = j;
cns[t*iaux->max_ins_len + i] = max ? max_j : 4;
if ( max_j==4 ) { iaux->types[t] = 0; break; } // discard insertions which contain N's
}
}
return 0;
}
#define MINUS_CONST 0x10000000
static int iaux_init_types(indel_aux_t *iaux)
{
if ( !_have_indel_reads(iaux) ) return 0;
iaux->bca->max_support = 0;
memset(iaux->sum_qual,0,MAX_TYPES*sizeof(*iaux->sum_qual));
int i,j, nreads = 0;
for (i=0; i<iaux->nsmpl; i++) nreads += iaux->nplp[i];
uint32_t *aux;
if ( iaux->muitmp < nreads+1 )
{
aux = (uint32_t*) realloc(iaux->uitmp,(nreads+1)*sizeof(*iaux->uitmp));
if ( !aux ) return -1;
iaux->uitmp = aux;
iaux->muitmp = nreads+1;
}
else aux = iaux->uitmp;
memset(aux,0,(nreads+1)*sizeof(*aux));
int naux = 0, indel_support_ok = 0, n_alt = 0, n_tot = 0;
int max_rd_len = 0; // max sequence length that includes ref+del bases
// Fill out aux[] array with all the non-zero indel sizes. This is an unsorted list with as many
// entries as there are reads
aux[naux++] = MINUS_CONST; // zero indel is always a type (REF)
for (i=0; i<iaux->nsmpl; i++)
{
int nalt = naux, ntot = 0; // per sample values
for (j=0; j<iaux->nplp[i]; j++)
{
const bam_pileup1_t *plp = iaux->plp[i] + j;
ntot++;
if ( plp->indel ) aux[naux++] = MINUS_CONST + plp->indel;
if ( !PLP_QLEN(&plp->cd) ) PLP_QLEN(&plp->cd) = bam_cigar2qlen(plp->b->core.n_cigar, bam_get_cigar(plp->b));
if ( PLP_QLEN(&plp->cd) > max_rd_len ) max_rd_len = PLP_QLEN(&plp->cd);
}
nalt = naux - nalt;
if ( iaux->bca->per_sample_flt )
{
double frac = (double)nalt/naux;
if ( nalt >= iaux->bca->min_support && frac >= iaux->bca->min_frac ) indel_support_ok = 1;
if ( nalt > iaux->bca->max_support && frac > 0 ) iaux->bca->max_support = nalt, iaux->bca->max_frac = frac;
}
else
{
n_alt += nalt;
n_tot += ntot;
}
}
// Check if the minimum required number of indel reads has been observed
if ( !iaux->bca->per_sample_flt && n_alt >= iaux->bca->min_support && (double)n_alt/n_tot >= iaux->bca->min_frac ) indel_support_ok = 1;
if ( naux==1 || !indel_support_ok ) return 0;
// To prevent long stretches of N's to be mistaken for indels (sometimes thousands of bases), check the number of N's in the
// sequence and skip places where half or more reference bases in the sequence that follows pos are Ns
int nN = 0, i_end = iaux->pos + (iaux->bca->indel_win_size < max_rd_len ? iaux->bca->indel_win_size : max_rd_len);
for (i=iaux->pos; i<i_end && iaux->ref[i]; i++)
if ( iaux->ref[i] == 'N' ) nN++;
if ( 2*nN > i - iaux->pos ) return -1;
// Sort aux[] and dedup indel types
int n_types = 1;
ks_introsort(uint32_t, naux, aux);
for (i=1; i<naux; i++)
if ( aux[i] != aux[i-1] ) n_types++;
if ( n_types >= MAX_TYPES )
{
static int warned = 0;
if ( !warned )
{
fprintf(stderr, "Warning: excessive number of INDEL alleles at %s:%d, skipping. (This warning is printed only once)\n",iaux->chr,iaux->pos+1);
warned = 1;
}
return -1;
}
// Fill out the types[] array detailing the size of insertion or deletion.
iaux->ntypes = 0;
iaux->max_ins_len = 0;
for (i=0; i<naux; i++)
{
int isize = (int32_t)(aux[i] - MINUS_CONST);
for (j=i+1; j<naux; j++)
if ( aux[j] != aux[i] ) break;
// Only include the REF type and types with sufficient support. Note that the position
// already passed, this is just to reduce the number of indel types. The check is
// permissive, the thresholds min_support and min_frac are not enforced in per-sample mode
int is_ok = 0;
if ( !isize )
{
is_ok = 1;
iaux->iref_type = iaux->ntypes;
}
else
{
if ( j-i >= iaux->bca->min_support ) is_ok = 1;
// What is the best way to handle the -pmF options:
// - consider only sites where a single indel type passes the -mF threshold, as opposed to all indel types cumulatively
// - once a site passes, include all indel types in the evaluation, as opposed to considering only the strong candidates
// In this implementation sites are selected by counting reads from all indel types cumulatively and all indel types
// are considered.
// Uncomment the following condition to consider only strong indel candidates once the site has been selected
// if ( !iaux->bca->per_sample_flt && (double)(j-i) / n_tot < iaux->bca->min_frac ) is_ok = 0;
}
if ( is_ok )
{
iaux->types[iaux->ntypes++] = isize;
if ( isize > 0 && isize > iaux->max_ins_len ) iaux->max_ins_len = isize;
}
i = j-1;
}
if ( iaux->ntypes <= 1 ) return 0;
// Init insertion types, including their sequence
if ( iaux_init_ins_types(iaux) < 0 ) return -1;
iaux_init_sequence_context(iaux);
return iaux->ntypes;
}
#undef MINUS_CONST
static int iaux_set_consensus(indel_aux_t *iaux, int ismpl)
{
if ( !iaux->rcns )
iaux->rcns = rcns_init(iaux->pos, iaux->left, iaux->right);
else
rcns_reset(iaux->rcns, iaux->pos, iaux->left, iaux->right);
rcns_set_reads(iaux->rcns, iaux->plp[ismpl], iaux->nplp[ismpl]);
iaux->cns_seq = rcns_get_consensus(iaux->rcns, iaux->ref + iaux->left);
// todo:
// rcns should also collect localized number of mismatches as a substitute
// for uninformative MQ. This would not affect calling but would help with
// filtering
return 0;
}
#if 0
// Finds the smallest index in the seq_pos array holding value equal to pos, or if there is no
// such value, the largest index with value smaller than pos. Starts at initial guess ioff.
// This could use a binary search but the assumption is that the initial guess is indel-size close
// to the actual coordinate.
//
// TODO: remove this function and seq_pos from cns creation as it seems unnecessary
static int find_ref_offset(hts_pos_t pos, hts_pos_t *seq_pos, int nseq_pos, int ioff)
{
if ( ioff<0 ) ioff = 0;
else if ( ioff >= nseq_pos ) ioff = nseq_pos - 1;
if ( seq_pos[ioff] < pos )
{
while ( ioff+1 < nseq_pos && seq_pos[ioff] < pos ) ioff++;
if ( seq_pos[ioff] > pos ) ioff--;
return ioff;
}
while ( ioff > 0 && seq_pos[ioff-1] >= pos ) ioff--;
return ioff;
}
#endif
static int iaux_align_read(indel_aux_t *iaux, bam1_t *bam, uint8_t *ref_seq, int nref_seq)
{
if ( bam->core.flag & BAM_FUNMAP ) return 1; // skip unmapped reads
// Trim both ref and qry to the window of interest
hts_pos_t ref_beg = iaux->left; // fa ref coordinates
hts_pos_t ref_end = iaux->right < ref_beg + nref_seq ? iaux->right : ref_beg + nref_seq - 1;
cigar_state_t cigar;
cstate_init(&cigar,bam);
int qry_off1, qry_off2, ref_off1, ref_off2;
if ( ref_beg > bam->core.pos )
{
// the read needs trimming from left
qry_off1 = cstate_seek_fwd(&cigar, &ref_beg, 1);
ref_off1 = ref_beg - iaux->left;
if ( ref_beg + (bam->core.l_qseq - qry_off1) > ref_end )
{
// the read needs trimming from right
qry_off2 = ref_end - ref_beg + qry_off1;
ref_off2 = ref_end - iaux->left;
}
else
{
// the ref template needs trimming from right
qry_off2 = bam->core.l_qseq - 1;
ref_off2 = ref_off1 + qry_off2 - qry_off1;
}
}
else
{
// the ref template needs trimming from left
qry_off1 = 0;
ref_off1 = bam->core.pos - ref_beg;
if ( bam->core.pos + bam->core.l_qseq - 1 > ref_end )
{
// the read needs trimming from right
ref_off2 = ref_end - iaux->left;
qry_off2 = ref_off2 - ref_off1;
}
else
{
// the ref template needs trimming from right
qry_off2 = bam->core.l_qseq - 1;
ref_off2 = ref_off1 + qry_off2 - qry_off1;
}
}
//fprintf(stderr,"xtrim: %s .. left,right=%d,%d rbeg,end=%d,%d qpos=%d qlen=%d qoff=%d,%d roff=%d,%d rlen=%d\n",bam_get_qname(bam),iaux->left,iaux->right,(int)ref_beg,(int)ref_end,(int)bam->core.pos,bam->core.l_qseq, qry_off1,qry_off2,ref_off1,ref_off2,nref_seq);
assert( qry_off1<=qry_off2 );
assert( qry_off1>=0 && qry_off1<bam->core.l_qseq );
assert( qry_off2>=0 && qry_off2<bam->core.l_qseq );
assert( ref_off1<=ref_off2 );
assert( ref_off1>=0 && ref_off1<nref_seq );
assert( ref_off2>=0 && ref_off2<nref_seq );
// prepare query sequence
int i, qlen = qry_off2 - qry_off1 + 1, rlen = ref_off2 - ref_off1 + 1;
if ( iaux->nqry_seq < qlen )
{
uint8_t *tmp = (uint8_t*) realloc(iaux->qry_seq, qlen);
if ( !tmp ) return -1; // critical error
iaux->qry_seq = tmp;
iaux->nqry_seq = qlen;
}
uint8_t *seq = bam_get_seq(bam);
for (i=qry_off1; i<=qry_off2; i++) iaux->qry_seq[i-qry_off1] = seq_nt16_int[bam_seqi(seq,i)];
// prepare qualities, either BQ or BAQ qualities (ZQ)
if ( iaux->nqual < qlen )
{
uint8_t *tmp = (uint8_t*) realloc(iaux->qual, qlen);
if ( !tmp ) return -1; // critical error
iaux->qual = tmp;
iaux->nqual = qlen;
}
uint8_t *qual = iaux->qual;
const uint8_t *qq = bam_get_qual(bam);
const uint8_t *bq = (uint8_t*)bam_aux_get(bam, "ZQ");
if ( bq ) bq++; // skip type
for (i=qry_off1; i<=qry_off2; i++)
{
int j = i - qry_off1;
qual[j] = bq ? qq[i] + (bq[i] - 64) : qq[i];
if ( qual[j] > 30 ) qual[j] = 30;
if ( qual[j] < 7 ) qual[j] = 7;
}
// Illumina
probaln_par_t apf = { 1e-4, 1e-2, 10 };
// align
int score = probaln_glocal(ref_seq + ref_off1, rlen, iaux->qry_seq, qlen, qual, &apf, 0, 0);
int adj_score = (int)(100. * score / qlen + .499) * iaux->bca->indel_bias;
#if DEBUG_ALN
fprintf(stderr,"aln: %d/%d\t%s\n\tref: ",score,adj_score,bam_get_qname(bam));
for (i=0; i<rlen; i++) fprintf(stderr,"%c","ACGTN"[(int)ref_seq[ref_off1 + i]]);
fprintf(stderr,"\n\tqry: ");
for (i=0; i<qlen; i++) fprintf(stderr,"%c","ACGTN"[(int)iaux->qry_seq[i]]);
fprintf(stderr,"\n\tqual: ");
for (i=0; i<qlen; i++) fprintf(stderr,"%c",(char)(qual[i]+64));
fprintf(stderr,"\n\ttrim: qry_len=%d qry_off=%d,%d ref_len=%d ref_off=%d,%d ref_beg,end=%d,%d\n",qlen,qry_off1,qry_off2,rlen,ref_off1,ref_off2,(int)ref_beg,(int)ref_end);
#endif
if ( adj_score > 255 ) adj_score = 255;
return score<<8 | adj_score;
}
// Score all reads for this sample and indel type using the up to two consensus sequence templates.
// On output sets iaux->read_scores[iread*ntypes+itype] = (raw_score<<8 | length_adjusted_score)
static int iaux_score_reads(indel_aux_t *iaux, int ismpl, int itype)
{
int i;
cns_seq_t *cns = iaux->cns_seq;
while ( cns->nseq )
{
// Resize buffers if necessary
int ref_len = cns->nseq + iaux->types[itype];
if ( iaux->nref_seq < ref_len )
{
uint8_t *ref_buf = (uint8_t*) realloc(iaux->ref_seq,sizeof(uint8_t)*ref_len);
if ( !ref_buf ) return -1;
iaux->ref_seq = ref_buf;
iaux->nref_seq = ref_len;
}
// Apply the indel and create the template ref sequence...
memcpy(iaux->ref_seq,cns->seq,(cns->ipos+1)*sizeof(*iaux->ref_seq));
if ( iaux->types[itype] < 0 ) // deletion
memcpy(iaux->ref_seq + cns->ipos + 1, cns->seq + cns->ipos + 1 - iaux->types[itype], (cns->nseq - cns->ipos - 1 + iaux->types[itype])*sizeof(*iaux->ref_seq));
else
{
char *ins = &iaux->inscns[itype*iaux->max_ins_len];
for (i=0; i<iaux->types[itype]; i++) iaux->ref_seq[cns->ipos+1+i] = ins[i];
memcpy(iaux->ref_seq + cns->ipos + 1 + iaux->types[itype], cns->seq + 1 + cns->ipos, (cns->nseq - cns->ipos - 1)*sizeof(*iaux->ref_seq));
}
#if DEBUG_ALN
fprintf(stderr,"template %d, type %d, sample %d: ",cns==iaux->cns_seq?0:1,itype,ismpl);
for (i=0; i<ref_len; i++) fprintf(stderr,"%c","ACGTN"[(int)iaux->ref_seq[i]]);
fprintf(stderr,"\n");
#endif
// Align and score reads
for (i=0; i<iaux->nplp[ismpl]; i++)
{
const bam_pileup1_t *plp = iaux->plp[ismpl] + i;
int aln_score = iaux_align_read(iaux, plp->b, iaux->ref_seq, ref_len);
int *score = &iaux->read_scores[i*iaux->ntypes+itype];
if ( cns==iaux->cns_seq || *score > aln_score ) *score = aln_score;
}
cns++;
}
return 0;
}
// Determines indel quality for each read and populates 22 bits of pileup aux field with
// three integers as follows
// plp->aux = indel_type << 16 | seqQ << 8 | indelQ
static int iaux_eval_scored_reads(indel_aux_t *iaux, int ismpl)
{
int i,j;
for (i=0; i<iaux->nplp[ismpl]; i++)
{
bam_pileup1_t *plp = iaux->plp[ismpl] + i;
// Find the best indel type and the ref type, their scores difference is the indel quality
int *score = &iaux->read_scores[i*iaux->ntypes];
int alt_score = INT_MAX, alt_j = 0;
for (j=0; j<iaux->iref_type; j++)
if ( alt_score > score[j] ) alt_score = score[j], alt_j = j;
for (j=iaux->iref_type+1; j<iaux->ntypes; j++)
if ( alt_score > score[j] ) alt_score = score[j], alt_j = j;
int ref_score = score[iaux->iref_type];
int sc0, sc1, j0;
if ( alt_score < ref_score ) sc0 = alt_score, sc1 = ref_score, j0 = alt_j;
else sc0 = ref_score, sc1 = alt_score, j0 = iaux->iref_type;
int indelQ = (sc1>>8) - (sc0>>8); // low=bad, high=good
int seqQ = iaux->ref_qual[alt_j];
// Reduce indelQ. High length-normalized alignment scores (i.e. bad alignments)
// lower the quality more (e.g. gnuplot> plot [0:111] (1-x/111.)*255)
int len_normQ = sc0 & 0xff; // length-normalized score of the best match (ref or alt)
int adj_indelQ; // final indelQ used in calling
if ( len_normQ > 111 )
{
// In the original code reads matching badly to any indel type or reference had indelQ set to 0
// here and thus would be effectively removed from calling. This leads to problems when there are
// many soft clipped reads and a few good matching indel reads (see noisy-softclips.bam in
// mpileup-tests). Only the few good quality indel reads would become visible to the caller and
// the indel would be called with high quality. Here we change the logic to make the badly matching
// reads low quality reference reads. The threshold was set to make the test case still be called
// as an indel, but with very low quality.
//
// Original code:
// adj_indelQ = 0;
//
adj_indelQ = 12;
j0 = iaux->iref_type;
}
else
adj_indelQ = (int)((1. - len_normQ/111.) * indelQ + .499);
#if DEBUG_ALN
// Prints the selected indel type (itype); adjusted indelQ which will be used if bigger than seqQ;
// raw indelQ; length-normalized indelQ and sequence context quality; ref and best alt indel type
// and their raw and length-normalized scores
fprintf(stderr,"itype=%d adj_indelQ=%d\trawQ=%d\tlen_normQ=%d\tseqQ=%d\tref:%d=%d/%d alt:%d=%d/%d)\t%s\n",
j0,adj_indelQ,indelQ,len_normQ,seqQ,iaux->iref_type,ref_score>>8,ref_score&0xff,alt_j,alt_score>>8,alt_score&0xff,bam_get_qname(plp->b));
#endif
if ( adj_indelQ > seqQ ) adj_indelQ = seqQ; // seqQ already capped at 255
plp->aux = j0<<16 | seqQ<<8 | adj_indelQ; // use 22 bits in total
iaux->sum_qual[j0] += adj_indelQ;
}
return 0;
}
// Find the best indel types, include the ref type plus maximum three alternate indel alleles.
static int iaux_eval_best_indels(indel_aux_t *iaux)
{
bcf_callaux_t *bca = iaux->bca;
bca->maxins = iaux->max_ins_len;
bca->inscns = (char*) realloc(bca->inscns, bca->maxins * 4);
if ( bca->maxins && !bca->inscns ) return -1;
// insertion sort, descending, high-quality indels come first
int i,j,t, tmp, *sumq = iaux->sum_qual, ntypes = iaux->ntypes;
for (t=0; t<ntypes; t++) sumq[t] = sumq[t]<<6 | t;
for (t=1; t<ntypes; t++)
for (j=t; j>0 && sumq[j] > sumq[j-1]; j--)
tmp = sumq[j], sumq[j] = sumq[j-1], sumq[j-1] = tmp;
for (t=0; t<ntypes; t++) // look for the reference type
if ( (sumq[t]&0x3f)==iaux->iref_type ) break;
if ( t )
{
// move the reference type to the first
tmp = sumq[t];
for (; t>0; t--) sumq[t] = sumq[t-1];
sumq[0] = tmp;
}
// Initialize bca's structures and create a mapping between old and new types
int old2new_type[MAX_TYPES];
for (t=0; t<iaux->ntypes; t++)
{
int itype = sumq[t] & 0x3f;
old2new_type[itype] = t;
if ( t>=4 ) continue;
bca->indel_types[t] = iaux->types[itype];
if ( bca->indel_types[t] <= 0 ) continue;
memcpy(&bca->inscns[t*bca->maxins], &iaux->inscns[itype*iaux->max_ins_len], bca->maxins);
}
// Update indel type in plp->aux for all reads
int ismpl, n_alt = 0;
for (ismpl=0; ismpl<iaux->nsmpl; ismpl++)
{
for (i=0; i<iaux->nplp[ismpl]; i++)
{
bam_pileup1_t *plp = iaux->plp[ismpl] + i;
int itype_old = (plp->aux >> 16) & 0x3f;
int itype_new = old2new_type[itype_old];
plp->aux = itype_new<<16 | (itype_new>=4 ? 0 : (plp->aux & 0xffff));
if ( itype_new>0 ) n_alt++;
}
}
return n_alt;
}
/*
notes:
- n .. number of samples
- the routine sets bam_pileup1_t.aux (27 bits) of each read as follows:
- 5: unused
- 6: the call; index to bcf_callaux_t.indel_types .. (aux>>16)&0x3f
- 8: estimated sequence quality .. (aux>>8)&0xff
- 8: indel quality .. aux&0xff
*/
int bcf_iaux_gap_prep(int n, int *n_plp, bam_pileup1_t **plp, int pos, bcf_callaux_t *bca, const char *ref)
{
assert(!(ref == 0 || bca == 0)); // can this ever happen? when?
if (ref == 0 || bca == 0) return -1;
if ( !bca->iaux ) bca->iaux = calloc(1,sizeof(indel_aux_t));
indel_aux_t *iaux = bca->iaux;
iaux->nsmpl = n;
iaux->nplp = n_plp;
iaux->plp = plp;
iaux->bca = bca;
iaux->ref = ref;
iaux->pos = pos;
iaux->chr = bca->chr;
// Check if there is an indel at this position and if yes, find all indel types and determine
// window boundaries. todo: We want this information cached so that for long reads we don't keep
// redoing the whole analysis again and again
int ntypes = iaux_init_types(iaux);
if ( ntypes<=0 ) return -1;
debug_print_types(iaux);
// Create two template consensus sequences for each sample (assuming max diploid organism).
// Then apply each indel type on top of the templates, realign every read and remember score
int i,j;
for (i=0; i<iaux->nsmpl; i++)
{
iaux_set_consensus(iaux, i);
iaux_init_scores(iaux, i);
for (j=0; j<ntypes; j++) iaux_score_reads(iaux, i, j);
iaux_eval_scored_reads(iaux, i);
}
int nalt = iaux_eval_best_indels(iaux);
return nalt > 0 ? 0 : -1;
}
|