1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
|
#include "bcftools.pysam.h"
/* The MIT License
Copyright (c) 2016-2024 Genome Research Ltd.
Author: Petr Danecek <pd3@sanger.ac.uk>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <assert.h>
#include <strings.h>
#include <htslib/vcf.h>
#include <htslib/vcfutils.h>
#include <htslib/hts_os.h>
#include <htslib/kbitset.h>
#include "bcftools.h"
#include "vcfbuf.h"
#include "rbuf.h"
typedef struct
{
double max[VCFBUF_LD_N];
int rand_missing, filter1;
}
ld_t;
typedef struct
{
bcf1_t *rec;
double af;
unsigned int af_set:1, filter:1, idx:30;
}
vcfrec_t;
#define PRUNE_MODE_MAX_AF 1
#define PRUNE_MODE_1ST 2
#define PRUNE_MODE_RAND 3
typedef struct
{
int max_sites, mvrec, mac, mfarr, mode;
int *ac, *idx;
float *farr;
char *af_tag;
vcfrec_t **vrec;
}
prune_t;
#define MARK_OVERLAP 1
#define MARK_DUP 2
#define MARK_EXPR 3
#define MARK_MISSING_SCALAR 0 // actual value to use
#define MARK_MISSING_MAX_DP 1 // max overlap_t.value scaled by INFO/DP
// temporary internal structure for iterative overlap removal by mark_t.expr
typedef struct
{
double value; // the sort value
int rmme, idx; // mark for removal, index in vcfbuf_t.rbuf
int dp; // with MARK_MISSING_MAX_DP, INFO/DP is used extrapolate missing QUAL
kbitset_t *bset; // mark which records it overlaps with, given as 0-based indexes to vcfbuf_t.rbuf
bcf1_t *rec;
}
overlap_t;
typedef struct
{
// modes
int mode;
char *expr;
// sites marked according to expr, returned to the caller via vcfbuf_get()
rbuf_t rbuf;
uint8_t *mark;
int last;
// MARK_OVERLAP
int overlap_rid, overlap_end;
// MARK_EXPR
int nbuf;
overlap_t *buf, **buf_ptr;
int missing_expr; // the value to use when min(QUAL) encounters a missing value
float missing_value; // the default missing value
float max_qual; // with MARK_MISSING_MAX_DP
int max_qual_dp; //
int ntmpi; // temporary int array and the allocated memory
int32_t *tmpi;
}
mark_t;
struct _vcfbuf_t
{
int win, // maximum number of sites in the buffer, either number of sites (<0) or bp (<0)
dummy; // the caller maintains the buffer via push/peek/flush
bcf_hdr_t *hdr;
vcfrec_t *vcf;
rbuf_t rbuf;
ld_t ld;
prune_t prune;
mark_t mark;
enum { clean, dirty } status;
};
vcfbuf_t *vcfbuf_init(bcf_hdr_t *hdr, int win)
{
vcfbuf_t *buf = (vcfbuf_t*) calloc(1,sizeof(vcfbuf_t));
buf->hdr = hdr;
buf->win = win;
buf->status = clean;
buf->mark.overlap_rid = -1;
int i;
for (i=0; i<VCFBUF_LD_N; i++) buf->ld.max[i] = HUGE_VAL;
rbuf_init(&buf->rbuf, 0);
return buf;
}
void vcfbuf_destroy(vcfbuf_t *buf)
{
int i;
for (i=0; i<buf->rbuf.m; i++)
if ( buf->vcf[i].rec ) bcf_destroy(buf->vcf[i].rec);
free(buf->vcf);
free(buf->prune.farr);
free(buf->prune.vrec);
free(buf->prune.ac);
free(buf->prune.af_tag);
free(buf->prune.idx);
free(buf->mark.mark);
free(buf->mark.expr);
for (i=0; i<buf->mark.nbuf; i++) kbs_destroy(buf->mark.buf[i].bset);
free(buf->mark.buf);
free(buf->mark.buf_ptr);
free(buf->mark.tmpi);
free(buf);
}
int vcfbuf_set(vcfbuf_t *buf, vcfbuf_opt_t key, ...)
{
va_list args;
switch (key)
{
case LD_FILTER1:
va_start(args, key);
buf->ld.filter1 = va_arg(args,int);
va_end(args);
return 0;
case LD_RAND_MISSING:
va_start(args, key);
buf->ld.rand_missing = va_arg(args,int);
va_end(args);
return 0;
case LD_MAX_R2:
va_start(args, key);
buf->ld.max[VCFBUF_LD_IDX_R2] = va_arg(args,double);
va_end(args);
return 0;
case LD_MAX_LD:
va_start(args, key);
buf->ld.max[VCFBUF_LD_IDX_LD] = va_arg(args,double);
va_end(args);
return 0;
case LD_MAX_HD:
va_start(args, key);
buf->ld.max[VCFBUF_LD_IDX_HD] = va_arg(args,double);
va_end(args);
return 0;
case VCFBUF_DUMMY:
va_start(args, key);
buf->dummy = va_arg(args,int);
va_end(args);
return 0;
case PRUNE_NSITES:
va_start(args, key);
buf->prune.max_sites = va_arg(args,int);
if ( !buf->prune.mode ) buf->prune.mode = PRUNE_MODE_MAX_AF;
va_end(args);
return 0;
case PRUNE_NSITES_MODE:
va_start(args, key);
char *mode = va_arg(args,char*);
va_end(args);
if ( !strcasecmp(mode,"maxAF") ) buf->prune.mode = PRUNE_MODE_MAX_AF;
else if ( !strcasecmp(mode,"1st") ) buf->prune.mode = PRUNE_MODE_1ST;
else if ( !strcasecmp(mode,"rand") ) buf->prune.mode = PRUNE_MODE_RAND;
else error("The mode \"%s\" is not recognised\n",mode);
return 0;
case PRUNE_AF_TAG:
va_start(args, key);
buf->prune.af_tag = strdup(va_arg(args,char*));
va_end(args);
return 0;
case MARK:
va_start(args, key);
buf->mark.expr = strdup(va_arg(args,char*));
if ( !strcasecmp(buf->mark.expr,"overlap") ) buf->mark.mode = MARK_OVERLAP;
else if ( !strcasecmp(buf->mark.expr,"dup") ) buf->mark.mode = MARK_DUP;
else buf->mark.mode = MARK_EXPR;
va_end(args);
return 0;
case MARK_MISSING_EXPR:
va_start(args, key);
char *expr = va_arg(args,char*);
if ( !strcasecmp(expr,"0") )
{
buf->mark.missing_expr = MARK_MISSING_SCALAR;
buf->mark.missing_value = 0;
}
else if ( !strcasecmp(expr,"DP") )
{
if ( buf->mark.mode!=MARK_EXPR ) error("Only the combination of --mark 'min(QUAL)' with --missing DP is currently supported\n");
buf->mark.missing_expr = MARK_MISSING_MAX_DP;
}
else
error("todo: MARK_MISSING_EXPR=%s\n",expr);
va_end(args);
return 0;
}
return 0;
}
void *vcfbuf_get(vcfbuf_t *buf, vcfbuf_opt_t key, ...)
{
va_list args;
va_start(args, key);
if ( key==MARK )
return &buf->mark.last;
va_end(args);
return NULL;
}
int vcfbuf_nsites(vcfbuf_t *buf)
{
return buf->rbuf.n;
}
bcf1_t *vcfbuf_push(vcfbuf_t *buf, bcf1_t *rec)
{
// make sure the caller is using the buffer correctly and calls vcfbuf_flush()
// before placing next vcfbuf_push() call
assert(buf->status!=dirty);
if ( !buf->dummy ) buf->status = dirty;
rbuf_expand0(&buf->rbuf, vcfrec_t, buf->rbuf.n+1, buf->vcf);
int i = rbuf_append(&buf->rbuf);
if ( !buf->vcf[i].rec ) buf->vcf[i].rec = bcf_init1();
bcf1_t *ret = buf->vcf[i].rec;
buf->vcf[i].rec = rec;
buf->vcf[i].af_set = 0;
buf->vcf[i].filter = buf->ld.filter1;
buf->ld.filter1 = 0;
return ret;
}
bcf1_t *vcfbuf_peek(vcfbuf_t *buf, int idx)
{
buf->status = clean;
int i = rbuf_kth(&buf->rbuf, idx);
return i<0 ? NULL : buf->vcf[i].rec;
}
bcf1_t *vcfbuf_remove(vcfbuf_t *buf, int idx)
{
int i = rbuf_kth(&buf->rbuf, idx);
if ( i<0 ) return NULL;
bcf1_t *rec = buf->vcf[i].rec;
rbuf_remove_kth(&buf->rbuf, vcfrec_t, idx, buf->vcf);
return rec;
}
static int cmpvrec(const void *_a, const void *_b)
{
vcfrec_t *a = *((vcfrec_t**) _a);
vcfrec_t *b = *((vcfrec_t**) _b);
if ( a->af < b->af ) return -1;
if ( a->af == b->af ) return 0;
return 1;
}
static int cmpint_desc(const void *_a, const void *_b)
{
int a = *((int*)_a);
int b = *((int*)_b);
if ( a < b ) return 1;
if ( a == b ) return 0;
return -1;
}
static void _prune_sites(vcfbuf_t *buf, int flush_all)
{
int nbuf = flush_all ? buf->rbuf.n : buf->rbuf.n - 1;
int nprune = nbuf - buf->prune.max_sites;
int i,k,irec = 0;
if ( buf->prune.mode==PRUNE_MODE_1ST )
{
int eoff = flush_all ? 1 : 2;
for (i=0; i<nprune; i++)
rbuf_remove_kth(&buf->rbuf, vcfrec_t, buf->rbuf.n - eoff, buf->vcf);
return;
}
if ( buf->prune.mode==PRUNE_MODE_RAND )
{
int eoff = flush_all ? 0 : 1;
for (i=0; i<nprune; i++)
{
int j = (buf->rbuf.n - eoff) * hts_drand48();
rbuf_remove_kth(&buf->rbuf, vcfrec_t, j, buf->vcf);
}
return;
}
if ( nbuf > buf->prune.mvrec )
{
buf->prune.idx = (int*) realloc(buf->prune.idx, nbuf*sizeof(int));
buf->prune.vrec = (vcfrec_t**) realloc(buf->prune.vrec, nbuf*sizeof(vcfrec_t*));
buf->prune.mvrec = nbuf;
}
// set allele frequency and prepare buffer for sorting
for (i=-1; rbuf_next(&buf->rbuf,&i) && irec<nbuf; )
{
bcf1_t *line = buf->vcf[i].rec;
if ( line->n_allele > buf->prune.mac )
{
buf->prune.ac = (int*) realloc(buf->prune.ac, line->n_allele*sizeof(*buf->prune.ac));
buf->prune.mac = line->n_allele;
}
if ( !buf->vcf[i].af_set )
{
buf->vcf[i].af = 0;
if ( buf->prune.af_tag )
{
if ( bcf_get_info_float(buf->hdr,line,buf->prune.af_tag,&buf->prune.farr, &buf->prune.mfarr) > 0 ) buf->vcf[i].af = buf->prune.farr[0];
}
else if ( bcf_calc_ac(buf->hdr, line, buf->prune.ac, BCF_UN_INFO|BCF_UN_FMT) )
{
int ntot = buf->prune.ac[0], nalt = 0;
for (k=1; k<line->n_allele; k++) nalt += buf->prune.ac[k];
buf->vcf[i].af = ntot ? (float)nalt/ntot : 0;
}
buf->vcf[i].af_set = 1;
}
buf->vcf[i].idx = irec;
buf->prune.vrec[irec++] = &buf->vcf[i];
}
// sort by allele frequency, low AF will be removed preferentially
qsort(buf->prune.vrec, nbuf, sizeof(*buf->prune.vrec), cmpvrec);
// sort the rbuf indexes to be pruned descendently so that j-th rbuf index
// is removed before i-th index if i<j
for (i=0; i<nprune; i++)
buf->prune.idx[i] = buf->prune.vrec[i]->idx;
qsort(buf->prune.idx, nprune, sizeof(int), cmpint_desc);
for (i=0; i<nprune; i++)
rbuf_remove_kth(&buf->rbuf, vcfrec_t, buf->prune.idx[i], buf->vcf);
}
static int mark_dup_can_flush_(vcfbuf_t *buf, int flush_all)
{
int flush = flush_all;
mark_t *mark = &buf->mark;
if ( buf->status==dirty )
{
// a new site was just added by vcfbuf_push()
rbuf_expand0(&mark->rbuf, uint8_t, buf->rbuf.n, mark->mark);
int i = rbuf_append(&mark->rbuf);
mark->mark[i] = 0;
if ( buf->rbuf.n==1 ) goto flush;
// there is at least one previous site, check if it's a duplicate
int k1 = rbuf_kth(&buf->rbuf, -1);
int k2 = rbuf_kth(&buf->rbuf, -2);
vcfrec_t *rec1 = &buf->vcf[k1];
vcfrec_t *rec2 = &buf->vcf[k2];
int is_dup = 1;
if ( rec1->rec->rid!=rec2->rec->rid ) is_dup = 0;
else if ( rec1->rec->pos!=rec2->rec->pos ) is_dup = 0;
if ( is_dup )
{
// it is, mark the last two sites as duplicates
int k1 = rbuf_kth(&mark->rbuf, -1);
int k2 = rbuf_kth(&mark->rbuf, -2);
mark->mark[k1] = 1;
mark->mark[k2] = 1;
goto flush;
}
// the last site is not a duplicate with the previous, all sites but the last one can be flushed
flush = 1;
}
else if ( buf->rbuf.n > 1 ) flush = 1;
flush:
if ( !flush ) return 0;
int i = rbuf_shift(&mark->rbuf);
mark->last = mark->mark[i];
return 1;
}
static int mark_overlap_helper_(vcfbuf_t *buf, int flush_all)
{
if ( buf->status!=dirty ) return flush_all;
int flush = flush_all;
mark_t *mark = &buf->mark;
// a new site was just added by vcfbuf_push()
buf->status = clean;
rbuf_expand0(&mark->rbuf, uint8_t, buf->rbuf.n, mark->mark);
int i = rbuf_append(&mark->rbuf);
mark->mark[i] = 0;
// determine beg and end of the last record that was just added
i = rbuf_last(&buf->rbuf);
vcfrec_t *last = &buf->vcf[i];
if ( mark->overlap_rid != last->rec->rid ) mark->overlap_end = 0;
int beg_pos = last->rec->pos;
int end_pos = last->rec->pos + last->rec->rlen - 1;
// Assuming left-aligned indels. In case it is a deletion, the real variant
// starts one base after. If an insertion, the overlap with previous is zero
int imin = last->rec->rlen;
for (i=0; i<last->rec->n_allele; i++)
{
char *ref = last->rec->d.allele[0];
char *alt = last->rec->d.allele[i];
if ( *alt == '<' ) continue; // ignore symbolic alleles
while ( *ref && *alt && nt_to_upper(*ref)==nt_to_upper(*alt) ) { ref++; alt++; }
if ( imin > ref - last->rec->d.allele[0] ) imin = ref - last->rec->d.allele[0];
}
if ( beg_pos <= mark->overlap_end )
{
// the new site overlaps with the previous
beg_pos += imin;
if ( beg_pos > end_pos ) end_pos = beg_pos;
}
if ( buf->rbuf.n==1 )
{
mark->overlap_rid = last->rec->rid;
mark->overlap_end = end_pos;
return flush;
}
if ( beg_pos <= mark->overlap_end )
{
if ( mark->overlap_end < end_pos ) mark->overlap_end = end_pos;
int k1 = rbuf_kth(&mark->rbuf, -1);
int k2 = rbuf_kth(&mark->rbuf, -2);
mark->mark[k1] = 1;
mark->mark[k2] = 1;
}
else
{
if ( mark->overlap_end < end_pos ) mark->overlap_end = end_pos;
flush = 1;
}
return flush;
}
static int mark_overlap_can_flush_(vcfbuf_t *buf, int flush_all)
{
int flush = flush_all;
if ( buf->status==dirty ) flush = mark_overlap_helper_(buf,flush_all);
else if ( buf->rbuf.n > 1 ) flush = 1;
if ( !flush ) return 0;
mark_t *mark = &buf->mark;
int i = rbuf_shift(&mark->rbuf);
mark->last = mark->mark[i];
return 1;
}
static int records_overlap(bcf1_t *a, bcf1_t *b)
{
if ( a->rid != b->rid ) return 0;
if ( a->pos + a->rlen - 1 < b->pos ) return 0;
return 1;
}
static int cmp_overlap_ptr_asc(const void *aptr, const void *bptr)
{
overlap_t *a = *((overlap_t**)aptr);
overlap_t *b = *((overlap_t**)bptr);
if ( a->value < b->value ) return -1;
if ( a->value > b->value ) return 1;
return 0;
}
static void mark_expr_missing_reset_(vcfbuf_t *buf)
{
buf->mark.max_qual = 0;
buf->mark.max_qual_dp = 0;
}
static void mark_expr_missing_prep_(vcfbuf_t *buf, overlap_t *olap)
{
int nval = bcf_get_info_int32(buf->hdr,olap->rec,"DP",&buf->mark.tmpi,&buf->mark.ntmpi);
if ( nval!=1 ) return;
olap->dp = buf->mark.tmpi[0];
if ( bcf_float_is_missing(olap->rec->qual) ) return;
if ( buf->mark.max_qual < olap->rec->qual )
{
buf->mark.max_qual = olap->rec->qual;
buf->mark.max_qual_dp = olap->dp;
}
}
static void mark_expr_missing_set_(vcfbuf_t *buf, overlap_t *olap)
{
if ( !bcf_float_is_missing(olap->rec->qual) ) return;
if ( !buf->mark.max_qual_dp ) return;
// scale QUAL of the most confident variant in the overlap proportionally to the coverage
// and use that to prioritize the records
olap->value = buf->mark.max_qual * olap->dp / buf->mark.max_qual_dp;
}
static int mark_expr_can_flush_(vcfbuf_t *buf, int flush_all)
{
mark_t *mark = &buf->mark;
if ( strcasecmp("min(QUAL)",mark->expr) ) error("Todo; at this time only min(QUAL) is supported\n");
int flush = flush_all;
if ( buf->status==dirty )
{
flush = mark_overlap_helper_(buf,flush_all);
if ( !flush ) return 0;
if ( mark->missing_expr==MARK_MISSING_MAX_DP ) mark_expr_missing_reset_(buf);
// init overlaps, each overlap_t structure keeps a list of overlapping records, symmetrical
size_t nori = mark->nbuf;
hts_resize(overlap_t, buf->rbuf.n, &mark->nbuf, &mark->buf, HTS_RESIZE_CLEAR);
hts_resize(overlap_t*, buf->rbuf.n, &nori, &mark->buf_ptr, HTS_RESIZE_CLEAR);
int i;
for (i=0; i<buf->rbuf.n; i++)
{
overlap_t *oi = &mark->buf[i];
int j = rbuf_kth(&buf->rbuf, i);
assert(j>=0);
bcf1_t *rec = buf->vcf[j].rec;
assert(rec);
oi->rec = rec;
// todo: other than QUAL values
oi->value = bcf_float_is_missing(rec->qual) ? mark->missing_value : rec->qual;
if ( mark->missing_expr==MARK_MISSING_MAX_DP ) mark_expr_missing_prep_(buf,oi);
if ( oi->bset )
{
kbs_resize(&oi->bset,buf->rbuf.n);
kbs_clear(oi->bset);
}
else
oi->bset = kbs_init(buf->rbuf.n);
oi->idx = i;
mark->buf_ptr[i] = oi;
mark->mark[oi->idx] = 0;
}
int nolap = 0;
for (i=0; i<buf->rbuf.n; i++)
{
overlap_t *oi = &mark->buf[i];
if ( mark->missing_expr==MARK_MISSING_MAX_DP ) mark_expr_missing_set_(buf,oi);
int j;
for (j=i+1; j<buf->rbuf.n; j++)
{
overlap_t *oj = &mark->buf[j];
if ( !records_overlap(oi->rec,oj->rec) ) continue;
kbs_insert(oi->bset,j);
kbs_insert(oj->bset,i);
nolap++;
}
}
// sort according to the requested criteria, currently only min(QUAL)
qsort(mark->buf_ptr,buf->rbuf.n,sizeof(*mark->buf_ptr),cmp_overlap_ptr_asc); // todo: other than min()
// go through the list sorted by overlap_t.value, eg QUAL
for (i=0; nolap && i<buf->rbuf.n; i++)
{
kbitset_iter_t itr;
overlap_t *oi = mark->buf_ptr[i];
kbs_start(&itr);
int j;
while ((j=kbs_next(oi->bset, &itr)) >= 0)
{
kbs_delete(oi->bset,j);
assert(nolap);
assert(kbs_exists(mark->buf[j].bset,oi->idx));
kbs_delete(mark->buf[j].bset,oi->idx);
nolap--;
}
j = rbuf_kth(&mark->rbuf,oi->idx);
mark->mark[j] = 1;
}
}
else if ( buf->rbuf.n > 1 ) flush = 1;
if ( !flush ) return 0;
int i = rbuf_shift(&mark->rbuf);
mark->last = mark->mark[i];
return 1;
}
bcf1_t *vcfbuf_flush(vcfbuf_t *buf, int flush_all)
{
int i,j;
// nothing to do, no lines in the buffer
if ( buf->rbuf.n==0 ) return NULL;
// dummy mode, always flushing
if ( buf->dummy ) goto ret;
// pruning mode
if ( buf->win )
{
int can_flush = flush_all;
i = rbuf_kth(&buf->rbuf, 0); // first
j = rbuf_last(&buf->rbuf); // last
if ( buf->vcf[i].rec->rid != buf->vcf[j].rec->rid ) can_flush = 1;
else if ( buf->win > 0 )
{
if ( buf->rbuf.n > buf->win ) can_flush = 1;
}
else if ( buf->win < 0 )
{
if ( !(buf->vcf[i].rec->pos - buf->vcf[j].rec->pos > buf->win) ) can_flush = 1;
}
buf->status = clean;
if ( !can_flush ) return NULL;
if ( buf->prune.max_sites && buf->prune.max_sites < buf->rbuf.n ) _prune_sites(buf, flush_all);
goto ret;
}
// overlaps and duplicates
if ( buf->mark.mode )
{
int can_flush = 0;
if ( buf->mark.mode==MARK_OVERLAP )
{
if ( mark_overlap_can_flush_(buf,flush_all) ) can_flush = 1;
}
else if ( buf->mark.mode==MARK_DUP )
{
if ( mark_dup_can_flush_(buf,flush_all) ) can_flush = 1;
}
if ( buf->mark.mode==MARK_EXPR )
{
if ( mark_expr_can_flush_(buf,flush_all) ) can_flush = 1;
}
buf->status = clean;
if ( !can_flush ) return NULL;
goto ret;
}
ret:
buf->status = clean;
i = rbuf_shift(&buf->rbuf);
return buf->vcf[i].rec;
}
static double _estimate_af(int8_t *ptr, int size, int nvals, int nsamples)
{
int i,j, nref = 0, nalt = 0;
for (i=0; i<nsamples; i++)
{
for (j=0; j<nvals; j++)
{
if ( ptr[j]==bcf_gt_missing ) break;
if ( ptr[j]==bcf_int8_vector_end ) break;
if ( bcf_gt_allele(ptr[j]) ) nalt++;
else nref++;
}
ptr += size;
}
if ( nref+nalt == 0 ) return 0;
return (double)nalt/(nref+nalt);
}
/*
The `ld` is set to D approximated as suggested in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2710162/
D =~ (GT correlation) * sqrt(Pa*(1-Pa)*Pb*(1-Pb))
and `hd` as proposed in Ragsdale, A. P., & Gravel, S. (2019). Unbiased estimation of linkage
disequilibrium from unphased data. Molecular Biology and Evolution. doi:10.1093/molbev/msz265
\hat{D} = 1/[n*(n+1)]*[
(n1 + n2/2 + n4/2 + n5/4)*(n5/4 + n6/2 + n8/2 + n9)
-(n2/2 + n3 + n5/4 + n6/2)*(n4/2 + n5/4 + n7 + n8/2)
]
where n1,n2,..n9 are counts of RR/RR,RR/RA,..,AA/AA genotypes.
Returns 0 on success, -1 if the values could not be determined (missing genotypes)
*/
static int _calc_r2_ld(vcfbuf_t *buf, bcf1_t *arec, bcf1_t *brec, vcfbuf_ld_t *ld)
{
if ( arec->n_sample!=brec->n_sample ) error("Different number of samples: %d vs %d\n",arec->n_sample,brec->n_sample);
assert( arec->n_sample );
int i,j,igt = bcf_hdr_id2int(buf->hdr, BCF_DT_ID, "GT");
bcf_unpack(arec, BCF_UN_FMT);
bcf_unpack(brec, BCF_UN_FMT);
bcf_fmt_t *afmt = NULL, *bfmt = NULL;
for (i=0; i<arec->n_fmt; i++)
if ( arec->d.fmt[i].id==igt ) { afmt = &arec->d.fmt[i]; break; }
if ( !afmt ) return -1; // no GT tag
for (i=0; i<brec->n_fmt; i++)
if ( brec->d.fmt[i].id==igt ) { bfmt = &brec->d.fmt[i]; break; }
if ( !bfmt ) return -1; // no GT tag
if ( afmt->n==0 ) return -1; // empty?!
if ( bfmt->n==0 ) return -1; // empty?!
if ( afmt->type!=BCF_BT_INT8 ) error("TODO: the GT fmt_type is not int8!\n");
if ( bfmt->type!=BCF_BT_INT8 ) error("TODO: the GT fmt_type is not int8!\n");
// Determine allele frequencies, this is to sample randomly missing genotypes
double aaf = 0, baf = 0;
if ( buf->ld.rand_missing )
{
aaf = _estimate_af((int8_t*)afmt->p, afmt->size, afmt->n, arec->n_sample);
baf = _estimate_af((int8_t*)bfmt->p, bfmt->size, bfmt->n, brec->n_sample);
}
// Calculate r2, lf, hd
double nhd[] = {0,0,0,0,0,0,0,0,0};
double ab = 0, aa = 0, bb = 0, a = 0, b = 0;
int nab = 0, ndiff = 0;
int an_tot = 0, bn_tot = 0;
for (i=0; i<arec->n_sample; i++)
{
int8_t *aptr = (int8_t*) (afmt->p + i*afmt->size);
int8_t *bptr = (int8_t*) (bfmt->p + i*bfmt->size);
int adsg = 0, bdsg = 0; // dosages (0,1,2) at sites (a,b)
int an = 0, bn = 0; // number of alleles at sites (a,b)
for (j=0; j<afmt->n; j++)
{
if ( aptr[j]==bcf_int8_vector_end ) break;
if ( aptr[j]==bcf_gt_missing )
{
if ( !buf->ld.rand_missing ) break;
if ( hts_drand48() >= aaf ) adsg += 1;
}
else if ( bcf_gt_allele(aptr[j]) ) adsg += 1;
an++;
}
for (j=0; j<bfmt->n; j++)
{
if ( bptr[j]==bcf_int8_vector_end ) break;
if ( bptr[j]==bcf_gt_missing )
{
if ( !buf->ld.rand_missing ) break;
if ( hts_drand48() >= baf ) bdsg += 1;
}
else if ( bcf_gt_allele(bptr[j]) ) bdsg += 1;
bn++;
}
if ( an && bn )
{
an_tot += an;
aa += adsg*adsg;
a += adsg;
bn_tot += bn;
bb += bdsg*bdsg;
b += bdsg;
if ( adsg!=bdsg ) ndiff++;
ab += adsg*bdsg;
nab++;
}
if ( an==2 && bn==2 ) // for now only diploid genotypes
{
assert( adsg<=2 && bdsg<=2 );
nhd[ bdsg*3 + adsg ]++;
}
}
if ( !nab ) return -1; // no data in common for the two sites
double pa = a/an_tot;
double pb = b/bn_tot;
double cor;
if ( !ndiff ) cor = 1;
else
{
if ( aa == a*a/nab || bb == b*b/nab ) // zero variance, add small noise
{
aa += 1e-4;
bb += 1e-4;
ab += 1e-4;
a += 1e-2;
b += 1e-2;
nab++;
}
cor = (ab - a*b/nab) / sqrt(aa - a*a/nab) / sqrt(bb - b*b/nab);
}
ld->val[VCFBUF_LD_IDX_R2] = cor * cor;
// Lewontin's normalization of D. Also we cap at 1 as the calculation
// can result in values bigger than 1 for high AFs.
ld->val[VCFBUF_LD_IDX_LD] = cor * sqrt(pa*(1-pa)*pb*(1-pb));
double norm;
if ( ld->val[VCFBUF_LD_IDX_LD] < 0 )
norm = -pa*pb > -(1-pa)*(1-pb) ? -pa*pb : -(1-pa)*(1-pb);
else
norm = pa*(1-pb) > (1-pa)*pb ? pa*(1-pb) : (1-pa)*pb;
if ( norm )
ld->val[VCFBUF_LD_IDX_LD] = fabs(norm) > fabs(ld->val[VCFBUF_LD_IDX_LD]) ? ld->val[VCFBUF_LD_IDX_LD]/norm : 1;
if ( !ld->val[VCFBUF_LD_IDX_LD] )
ld->val[VCFBUF_LD_IDX_LD] = fabs(ld->val[VCFBUF_LD_IDX_LD]); // avoid "-0" on output
ld->val[VCFBUF_LD_IDX_HD] =
(nhd[0] + nhd[1]/2. + nhd[3]/2. + nhd[4]/4.)*(nhd[4]/4. + nhd[5]/2. + nhd[7]/2. + nhd[8])
- (nhd[1]/2. + nhd[2] + nhd[4]/4. + nhd[5]/2.)*(nhd[3]/2. + nhd[4]/4. + nhd[6] + nhd[7]/2.);
ld->val[VCFBUF_LD_IDX_HD] /= nab;
ld->val[VCFBUF_LD_IDX_HD] /= nab+1;
return 0;
}
int vcfbuf_ld(vcfbuf_t *buf, bcf1_t *rec, vcfbuf_ld_t *ld)
{
int ret = -1;
if ( !buf->rbuf.n ) return ret;
int j, i = buf->rbuf.f;
// Relying on vcfbuf being properly flushed - all sites in the buffer
// must come from the same chromosome
if ( buf->vcf[i].rec->rid != rec->rid ) return ret;
vcfbuf_ld_t tmp;
for (j=0; j<VCFBUF_LD_N; j++)
{
ld->val[j] = -HUGE_VAL;
ld->rec[j] = NULL;
}
for (i=-1; rbuf_next(&buf->rbuf,&i); )
{
if ( buf->vcf[i].filter ) continue;
if ( _calc_r2_ld(buf, buf->vcf[i].rec, rec, &tmp) < 0 ) continue; // missing genotypes
int done = 0;
for (j=0; j<VCFBUF_LD_N; j++)
{
if ( ld->val[j] < tmp.val[j] )
{
ld->val[j] = tmp.val[j];
ld->rec[j] = buf->vcf[i].rec;
}
if ( buf->ld.max[j] < tmp.val[j] ) done = 1;
ret = 0;
}
if ( done ) return ret;
}
return ret;
}
|