1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
|
#include "bcftools.pysam.h"
/*
* A cut down C translated of the C++ edlib.cpp file.
* Taken from edlib v0.1.0-166-g931be2b
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include "edlib.h"
typedef uint64_t Word;
static const int WORD_SIZE = 64; // Size of Word in bits
static const Word WORD_1 = (Word)1;
static const Word HIGH_BIT_MASK = 1LL << 63; // 100..00
//#define MAX_UCHAR 255
#define MAX_UCHAR 7 // better cache usage for our data
#ifndef MAX
#define MAX(a,b) ((a)>(b)?(a):(b))
#endif
typedef struct Block {
Word P; // Pvin
Word M; // Mvin
int score; // score of last cell in block;
} Block;
/**
* Defines equality relation on alphabet characters.
* By default each character is always equal only to itself, but you can also provide additional equalities.
*/
typedef struct EqualityDefinition {
bool matrix[MAX_UCHAR + 1][MAX_UCHAR + 1];
} EqualityDefinition;
static EqualityDefinition *
CreateEqualityDefinition(const char *alphabet, int alphabet_size,
const EdlibEqualityPair* additionalEqualities,
const int additionalEqualitiesLength) {
EqualityDefinition *ed = malloc(sizeof(*ed));
for (size_t i = 0; i < alphabet_size; i++) {
for (size_t j = 0; j < alphabet_size; j++) {
ed->matrix[i][j] = (i == j);
}
}
if (additionalEqualities != NULL) {
for (int i = 0; i < additionalEqualitiesLength; i++) {
const char *firstTransformed = strchr(alphabet, additionalEqualities[i].first);
const char *secondTransformed = strchr(alphabet, additionalEqualities[i].second);
if (firstTransformed && alphabet_size) {
ed->matrix[firstTransformed - alphabet][secondTransformed - alphabet] =
ed->matrix[secondTransformed - alphabet][firstTransformed - alphabet]
= true;
}
}
}
return ed;
}
/**
* @param a Element from transformed sequence.
* @param b Element from transformed sequence.
* @return True if a and b are defined as equal, false otherwise.
*/
static inline const /* attribute pure or const? */
bool equalityDefinition_areEqual(const EqualityDefinition *ed, unsigned char a, unsigned char b) {
return ed->matrix[a][b];
}
static int myersCalcEditDistanceSemiGlobal(const Word* Peq, int W, int maxNumBlocks,
int queryLength,
const unsigned char* target, int targetLength,
int k, EdlibAlignMode mode,
int* bestScore_, int** positions_, int* numPositions_);
static char *transformSequences(const char* queryOriginal, int queryLength,
const char* targetOriginal, int targetLength,
unsigned char** queryTransformed,
unsigned char** targetTransformed,
int *alphabet_size);
static inline int ceilDiv(int x, int y);
static inline unsigned char* createReverseCopy(const unsigned char* seq, int length);
static inline Word* buildPeq(const int alphabetLength,
const unsigned char* query,
const int queryLength,
const EqualityDefinition* equalityDefinition);
/**
* Main edlib method.
*/
EdlibAlignResult edlibAlign(const char* const queryOriginal, const int queryLength,
const char* const targetOriginal, const int targetLength,
const EdlibAlignConfig config) {
EdlibAlignResult result;
result.status = EDLIB_STATUS_OK;
result.editDistance = -1;
result.endLocations = result.startLocations = NULL;
result.numLocations = 0;
result.alignment = NULL;
result.alignmentLength = 0;
result.alphabetLength = 0;
/*------------ TRANSFORM SEQUENCES AND RECOGNIZE ALPHABET -----------*/
unsigned char* query, * target;
int alphabet_size;
char *alphabet = transformSequences(queryOriginal, queryLength, targetOriginal, targetLength,
&query, &target, &alphabet_size);
result.alphabetLength = alphabet_size;
/*-------------------------------------------------------*/
// Handle special situation when at least one of the sequences has length 0.
if (queryLength == 0 || targetLength == 0) {
if (config.mode == EDLIB_MODE_NW) {
result.editDistance = MAX(queryLength, targetLength);
result.endLocations = malloc(sizeof(int) * 1);
result.endLocations[0] = targetLength - 1;
result.numLocations = 1;
} else if (config.mode == EDLIB_MODE_SHW || config.mode == EDLIB_MODE_HW) {
result.editDistance = queryLength;
result.endLocations = malloc(sizeof(int) * 1);
result.endLocations[0] = -1;
result.numLocations = 1;
} else {
result.status = EDLIB_STATUS_ERROR;
}
free(query);
free(target);
free(alphabet);
return result;
}
/*--------------------- INITIALIZATION ------------------*/
int maxNumBlocks = ceilDiv(queryLength, WORD_SIZE); // bmax in Myers
int W = maxNumBlocks * WORD_SIZE - queryLength; // number of redundant cells in last level blocks
EqualityDefinition *equalityDefinition =
CreateEqualityDefinition(alphabet, alphabet_size, config.additionalEqualities, config.additionalEqualitiesLength);
Word* Peq = buildPeq(alphabet_size, query, queryLength, equalityDefinition);
/*-------------------------------------------------------*/
/*------------------ MAIN CALCULATION -------------------*/
// TODO: Store alignment data only after k is determined? That could make things faster.
// int positionNW; // Used only when mode is NW.
// AlignmentData* alignData = NULL;
bool dynamicK = false;
int k = config.k;
if (k < 0) { // If valid k is not given, auto-adjust k until solution is found.
dynamicK = true;
k = WORD_SIZE; // Gives better results than smaller k.
}
do {
if (config.mode == EDLIB_MODE_HW || config.mode == EDLIB_MODE_SHW) {
myersCalcEditDistanceSemiGlobal(Peq, W, maxNumBlocks,
queryLength, target, targetLength,
k, config.mode, &(result.editDistance),
&(result.endLocations), &(result.numLocations));
} else { // mode == EDLIB_MODE_NW
// myersCalcEditDistanceNW(Peq, W, maxNumBlocks,
// queryLength, target, targetLength,
// k, &(result.editDistance), &positionNW,
// false, &alignData, -1);
}
k *= 2;
} while(dynamicK && result.editDistance == -1);
if (result.editDistance >= 0) { // If there is solution.
// If NW mode, set end location explicitly.
if (config.mode == EDLIB_MODE_NW) {
result.endLocations = malloc(sizeof(int) * 1);
result.endLocations[0] = targetLength - 1;
result.numLocations = 1;
}
// Find starting locations.
if (config.task == EDLIB_TASK_LOC || config.task == EDLIB_TASK_PATH) {
result.startLocations = malloc(result.numLocations * sizeof(int));
if (config.mode == EDLIB_MODE_HW) { // If HW, I need to calculate start locations.
const unsigned char* rTarget = createReverseCopy(target, targetLength);
const unsigned char* rQuery = createReverseCopy(query, queryLength);
// Peq for reversed query.
Word* rPeq = buildPeq(alphabet_size, rQuery, queryLength, equalityDefinition);
for (int i = 0; i < result.numLocations; i++) {
int endLocation = result.endLocations[i];
if (endLocation == -1) {
// NOTE: Sometimes one of optimal solutions is that query starts before target, like this:
// AAGG <- target
// CCTT <- query
// It will never be only optimal solution and it does not happen often, however it is
// possible and in that case end location will be -1. What should we do with that?
// Should we just skip reporting such end location, although it is a solution?
// If we do report it, what is the start location? -4? -1? Nothing?
// TODO: Figure this out. This has to do in general with how we think about start
// and end locations.
// Also, we have alignment later relying on this locations to limit the space of it's
// search -> how can it do it right if these locations are negative or incorrect?
result.startLocations[i] = 0; // I put 0 for now, but it does not make much sense.
} else {
int bestScoreSHW, numPositionsSHW;
int* positionsSHW;
myersCalcEditDistanceSemiGlobal(
rPeq, W, maxNumBlocks,
queryLength, rTarget + targetLength - endLocation - 1, endLocation + 1,
result.editDistance, EDLIB_MODE_SHW,
&bestScoreSHW, &positionsSHW, &numPositionsSHW);
// Taking last location as start ensures that alignment will not start with insertions
// if it can start with mismatches instead.
result.startLocations[i] = endLocation - positionsSHW[numPositionsSHW - 1];
free(positionsSHW);
}
}
free((void *)rTarget);
free((void *)rQuery);
free(rPeq);
} else { // If mode is SHW or NW
for (int i = 0; i < result.numLocations; i++) {
result.startLocations[i] = 0;
}
}
}
}
/*-------------------------------------------------------*/
//--- Free memory ---//
free(Peq);
free(query);
free(target);
free(alphabet);
free(equalityDefinition);
// DestroyAlignmentData(alignData);
//-------------------//
return result;
}
/**
* Build Peq table for given query and alphabet.
* Peq is table of dimensions alphabetLength+1 x maxNumBlocks.
* Bit i of Peq[s * maxNumBlocks + b] is 1 if i-th symbol from block b of query equals symbol s, otherwise it is 0.
* NOTICE: free returned array with free()!
*/
static inline Word* buildPeq(const int alphabetLength,
const unsigned char* const query,
const int queryLength,
const EqualityDefinition* equalityDefinition) {
int maxNumBlocks = ceilDiv(queryLength, WORD_SIZE);
// table of dimensions alphabetLength+1 x maxNumBlocks. Last symbol is wildcard.
Word* Peq = malloc((alphabetLength + 1) * maxNumBlocks * sizeof(*Peq));
// Build Peq (1 is match, 0 is mismatch). NOTE: last column is wildcard(symbol that matches anything) with just 1s
// Optimised Peq building avoiding branching.
for (int symbol = 0; symbol < alphabetLength; symbol++) {
for (int b = 0; b < maxNumBlocks; b++) {
Word PeqW = 0;
for (int r = (b+1) * WORD_SIZE - 1; r >= b * WORD_SIZE; r--) {
PeqW = (PeqW<<1)
+ (r >= queryLength
|| equalityDefinition_areEqual(equalityDefinition,
query[r], symbol));
}
Peq[symbol * maxNumBlocks + b] = PeqW;
}
}
{
int symbol = alphabetLength;
for (int b = 0; b < maxNumBlocks; b++) {
// Last symbol is wildcard, so it is all 1s
Peq[symbol * maxNumBlocks + b] = (Word)-1;
}
}
return Peq;
}
/**
* Returns new sequence that is reverse of given sequence.
* Free returned array with free()
*/
static inline unsigned char* createReverseCopy(const unsigned char* const seq, const int length) {
unsigned char* rSeq = malloc(length);
for (int i = 0; i < length; i++) {
rSeq[i] = seq[length - i - 1];
}
return rSeq;
}
/**
* Corresponds to Advance_Block function from Myers.
* Calculates one word(block), which is part of a column.
* Highest bit of word (one most to the left) is most bottom cell of block from column.
* Pv[i] and Mv[i] define vin of cell[i]: vin = cell[i] - cell[i-1].
* @param [in] Pv Bitset, Pv[i] == 1 if vin is +1, otherwise Pv[i] == 0.
* @param [in] Mv Bitset, Mv[i] == 1 if vin is -1, otherwise Mv[i] == 0.
* @param [in] Eq Bitset, Eq[i] == 1 if match, 0 if mismatch.
* @param [in] hin Will be +1, 0 or -1.
* @param [out] PvOut Bitset, PvOut[i] == 1 if vout is +1, otherwise PvOut[i] == 0.
* @param [out] MvOut Bitset, MvOut[i] == 1 if vout is -1, otherwise MvOut[i] == 0.
* @param [out] hout Will be +1, 0 or -1.
*/
static inline int calculateBlock(Word Pv, Word Mv, Word Eq, const int hin,
Word *PvOut, Word *MvOut) {
// hin can be 1, -1 or 0.
// 1 -> 00...01
// 0 -> 00...00
// -1 -> 11...11 (2-complement)
Word hinIsNeg = (Word)(hin >> 2) & WORD_1; // 00...001 if hin is -1, 00...000 if 0 or 1
Word Xv = Eq | Mv;
// This is instruction below written using 'if': if (hin < 0) Eq |= (Word)1;
Eq |= hinIsNeg;
Word Xh = (((Eq & Pv) + Pv) ^ Pv) | Eq;
Word Ph = Mv | ~(Xh | Pv);
Word Mh = Pv & Xh;
int hout = 0;
// This is instruction below written using 'if': if (Ph & HIGH_BIT_MASK) hout = 1;
hout = (Ph & HIGH_BIT_MASK) >> (WORD_SIZE - 1);
// This is instruction below written using 'if': if (Mh & HIGH_BIT_MASK) hout = -1;
hout -= (Mh & HIGH_BIT_MASK) >> (WORD_SIZE - 1);
Ph <<= 1;
Mh <<= 1;
// This is instruction below written using 'if': if (hin < 0) Mh |= (Word)1;
Mh |= hinIsNeg;
// This is instruction below written using 'if': if (hin > 0) Ph |= (Word)1;
Ph |= (Word)((hin + 1) >> 1);
*PvOut = Mh | ~(Xv | Ph);
*MvOut = Ph & Xv;
return hout;
}
/**
* Does ceiling division x / y.
* Note: x and y must be non-negative and x + y must not overflow.
*/
static inline int ceilDiv(const int x, const int y) {
return x % y ? x / y + 1 : x / y;
}
static inline int min(const int x, const int y) {
return x < y ? x : y;
}
/**
* @param [in] block
* @return Values of cells in block, starting with bottom cell in block.
*/
static inline int *getBlockCellValues(const Block block) {
int *scores = malloc(WORD_SIZE * sizeof(*scores));
int score = block.score;
Word mask = HIGH_BIT_MASK;
for (int i = 0; i < WORD_SIZE - 1; i++) {
scores[i] = score;
if (block.P & mask) score--;
if (block.M & mask) score++;
mask >>= 1;
}
scores[WORD_SIZE - 1] = score;
return scores;
}
/**
* @param [in] block
* @param [in] k
* @return True if all cells in block have value larger than k, otherwise false.
*/
static inline bool allBlockCellsLarger(const Block block, const int k) {
int *scores = getBlockCellValues(block);
for (int i = 0; i < WORD_SIZE; i++) {
if (scores[i] <= k) {
free(scores);
return false;
}
}
free(scores);
return true;
}
/**
* Uses Myers' bit-vector algorithm to find edit distance for one of semi-global alignment methods.
* @param [in] Peq Query profile.
* @param [in] W Size of padding in last block.
* TODO: Calculate this directly from query, instead of passing it.
* @param [in] maxNumBlocks Number of blocks needed to cover the whole query.
* TODO: Calculate this directly from query, instead of passing it.
* @param [in] queryLength
* @param [in] target
* @param [in] targetLength
* @param [in] k
* @param [in] mode EDLIB_MODE_HW or EDLIB_MODE_SHW
* @param [out] bestScore_ Edit distance.
* @param [out] positions_ Array of 0-indexed positions in target at which best score was found.
Make sure to free this array with free().
* @param [out] numPositions_ Number of positions in the positions_ array.
* @return Status.
*/
static int myersCalcEditDistanceSemiGlobal(
const Word* const Peq, const int W, const int maxNumBlocks,
const int queryLength,
const unsigned char* const target, const int targetLength,
int k, const EdlibAlignMode mode,
int* const bestScore_, int** const positions_, int* const numPositions_) {
*positions_ = NULL;
*numPositions_ = 0;
// firstBlock is 0-based index of first block in Ukkonen band.
// lastBlock is 0-based index of last block in Ukkonen band.
int firstBlock = 0;
int lastBlock = min(ceilDiv(k + 1, WORD_SIZE), maxNumBlocks) - 1; // y in Myers
Block *bl; // Current block
Block* blocks = malloc(maxNumBlocks * sizeof(*blocks));
// For HW, solution will never be larger then queryLength.
if (mode == EDLIB_MODE_HW) {
k = min(queryLength, k);
}
// Each STRONG_REDUCE_NUM column is reduced in more expensive way.
// This gives speed up of about 2 times for small k.
const int STRONG_REDUCE_NUM = 2048;
// Initialize P, M and score
bl = blocks;
for (int b = 0; b <= lastBlock; b++) {
bl->score = (b + 1) * WORD_SIZE;
bl->P = (Word)(-1); // All 1s
bl->M = (Word)(0);
bl++;
}
int bestScore = -1;
#define MAX_POS 100 // maximum number of positions returned.
int positions[MAX_POS];
int npositions = 0;
const int startHout = mode == EDLIB_MODE_HW ? 0 : 1; // If 0 then gap before query is not penalized;
const unsigned char* targetChar = target;
for (int c = 0; c < targetLength; c++) { // for each column
const Word* Peq_c = Peq + (*targetChar) * maxNumBlocks;
//----------------------- Calculate column -------------------------//
int hout = startHout;
bl = blocks + firstBlock;
Peq_c += firstBlock;
for (int b = firstBlock; b <= lastBlock; b++) {
hout = calculateBlock(bl->P, bl->M, *Peq_c, hout, &bl->P, &bl->M);
bl->score += hout;
bl++; Peq_c++;
}
bl--; Peq_c--;
//------------------------------------------------------------------//
//---------- Adjust number of blocks according to Ukkonen ----------//
if ((lastBlock < maxNumBlocks - 1) && (bl->score - hout <= k) // bl is pointing to last block
&& ((*(Peq_c + 1) & WORD_1) || hout < 0)) { // Peq_c is pointing to last block
// If score of left block is not too big, calculate one more block
lastBlock++; bl++; Peq_c++;
bl->P = (Word)(-1); // All 1s
bl->M = (Word)(0);
bl->score = (bl - 1)->score - hout + WORD_SIZE + calculateBlock(bl->P, bl->M, *Peq_c, hout, &bl->P, &bl->M);
} else {
while (lastBlock >= firstBlock && bl->score >= k + WORD_SIZE) {
lastBlock--; bl--; Peq_c--;
}
}
// Every some columns, do some expensive but also more efficient block reducing.
// This is important!
//
// Reduce the band by decreasing last block if possible.
if (c % STRONG_REDUCE_NUM == 0) {
while (lastBlock >= 0 && lastBlock >= firstBlock && allBlockCellsLarger(*bl, k)) {
lastBlock--; bl--; Peq_c--;
}
}
// For HW, even if all cells are > k, there still may be solution in next
// column because starting conditions at upper boundary are 0.
// That means that first block is always candidate for solution,
// and we can never end calculation before last column.
if (mode == EDLIB_MODE_HW && lastBlock == -1) {
lastBlock++; bl++; Peq_c++;
}
// Reduce band by increasing first block if possible. Not applicable to HW.
if (mode != EDLIB_MODE_HW) {
while (firstBlock <= lastBlock && blocks[firstBlock].score >= k + WORD_SIZE) {
firstBlock++;
}
if (c % STRONG_REDUCE_NUM == 0) { // Do strong reduction every some blocks
while (firstBlock <= lastBlock && allBlockCellsLarger(blocks[firstBlock], k)) {
firstBlock++;
}
}
}
// If band stops to exist finish
if (lastBlock < firstBlock) {
*bestScore_ = bestScore;
if (bestScore != -1) {
*positions_ = malloc(npositions * sizeof(int));
*numPositions_ = npositions;
memcpy(*positions_, positions, npositions * sizeof(int));
}
free(blocks);
return EDLIB_STATUS_OK;
}
//------------------------------------------------------------------//
//------------------------- Update best score ----------------------//
if (lastBlock == maxNumBlocks - 1) {
int colScore = bl->score;
if (colScore <= k) { // Scores > k dont have correct values (so we cannot use them), but are certainly > k.
// NOTE: Score that I find in column c is actually score from column c-W
if (bestScore == -1 || colScore <= bestScore) {
if (colScore != bestScore) {
npositions = 0;
bestScore = colScore;
// Change k so we will look only for equal or better
// scores then the best found so far.
k = bestScore;
}
if (npositions < MAX_POS)
positions[npositions++] = c - W;
}
}
}
//------------------------------------------------------------------//
targetChar++;
}
// Obtain results for last W columns from last column.
if (lastBlock == maxNumBlocks - 1) {
int *blockScores = getBlockCellValues(*bl);
for (int i = 0; i < W; i++) {
int colScore = blockScores[i + 1];
if (colScore <= k && (bestScore == -1 || colScore <= bestScore)) {
if (colScore != bestScore) {
npositions = 0;
k = bestScore = colScore;
}
if (npositions < MAX_POS)
positions[npositions++] = targetLength - W + i;
}
}
free(blockScores);
}
*bestScore_ = bestScore;
if (bestScore != -1) {
*positions_ = malloc(npositions * sizeof(int));
*numPositions_ = npositions;
memcpy(*positions_, positions, npositions * sizeof(int));
}
free(blocks);
return EDLIB_STATUS_OK;
}
/**
* Takes char query and char target, recognizes alphabet and transforms them into unsigned char sequences
* where elements in sequences are not any more letters of alphabet, but their index in alphabet.
* Most of internal edlib functions expect such transformed sequences.
* This function will allocate queryTransformed and targetTransformed, so make sure to free them when done.
* Example:
* Original sequences: "ACT" and "CGT".
* Alphabet would be recognized as "ACTG". Alphabet length = 4.
* Transformed sequences: [0, 1, 2] and [1, 3, 2].
* @param [in] queryOriginal
* @param [in] queryLength
* @param [in] targetOriginal
* @param [in] targetLength
* @param [out] queryTransformed It will contain values in range [0, alphabet length - 1].
* @param [out] targetTransformed It will contain values in range [0, alphabet length - 1].
* @return Alphabet as a string of unique characters, where index of each character is its value in transformed
* sequences.
*/
static char *transformSequences(const char* const queryOriginal, const int queryLength,
const char* const targetOriginal, const int targetLength,
unsigned char** const queryTransformed,
unsigned char** const targetTransformed,
int *alphabet_size) {
// Alphabet is constructed from letters that are present in sequences.
// Each letter is assigned an ordinal number, starting from 0 up to alphabetLength - 1,
// and new query and target are created in which letters are replaced with their ordinal numbers.
// This query and target are used in all the calculations later.
*queryTransformed = malloc(sizeof(unsigned char) * queryLength);
*targetTransformed = malloc(sizeof(unsigned char) * targetLength);
char *alphabet = malloc(MAX_UCHAR+1), *alphabet_cp = alphabet;
// Alphabet information, it is constructed on fly while transforming sequences.
// letterIdx[c] is index of letter c in alphabet.
unsigned char letterIdx[MAX_UCHAR + 1];
bool inAlphabet[MAX_UCHAR + 1]; // inAlphabet[c] is true if c is in alphabet
for (int i = 0; i < MAX_UCHAR + 1; i++) inAlphabet[i] = false;
for (int i = 0; i < queryLength; i++) {
unsigned char c = queryOriginal[i];
if (!inAlphabet[c]) {
inAlphabet[c] = true;
letterIdx[c] = alphabet_cp - alphabet;
*alphabet_cp++ = queryOriginal[i];
}
(*queryTransformed)[i] = letterIdx[c];
}
for (int i = 0; i < targetLength; i++) {
unsigned char c = targetOriginal[i];
if (!inAlphabet[c]) {
inAlphabet[c] = true;
letterIdx[c] = alphabet_cp - alphabet;
*alphabet_cp++ = targetOriginal[i];
}
(*targetTransformed)[i] = letterIdx[c];
}
*alphabet_size = alphabet_cp - alphabet;
return alphabet;
}
EdlibAlignConfig edlibNewAlignConfig(int k, EdlibAlignMode mode, EdlibAlignTask task,
const EdlibEqualityPair* additionalEqualities,
int additionalEqualitiesLength) {
EdlibAlignConfig config;
config.k = k;
config.mode = mode;
config.task = task;
config.additionalEqualities = additionalEqualities;
config.additionalEqualitiesLength = additionalEqualitiesLength;
return config;
}
EdlibAlignConfig edlibDefaultAlignConfig(void) {
return edlibNewAlignConfig(-1, EDLIB_MODE_NW, EDLIB_TASK_DISTANCE, NULL, 0);
}
void edlibFreeAlignResult(EdlibAlignResult result) {
if (result.endLocations) free(result.endLocations);
if (result.startLocations) free(result.startLocations);
if (result.alignment) free(result.alignment);
}
|