File: prob1.c.pysam.c

package info (click to toggle)
python-pysam 0.7.7-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 11,096 kB
  • ctags: 10,802
  • sloc: ansic: 25,638; python: 3,882; makefile: 157; sh: 12
file content (990 lines) | stat: -rw-r--r-- 33,473 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
#include "pysam.h"

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <assert.h>
#include <limits.h>
#include <zlib.h>
#include "prob1.h"
#include "kstring.h"

#include "kseq.h"
KSTREAM_INIT(gzFile, gzread, 16384)

#define MC_MAX_EM_ITER 16
#define MC_EM_EPS 1e-5
#define MC_DEF_INDEL 0.15

gzFile bcf_p1_fp_lk;

unsigned char seq_nt4_table[256] = {
	4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4, 
	4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4, 
	4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4,  4, 4 /*'-'*/, 4, 4,
	4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4, 
	4, 0, 4, 1,  4, 4, 4, 2,  4, 4, 4, 4,  4, 4, 4, 4, 
	4, 4, 4, 4,  3, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4, 
	4, 0, 4, 1,  4, 4, 4, 2,  4, 4, 4, 4,  4, 4, 4, 4, 
	4, 4, 4, 4,  3, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4, 
	4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4, 
	4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4, 
	4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4, 
	4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4, 
	4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4, 
	4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4, 
	4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4, 
	4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4,  4, 4, 4, 4
};

struct __bcf_p1aux_t {
	int n, M, n1, is_indel;
	uint8_t *ploidy; // haploid or diploid ONLY
	double *q2p, *pdg; // pdg -> P(D|g)
	double *phi, *phi_indel;
	double *z, *zswap; // aux for afs
	double *z1, *z2, *phi1, *phi2; // only calculated when n1 is set
	double **hg; // hypergeometric distribution
	double *lf; // log factorial
	double t, t1, t2;
	double *afs, *afs1; // afs: accumulative AFS; afs1: site posterior distribution
	const uint8_t *PL; // point to PL
	int PL_len;
};

void bcf_p1_indel_prior(bcf_p1aux_t *ma, double x)
{
	int i;
	for (i = 0; i < ma->M; ++i)
		ma->phi_indel[i] = ma->phi[i] * x;
	ma->phi_indel[ma->M] = 1. - ma->phi[ma->M] * x;
}

static void init_prior(int type, double theta, int M, double *phi)
{
	int i;
	if (type == MC_PTYPE_COND2) {
		for (i = 0; i <= M; ++i)
			phi[i] = 2. * (i + 1) / (M + 1) / (M + 2);
	} else if (type == MC_PTYPE_FLAT) {
		for (i = 0; i <= M; ++i)
			phi[i] = 1. / (M + 1);
	} else {
		double sum;
		for (i = 0, sum = 0.; i < M; ++i)
			sum += (phi[i] = theta / (M - i));
		phi[M] = 1. - sum;
	}
}

void bcf_p1_init_prior(bcf_p1aux_t *ma, int type, double theta)
{
	init_prior(type, theta, ma->M, ma->phi);
	bcf_p1_indel_prior(ma, MC_DEF_INDEL);
}

void bcf_p1_init_subprior(bcf_p1aux_t *ma, int type, double theta)
{
	if (ma->n1 <= 0 || ma->n1 >= ma->M) return;
	init_prior(type, theta, 2*ma->n1, ma->phi1);
	init_prior(type, theta, 2*(ma->n - ma->n1), ma->phi2);
}

int bcf_p1_read_prior(bcf_p1aux_t *ma, const char *fn)
{
	gzFile fp;
	kstring_t s;
	kstream_t *ks;
	long double sum;
	int dret, k;
	memset(&s, 0, sizeof(kstring_t));
	fp = strcmp(fn, "-")? gzopen(fn, "r") : gzdopen(fileno(stdin), "r");
	ks = ks_init(fp);
	memset(ma->phi, 0, sizeof(double) * (ma->M + 1));
	while (ks_getuntil(ks, '\n', &s, &dret) >= 0) {
		if (strstr(s.s, "[afs] ") == s.s) {
			char *p = s.s + 6;
			for (k = 0; k <= ma->M; ++k) {
				int x;
				double y;
				x = strtol(p, &p, 10);
				if (x != k && (errno == EINVAL || errno == ERANGE)) return -1;
				++p;
				y = strtod(p, &p);
				if (y == 0. && (errno == EINVAL || errno == ERANGE)) return -1;
				ma->phi[ma->M - k] += y;
			}
		}
	}
	ks_destroy(ks);
	gzclose(fp);
	free(s.s);
	for (sum = 0., k = 0; k <= ma->M; ++k) sum += ma->phi[k];
	fprintf(pysamerr, "[prior]");
	for (k = 0; k <= ma->M; ++k) ma->phi[k] /= sum;
	for (k = 0; k <= ma->M; ++k) fprintf(pysamerr, " %d:%.3lg", k, ma->phi[ma->M - k]);
	fputc('\n', pysamerr);
	for (sum = 0., k = 1; k < ma->M; ++k) sum += ma->phi[ma->M - k] * (2.* k * (ma->M - k) / ma->M / (ma->M - 1));
	fprintf(pysamerr, "[%s] heterozygosity=%lf, ", __func__, (double)sum);
	for (sum = 0., k = 1; k <= ma->M; ++k) sum += k * ma->phi[ma->M - k] / ma->M;
	fprintf(pysamerr, "theta=%lf\n", (double)sum);
	bcf_p1_indel_prior(ma, MC_DEF_INDEL);
	return 0;
}

bcf_p1aux_t *bcf_p1_init(int n, uint8_t *ploidy)
{
	bcf_p1aux_t *ma;
	int i;
	ma = calloc(1, sizeof(bcf_p1aux_t));
	ma->n1 = -1;
	ma->n = n; ma->M = 2 * n;
	if (ploidy) {
		ma->ploidy = malloc(n);
		memcpy(ma->ploidy, ploidy, n);
		for (i = 0, ma->M = 0; i < n; ++i) ma->M += ploidy[i];
		if (ma->M == 2 * n) {
			free(ma->ploidy);
			ma->ploidy = 0;
		}
	}
	ma->q2p = calloc(256, sizeof(double));
	ma->pdg = calloc(3 * ma->n, sizeof(double));
	ma->phi = calloc(ma->M + 1, sizeof(double));
	ma->phi_indel = calloc(ma->M + 1, sizeof(double));
	ma->phi1 = calloc(ma->M + 1, sizeof(double));
	ma->phi2 = calloc(ma->M + 1, sizeof(double));
	ma->z = calloc(ma->M + 1, sizeof(double));
	ma->zswap = calloc(ma->M + 1, sizeof(double));
	ma->z1 = calloc(ma->M + 1, sizeof(double)); // actually we do not need this large
	ma->z2 = calloc(ma->M + 1, sizeof(double));
	ma->afs = calloc(ma->M + 1, sizeof(double));
	ma->afs1 = calloc(ma->M + 1, sizeof(double));
	ma->lf = calloc(ma->M + 1, sizeof(double));
	for (i = 0; i < 256; ++i)
		ma->q2p[i] = pow(10., -i / 10.);
	for (i = 0; i <= ma->M; ++i) ma->lf[i] = lgamma(i + 1);
	bcf_p1_init_prior(ma, MC_PTYPE_FULL, 1e-3); // the simplest prior
	return ma;
}

int bcf_p1_get_M(bcf_p1aux_t *b) { return b->M; }

int bcf_p1_set_n1(bcf_p1aux_t *b, int n1)
{
	if (n1 == 0 || n1 >= b->n) return -1;
	if (b->M != b->n * 2) {
		fprintf(pysamerr, "[%s] unable to set `n1' when there are haploid samples.\n", __func__);
		return -1;
	}
	b->n1 = n1;
	return 0;
}

void bcf_p1_set_ploidy(bcf1_t *b, bcf_p1aux_t *ma)
{
    // bcf_p1aux_t fields are not visible outside of prob1.c, hence this wrapper.
    // Ideally, this should set ploidy per site to allow pseudo-autosomal regions
    b->ploidy = ma->ploidy;
}

void bcf_p1_destroy(bcf_p1aux_t *ma)
{
	if (ma) {
		int k;
		free(ma->lf);
		if (ma->hg && ma->n1 > 0) {
			for (k = 0; k <= 2*ma->n1; ++k) free(ma->hg[k]);
			free(ma->hg);
		}
		free(ma->ploidy); free(ma->q2p); free(ma->pdg);
		free(ma->phi); free(ma->phi_indel); free(ma->phi1); free(ma->phi2);
		free(ma->z); free(ma->zswap); free(ma->z1); free(ma->z2);
		free(ma->afs); free(ma->afs1);
		free(ma);
	}
}

extern double kf_gammap(double s, double z);
int test16(bcf1_t *b, anno16_t *a);

// Wigginton 2005, PMID: 15789306
// written by Jan Wigginton
double calc_hwe(int obs_hom1, int obs_hom2, int obs_hets)
{
    if (obs_hom1 + obs_hom2 + obs_hets == 0 ) return 1;

    assert(obs_hom1 >= 0 && obs_hom2 >= 0 && obs_hets >= 0);

    int obs_homc = obs_hom1 < obs_hom2 ? obs_hom2 : obs_hom1;
    int obs_homr = obs_hom1 < obs_hom2 ? obs_hom1 : obs_hom2;

    int rare_copies = 2 * obs_homr + obs_hets;
    int genotypes   = obs_hets + obs_homc + obs_homr;

    double *het_probs = (double*) calloc(rare_copies+1, sizeof(double));

    /* start at midpoint */
    int mid = rare_copies * (2 * genotypes - rare_copies) / (2 * genotypes);

    /* check to ensure that midpoint and rare alleles have same parity */
    if ((rare_copies & 1) ^ (mid & 1)) mid++;

    int curr_hets = mid;
    int curr_homr = (rare_copies - mid) / 2;
    int curr_homc = genotypes - curr_hets - curr_homr;

    het_probs[mid] = 1.0;
    double sum = het_probs[mid];
    for (curr_hets = mid; curr_hets > 1; curr_hets -= 2)
    {
        het_probs[curr_hets - 2] = het_probs[curr_hets] * curr_hets * (curr_hets - 1.0) / (4.0 * (curr_homr + 1.0) * (curr_homc + 1.0));
        sum += het_probs[curr_hets - 2];

        /* 2 fewer heterozygotes for next iteration -> add one rare, one common homozygote */
        curr_homr++;
        curr_homc++;
    }

    curr_hets = mid;
    curr_homr = (rare_copies - mid) / 2;
    curr_homc = genotypes - curr_hets - curr_homr;
    for (curr_hets = mid; curr_hets <= rare_copies - 2; curr_hets += 2)
    {
        het_probs[curr_hets + 2] = het_probs[curr_hets] * 4.0 * curr_homr * curr_homc /((curr_hets + 2.0) * (curr_hets + 1.0));
        sum += het_probs[curr_hets + 2];

        /* add 2 heterozygotes for next iteration -> subtract one rare, one common homozygote */
        curr_homr--;
        curr_homc--;
    }
    int i;
    for (i = 0; i <= rare_copies; i++) het_probs[i] /= sum;

    /*  p-value calculation for p_hwe  */
    double p_hwe = 0.0;
    for (i = 0; i <= rare_copies; i++)
    {
        if (het_probs[i] > het_probs[obs_hets])
            continue;
        p_hwe += het_probs[i];
    }

    p_hwe = p_hwe > 1.0 ? 1.0 : p_hwe;
    free(het_probs);
    return p_hwe;

}


static void _bcf1_set_ref(bcf1_t *b, int idp)
{
    kstring_t s;
    int old_n_gi = b->n_gi;
    s.m = b->m_str; s.l = b->l_str - 1; s.s = b->str;
    kputs(":GT", &s); kputc('\0', &s);
    b->m_str = s.m; b->l_str = s.l; b->str = s.s;
    bcf_sync(b);

    // Call GTs
    int isample, an = 0;
    for (isample = 0; isample < b->n_smpl; isample++) 
    {
        if ( idp>=0 && ((uint16_t*)b->gi[idp].data)[isample]==0 )
            ((uint8_t*)b->gi[old_n_gi].data)[isample] = 1<<7;
        else
        {
            ((uint8_t*)b->gi[old_n_gi].data)[isample] = 0;
            an += b->ploidy ? b->ploidy[isample] : 2;
        }
    }
    bcf_fit_alt(b,1);
    b->qual = 999;

    // Prepare BCF for output: ref, alt, filter, info, format
    memset(&s, 0, sizeof(kstring_t)); kputc('\0', &s); 
    kputs(b->ref, &s); kputc('\0', &s);
    kputs(b->alt, &s); kputc('\0', &s); kputc('\0', &s);
    {
        ksprintf(&s, "AN=%d;", an);
        kputs(b->info, &s); 
        anno16_t a;
        int has_I16 = test16(b, &a) >= 0? 1 : 0;
        if (has_I16 )
        {
            if ( a.is_tested) ksprintf(&s, ";PV4=%.2g,%.2g,%.2g,%.2g", a.p[0], a.p[1], a.p[2], a.p[3]);
            ksprintf(&s, ";DP4=%d,%d,%d,%d;MQ=%d", a.d[0], a.d[1], a.d[2], a.d[3], a.mq);
        }
        kputc('\0', &s);
        rm_info(&s, "I16=");
        rm_info(&s, "QS=");
    }
    kputs(b->fmt, &s); kputc('\0', &s);
    free(b->str);
    b->m_str = s.m; b->l_str = s.l; b->str = s.s;
    bcf_sync(b);
}

int call_multiallelic_gt(bcf1_t *b, bcf_p1aux_t *ma, double threshold, int var_only)
{
    int nals = 1;
    char *p;
    for (p=b->alt; *p; p++)
    {
        if ( *p=='X' || p[0]=='.' ) break;
        if ( p[0]==',' ) nals++;
    }
    if ( b->alt[0] && !*p ) nals++;

    if ( nals>4 )
    {
        if ( *b->ref=='N' ) return 0;
        fprintf(pysamerr,"Not ready for this, more than 4 alleles at %d: %s, %s\n", b->pos+1, b->ref,b->alt); 
        exit(1);
    }

    // find PL, DV and DP FORMAT indexes
    uint8_t *pl = NULL;
    int i, npl = 0, idp = -1, idv = -1;
    for (i = 0; i < b->n_gi; ++i) 
    {
        if (b->gi[i].fmt == bcf_str2int("PL", 2)) 
        {
            pl  = (uint8_t*)b->gi[i].data;
            npl = b->gi[i].len;
        }
        else if (b->gi[i].fmt == bcf_str2int("DP", 2))  idp=i;
        else if (b->gi[i].fmt == bcf_str2int("DV", 2))  idv=i;
    }
    if ( nals==1 ) 
    {
        if ( !var_only ) _bcf1_set_ref(b, idp);
        return 1;
    }
    if ( !pl ) return -1;

    assert(ma->q2p[0] == 1);

    // Init P(D|G)
    int npdg = nals*(nals+1)/2;
    double *pdg,*_pdg;
    _pdg = pdg = malloc(sizeof(double)*ma->n*npdg);
    for (i=0; i<ma->n; i++)
    {
        int j; 
        double sum = 0;
        for (j=0; j<npdg; j++)
        {
            //_pdg[j] = pow(10,-0.1*pl[j]); 
            _pdg[j] = ma->q2p[pl[j]];
            sum += _pdg[j];
        }
        if ( sum )
            for (j=0; j<npdg; j++) _pdg[j] /= sum;
        _pdg += npdg;
        pl += npl;
    }

    if ((p = strstr(b->info, "QS=")) == 0) { fprintf(pysamerr,"INFO/QS is required with -m, exiting\n"); exit(1); }
    double qsum[4];
    if ( sscanf(p+3,"%lf,%lf,%lf,%lf",&qsum[0],&qsum[1],&qsum[2],&qsum[3])!=4 ) { fprintf(pysamerr,"Could not parse %s\n",p); exit(1); }


    // Calculate the most likely combination of alleles, remembering the most and second most likely set
    int ia,ib,ic, max_als=0, max_als2=0;
    double ref_lk = 0, max_lk = INT_MIN, max_lk2 = INT_MIN, lk_sum = INT_MIN, lk_sums[3];
    for (ia=0; ia<nals; ia++)
    {
        double lk_tot = 0;
        int iaa = (ia+1)*(ia+2)/2-1;
        int isample;
        for (isample=0; isample<ma->n; isample++)
        {
            double *p = pdg + isample*npdg;
            // assert( log(p[iaa]) <= 0 );
            lk_tot += log(p[iaa]);
        }
        if ( ia==0 ) ref_lk = lk_tot;
        if ( max_lk<lk_tot ) { max_lk2 = max_lk; max_als2 = max_als; max_lk = lk_tot; max_als = 1<<ia; }
        else if ( max_lk2<lk_tot ) { max_lk2 = lk_tot; max_als2 = 1<<ia; }
        lk_sum = lk_tot>lk_sum ? lk_tot + log(1+exp(lk_sum-lk_tot)) : lk_sum + log(1+exp(lk_tot-lk_sum));
    }
    lk_sums[0] = lk_sum;
    if ( nals>1 )
    {
        for (ia=0; ia<nals; ia++)
        {
            if ( qsum[ia]==0 ) continue;
            int iaa = (ia+1)*(ia+2)/2-1;
            for (ib=0; ib<ia; ib++)
            {
                if ( qsum[ib]==0 ) continue;
                double lk_tot = 0;
                double fa  = qsum[ia]/(qsum[ia]+qsum[ib]);
                double fb  = qsum[ib]/(qsum[ia]+qsum[ib]);
                double fab = 2*fa*fb; fa *= fa; fb *= fb;
                int isample, ibb = (ib+1)*(ib+2)/2-1, iab = iaa - ia + ib;
                for (isample=0; isample<ma->n; isample++)
                {
                    double *p = pdg + isample*npdg;
                    //assert( log(fa*p[iaa] + fb*p[ibb] + fab*p[iab]) <= 0 );
                    if ( b->ploidy && b->ploidy[isample]==1 )
                        lk_tot +=  log(fa*p[iaa] + fb*p[ibb]);
                    else 
                        lk_tot +=  log(fa*p[iaa] + fb*p[ibb] + fab*p[iab]);
                }
                if ( max_lk<lk_tot ) { max_lk2 = max_lk; max_als2 = max_als; max_lk = lk_tot; max_als = 1<<ia|1<<ib; }
                else if ( max_lk2<lk_tot ) { max_lk2 = lk_tot; max_als2 = 1<<ia|1<<ib; }
                lk_sum = lk_tot>lk_sum ? lk_tot + log(1+exp(lk_sum-lk_tot)) : lk_sum + log(1+exp(lk_tot-lk_sum));
            }
        }
        lk_sums[1] = lk_sum;
    }
    if ( nals>2 )
    {
        for (ia=0; ia<nals; ia++)
        {
            if ( qsum[ia]==0 ) continue;
            int iaa = (ia+1)*(ia+2)/2-1;
            for (ib=0; ib<ia; ib++)
            {
                if ( qsum[ib]==0 ) continue;
                int ibb = (ib+1)*(ib+2)/2-1; 
                int iab = iaa - ia + ib;
                for (ic=0; ic<ib; ic++)
                {
                    if ( qsum[ic]==0 ) continue;
                    double lk_tot = 0;
                    double fa  = qsum[ia]/(qsum[ia]+qsum[ib]+qsum[ic]);
                    double fb  = qsum[ib]/(qsum[ia]+qsum[ib]+qsum[ic]);
                    double fc  = qsum[ic]/(qsum[ia]+qsum[ib]+qsum[ic]);
                    double fab = 2*fa*fb, fac = 2*fa*fc, fbc = 2*fb*fc; fa *= fa; fb *= fb; fc *= fc;
                    int isample, icc = (ic+1)*(ic+2)/2-1;
                    int iac = iaa - ia + ic, ibc = ibb - ib + ic;
                    for (isample=0; isample<ma->n; isample++)
                    {
                        double *p = pdg + isample*npdg;
                        //assert( log(fa*p[iaa] + fb*p[ibb] + fc*p[icc] + fab*p[iab] + fac*p[iac] + fbc*p[ibc]) <= 0 );
                        if ( b->ploidy && b->ploidy[isample]==1 ) 
                            lk_tot += log(fa*p[iaa] + fb*p[ibb] + fc*p[icc]);
                        else
                            lk_tot += log(fa*p[iaa] + fb*p[ibb] + fc*p[icc] + fab*p[iab] + fac*p[iac] + fbc*p[ibc]);
                    }
                    if ( max_lk<lk_tot ) { max_lk2 = max_lk; max_als2 = max_als; max_lk = lk_tot; max_als = 1<<ia|1<<ib|1<<ic; }
                    else if ( max_lk2<lk_tot ) { max_lk2 = lk_tot; max_als2 = 1<<ia|1<<ib|1<<ic; }
                    lk_sum = lk_tot>lk_sum ? lk_tot + log(1+exp(lk_sum-lk_tot)) : lk_sum + log(1+exp(lk_tot-lk_sum));
                }
            }
        }
        lk_sums[2] = lk_sum;
    }

    // Should we add another allele, does it increase the likelihood significantly?
    int n1=0, n2=0;
    for (i=0; i<nals; i++) if ( max_als&1<<i) n1++;
    for (i=0; i<nals; i++) if ( max_als2&1<<i) n2++;
    if ( n2<n1 && kf_gammap(1,2.0*(max_lk-max_lk2))<threshold )
    {
        // the threshold not exceeded, use the second most likely set with fewer alleles
        max_lk  = max_lk2;
        max_als = max_als2;
        n1 = n2;
    }
    lk_sum = lk_sums[n1-1];

    // Get the BCF record ready for GT and GQ
    kstring_t s;
    int old_n_gi = b->n_gi;
    s.m = b->m_str; s.l = b->l_str - 1; s.s = b->str;
    kputs(":GT:GQ", &s); kputc('\0', &s);
    b->m_str = s.m; b->l_str = s.l; b->str = s.s;
    bcf_sync(b);

    // Call GTs
    int isample, gts=0, ac[4] = {0,0,0,0};
    int nRR = 0, nAA = 0, nRA = 0, max_dv = 0;
    for (isample = 0; isample < b->n_smpl; isample++) 
    {
        int ploidy = b->ploidy ? b->ploidy[isample] : 2;
        double *p = pdg + isample*npdg;
        int ia, als = 0;
        double lk = 0, lk_s = 0;
        for (ia=0; ia<nals; ia++)
        {
            if ( !(max_als&1<<ia) ) continue;
            int iaa = (ia+1)*(ia+2)/2-1;
            double _lk = p[iaa]*qsum[ia]*qsum[ia];
            if ( _lk > lk ) { lk = _lk; als = ia<<3 | ia; }
            lk_s += _lk;
        }
        if ( ploidy==2 ) 
        {
            for (ia=0; ia<nals; ia++)
            {
                if ( !(max_als&1<<ia) ) continue;
                int iaa = (ia+1)*(ia+2)/2-1;
                for (ib=0; ib<ia; ib++)
                {
                    if ( !(max_als&1<<ib) ) continue;
                    int iab = iaa - ia + ib;
                    double _lk = 2*qsum[ia]*qsum[ib]*p[iab];
                    if ( _lk > lk ) { lk = _lk; als = ib<<3 | ia; }
                    lk_s += _lk;
                }
            }
        }
        lk = -log(1-lk/lk_s)/0.2302585;
        int dp = 0;
        if ( idp>=0 && (dp=((uint16_t*)b->gi[idp].data)[isample])==0 )
        {
            // no coverage
            ((uint8_t*)b->gi[old_n_gi].data)[isample]   = 1<<7;
            ((uint8_t*)b->gi[old_n_gi+1].data)[isample] = 0;
            continue;
        }
        if ( lk>99 ) lk = 99;
        ((uint8_t*)b->gi[old_n_gi].data)[isample]   = als;
        ((uint8_t*)b->gi[old_n_gi+1].data)[isample] = (int)lk;

        // For MDV annotation
        int dv;
        if ( als && idv>=0 && (dv=((uint16_t*)b->gi[idv].data)[isample]) )
        {
            if ( max_dv < dv ) max_dv = dv;
        }

        // For HWE annotation; multiple ALT alleles treated as one
        if ( !als ) nRR++;
        else if ( !(als>>3&7) || !(als&7) ) nRA++;
        else nAA++;

        gts |= 1<<(als>>3&7) | 1<<(als&7);
        ac[ als>>3&7 ]++;
        ac[ als&7 ]++;
    }
    free(pdg);
    bcf_fit_alt(b,max_als);

    // The VCF spec is ambiguous about QUAL: is it the probability of anything else
    //  (that is QUAL(non-ref) = P(ref)+P(any non-ref other than ALT)) or is it
    //  QUAL(non-ref)=P(ref) and QUAL(ref)=1-P(ref)? Assuming the latter.
    b->qual = gts>1 ? -4.343*(ref_lk - lk_sum) : -4.343*log(1-exp(ref_lk - lk_sum));
    if ( b->qual>999 ) b->qual = 999;

    // Prepare BCF for output: ref, alt, filter, info, format
    memset(&s, 0, sizeof(kstring_t)); kputc('\0', &s); 
    kputs(b->ref, &s); kputc('\0', &s);
    kputs(b->alt, &s); kputc('\0', &s); kputc('\0', &s);
    {
        int an=0, nalts=0;
        for (i=0; i<nals; i++)
        {
            an += ac[i];
            if ( i>0 && ac[i] ) nalts++;
        }
        ksprintf(&s, "AN=%d;", an);
        if ( nalts )
        {
            kputs("AC=", &s);
            for (i=1; i<nals; i++)
            {
                if ( !(gts&1<<i) ) continue;
                nalts--;
                ksprintf(&s,"%d", ac[i]);
                if ( nalts>0 ) kputc(',', &s);
            }
            kputc(';', &s);
        }
        kputs(b->info, &s); 
        anno16_t a;
        int has_I16 = test16(b, &a) >= 0? 1 : 0;
        if (has_I16 )
        {
            if ( a.is_tested) ksprintf(&s, ";PV4=%.2g,%.2g,%.2g,%.2g", a.p[0], a.p[1], a.p[2], a.p[3]);
            ksprintf(&s, ";DP4=%d,%d,%d,%d;MQ=%d", a.d[0], a.d[1], a.d[2], a.d[3], a.mq);
            ksprintf(&s, ";QBD=%e", b->qual/(a.d[0] + a.d[1] + a.d[2] + a.d[3]));
            if ( max_dv ) ksprintf(&s, ";MDV=%d", max_dv);
        }
        if ( nAA+nRA )
        {
            double hwe = calc_hwe(nAA, nRR, nRA);
            ksprintf(&s, ";HWE=%e", hwe);
        }
        kputc('\0', &s);
        rm_info(&s, "I16=");
        rm_info(&s, "QS=");
    }
    kputs(b->fmt, &s); kputc('\0', &s);
    free(b->str);
    b->m_str = s.m; b->l_str = s.l; b->str = s.s;
    bcf_sync(b);

    return gts;
}

static int cal_pdg(const bcf1_t *b, bcf_p1aux_t *ma)
{
    int i, j;
    long *p, tmp;
    p = alloca(b->n_alleles * sizeof(long));
    memset(p, 0, sizeof(long) * b->n_alleles);
    for (j = 0; j < ma->n; ++j) {
        const uint8_t *pi = ma->PL + j * ma->PL_len;
        double *pdg = ma->pdg + j * 3;
        pdg[0] = ma->q2p[pi[2]]; pdg[1] = ma->q2p[pi[1]]; pdg[2] = ma->q2p[pi[0]];
        for (i = 0; i < b->n_alleles; ++i)
            p[i] += (int)pi[(i+1)*(i+2)/2-1];
    }
    for (i = 0; i < b->n_alleles; ++i) p[i] = p[i]<<4 | i;
    for (i = 1; i < b->n_alleles; ++i) // insertion sort
        for (j = i; j > 0 && p[j] < p[j-1]; --j)
            tmp = p[j], p[j] = p[j-1], p[j-1] = tmp;
    for (i = b->n_alleles - 1; i >= 0; --i)
        if ((p[i]&0xf) == 0) break;
    return i;
}


int bcf_p1_call_gt(const bcf_p1aux_t *ma, double f0, int k)
{
	double sum, g[3];
	double max, f3[3], *pdg = ma->pdg + k * 3;
	int q, i, max_i, ploidy;
	ploidy = ma->ploidy? ma->ploidy[k] : 2;
	if (ploidy == 2) {
		f3[0] = (1.-f0)*(1.-f0); f3[1] = 2.*f0*(1.-f0); f3[2] = f0*f0;
	} else {
		f3[0] = 1. - f0; f3[1] = 0; f3[2] = f0;
	}
	for (i = 0, sum = 0.; i < 3; ++i)
		sum += (g[i] = pdg[i] * f3[i]);
	for (i = 0, max = -1., max_i = 0; i < 3; ++i) {
		g[i] /= sum;
		if (g[i] > max) max = g[i], max_i = i;
	}
	max = 1. - max;
	if (max < 1e-308) max = 1e-308;
	q = (int)(-4.343 * log(max) + .499);
	if (q > 99) q = 99;
	return q<<2|max_i;
}

#define TINY 1e-20

static void mc_cal_y_core(bcf_p1aux_t *ma, int beg)
{
	double *z[2], *tmp, *pdg;
	int _j, last_min, last_max;
	assert(beg == 0 || ma->M == ma->n*2);
	z[0] = ma->z;
	z[1] = ma->zswap;
	pdg = ma->pdg;
	memset(z[0], 0, sizeof(double) * (ma->M + 1));
	memset(z[1], 0, sizeof(double) * (ma->M + 1));
	z[0][0] = 1.;
	last_min = last_max = 0;
	ma->t = 0.;
	if (ma->M == ma->n * 2) {
		int M = 0;
		for (_j = beg; _j < ma->n; ++_j) {
			int k, j = _j - beg, _min = last_min, _max = last_max, M0;
			double p[3], sum;
			M0 = M; M += 2;
			pdg = ma->pdg + _j * 3;
			p[0] = pdg[0]; p[1] = 2. * pdg[1]; p[2] = pdg[2];
			for (; _min < _max && z[0][_min] < TINY; ++_min) z[0][_min] = z[1][_min] = 0.;
			for (; _max > _min && z[0][_max] < TINY; --_max) z[0][_max] = z[1][_max] = 0.;
			_max += 2;
			if (_min == 0) k = 0, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k];
			if (_min <= 1) k = 1, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1];
			for (k = _min < 2? 2 : _min; k <= _max; ++k)
				z[1][k] = (M0-k+1)*(M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1] + k*(k-1)* p[2] * z[0][k-2];
			for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k];
			ma->t += log(sum / (M * (M - 1.)));
			for (k = _min; k <= _max; ++k) z[1][k] /= sum;
			if (_min >= 1) z[1][_min-1] = 0.;
			if (_min >= 2) z[1][_min-2] = 0.;
			if (j < ma->n - 1) z[1][_max+1] = z[1][_max+2] = 0.;
			if (_j == ma->n1 - 1) { // set pop1; ma->n1==-1 when unset
				ma->t1 = ma->t;
				memcpy(ma->z1, z[1], sizeof(double) * (ma->n1 * 2 + 1));
			}
			tmp = z[0]; z[0] = z[1]; z[1] = tmp;
			last_min = _min; last_max = _max;
		}
		//for (_j = 0; _j < last_min; ++_j) z[0][_j] = 0.; // TODO: are these necessary?
		//for (_j = last_max + 1; _j < ma->M; ++_j) z[0][_j] = 0.;
	} else { // this block is very similar to the block above; these two might be merged in future
		int j, M = 0;
		for (j = 0; j < ma->n; ++j) {
			int k, M0, _min = last_min, _max = last_max;
			double p[3], sum;
			pdg = ma->pdg + j * 3;
			for (; _min < _max && z[0][_min] < TINY; ++_min) z[0][_min] = z[1][_min] = 0.;
			for (; _max > _min && z[0][_max] < TINY; --_max) z[0][_max] = z[1][_max] = 0.;
			M0 = M;
			M += ma->ploidy[j];
			if (ma->ploidy[j] == 1) {
				p[0] = pdg[0]; p[1] = pdg[2];
				_max++;
				if (_min == 0) k = 0, z[1][k] = (M0+1-k) * p[0] * z[0][k];
				for (k = _min < 1? 1 : _min; k <= _max; ++k)
					z[1][k] = (M0+1-k) * p[0] * z[0][k] + k * p[1] * z[0][k-1];
				for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k];
				ma->t += log(sum / M);
				for (k = _min; k <= _max; ++k) z[1][k] /= sum;
				if (_min >= 1) z[1][_min-1] = 0.;
				if (j < ma->n - 1) z[1][_max+1] = 0.;
			} else if (ma->ploidy[j] == 2) {
				p[0] = pdg[0]; p[1] = 2 * pdg[1]; p[2] = pdg[2];
				_max += 2;
				if (_min == 0) k = 0, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k];
				if (_min <= 1) k = 1, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1];
				for (k = _min < 2? 2 : _min; k <= _max; ++k)
					z[1][k] = (M0-k+1)*(M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1] + k*(k-1)* p[2] * z[0][k-2];
				for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k];
				ma->t += log(sum / (M * (M - 1.)));
				for (k = _min; k <= _max; ++k) z[1][k] /= sum;
				if (_min >= 1) z[1][_min-1] = 0.;
				if (_min >= 2) z[1][_min-2] = 0.;
				if (j < ma->n - 1) z[1][_max+1] = z[1][_max+2] = 0.;
			}
			tmp = z[0]; z[0] = z[1]; z[1] = tmp;
			last_min = _min; last_max = _max;
		}
	}
	if (z[0] != ma->z) memcpy(ma->z, z[0], sizeof(double) * (ma->M + 1));
	if (bcf_p1_fp_lk)
		gzwrite(bcf_p1_fp_lk, ma->z, sizeof(double) * (ma->M + 1));
}

static void mc_cal_y(bcf_p1aux_t *ma)
{
	if (ma->n1 > 0 && ma->n1 < ma->n && ma->M == ma->n * 2) { // NB: ma->n1 is ineffective when there are haploid samples
		int k;
		long double x;
		memset(ma->z1, 0, sizeof(double) * (2 * ma->n1 + 1));
		memset(ma->z2, 0, sizeof(double) * (2 * (ma->n - ma->n1) + 1));
		ma->t1 = ma->t2 = 0.;
		mc_cal_y_core(ma, ma->n1);
		ma->t2 = ma->t;
		memcpy(ma->z2, ma->z, sizeof(double) * (2 * (ma->n - ma->n1) + 1));
		mc_cal_y_core(ma, 0);
		// rescale z
		x = expl(ma->t - (ma->t1 + ma->t2));
		for (k = 0; k <= ma->M; ++k) ma->z[k] *= x;
	} else mc_cal_y_core(ma, 0);
}

#define CONTRAST_TINY 1e-30

extern double kf_gammaq(double s, double z); // incomplete gamma function for chi^2 test

static inline double chi2_test(int a, int b, int c, int d)
{
	double x, z;
	x = (double)(a+b) * (c+d) * (b+d) * (a+c);
	if (x == 0.) return 1;
	z = a * d - b * c;
	return kf_gammaq(.5, .5 * z * z * (a+b+c+d) / x);
}

// chi2=(a+b+c+d)(ad-bc)^2/[(a+b)(c+d)(a+c)(b+d)]
static inline double contrast2_aux(const bcf_p1aux_t *p1, double sum, int k1, int k2, double x[3])
{
	double p = p1->phi[k1+k2] * p1->z1[k1] * p1->z2[k2] / sum * p1->hg[k1][k2];
	int n1 = p1->n1, n2 = p1->n - p1->n1;
	if (p < CONTRAST_TINY) return -1;
	if (.5*k1/n1 < .5*k2/n2) x[1] += p;
	else if (.5*k1/n1 > .5*k2/n2) x[2] += p;
	else x[0] += p;
	return p * chi2_test(k1, k2, (n1<<1) - k1, (n2<<1) - k2);
}

static double contrast2(bcf_p1aux_t *p1, double ret[3])
{
	int k, k1, k2, k10, k20, n1, n2;
	double sum;
	// get n1 and n2
	n1 = p1->n1; n2 = p1->n - p1->n1;
	if (n1 <= 0 || n2 <= 0) return 0.;
	if (p1->hg == 0) { // initialize the hypergeometric distribution
		/* NB: the hg matrix may take a lot of memory when there are many samples. There is a way
		   to avoid precomputing this matrix, but it is slower and quite intricate. The following
		   computation in this block can be accelerated with a similar strategy, but perhaps this
		   is not a serious concern for now. */
		double tmp = lgamma(2*(n1+n2)+1) - (lgamma(2*n1+1) + lgamma(2*n2+1));
		p1->hg = calloc(2*n1+1, sizeof(void*));
		for (k1 = 0; k1 <= 2*n1; ++k1) {
			p1->hg[k1] = calloc(2*n2+1, sizeof(double));
			for (k2 = 0; k2 <= 2*n2; ++k2)
				p1->hg[k1][k2] = exp(lgamma(k1+k2+1) + lgamma(p1->M-k1-k2+1) - (lgamma(k1+1) + lgamma(k2+1) + lgamma(2*n1-k1+1) + lgamma(2*n2-k2+1) + tmp));
		}
	}
	{ // compute
		long double suml = 0;
		for (k = 0; k <= p1->M; ++k) suml += p1->phi[k] * p1->z[k];
		sum = suml;
	}
	{ // get the max k1 and k2
		double max;
		int max_k;
		for (k = 0, max = 0, max_k = -1; k <= 2*n1; ++k) {
			double x = p1->phi1[k] * p1->z1[k];
			if (x > max) max = x, max_k = k;
		}
		k10 = max_k;
		for (k = 0, max = 0, max_k = -1; k <= 2*n2; ++k) {
			double x = p1->phi2[k] * p1->z2[k];
			if (x > max) max = x, max_k = k;
		}
		k20 = max_k;
	}
	{ // We can do the following with one nested loop, but that is an O(N^2) thing. The following code block is much faster for large N.
		double x[3], y;
		long double z = 0., L[2];
		x[0] = x[1] = x[2] = 0; L[0] = L[1] = 0;
		for (k1 = k10; k1 >= 0; --k1) {
			for (k2 = k20; k2 >= 0; --k2) {
				if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break;
				else z += y;
			}
			for (k2 = k20 + 1; k2 <= 2*n2; ++k2) {
				if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break;
				else z += y;
			}
		}
		ret[0] = x[0]; ret[1] = x[1]; ret[2] = x[2];
		x[0] = x[1] = x[2] = 0;
		for (k1 = k10 + 1; k1 <= 2*n1; ++k1) {
			for (k2 = k20; k2 >= 0; --k2) {
				if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break;
				else z += y;
			}
			for (k2 = k20 + 1; k2 <= 2*n2; ++k2) {
				if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break;
				else z += y;
			}
		}
		ret[0] += x[0]; ret[1] += x[1]; ret[2] += x[2];
		if (ret[0] + ret[1] + ret[2] < 0.95) { // in case of bad things happened
			ret[0] = ret[1] = ret[2] = 0; L[0] = L[1] = 0;
			for (k1 = 0, z = 0.; k1 <= 2*n1; ++k1)
				for (k2 = 0; k2 <= 2*n2; ++k2)
					if ((y = contrast2_aux(p1, sum, k1, k2, ret)) >= 0) z += y;
			if (ret[0] + ret[1] + ret[2] < 0.95) // It seems that this may be caused by floating point errors. I do not really understand why...
				z = 1.0, ret[0] = ret[1] = ret[2] = 1./3;
		}
		return (double)z;
	}
}

static double mc_cal_afs(bcf_p1aux_t *ma, double *p_ref_folded, double *p_var_folded)
{
	int k;
	long double sum = 0., sum2;
	double *phi = ma->is_indel? ma->phi_indel : ma->phi;
	memset(ma->afs1, 0, sizeof(double) * (ma->M + 1));
	mc_cal_y(ma);
	// compute AFS
	for (k = 0, sum = 0.; k <= ma->M; ++k)
		sum += (long double)phi[k] * ma->z[k];
	for (k = 0; k <= ma->M; ++k) {
		ma->afs1[k] = phi[k] * ma->z[k] / sum;
		if (isnan(ma->afs1[k]) || isinf(ma->afs1[k])) return -1.;
	}
	// compute folded variant probability
	for (k = 0, sum = 0.; k <= ma->M; ++k)
		sum += (long double)(phi[k] + phi[ma->M - k]) / 2. * ma->z[k];
	for (k = 1, sum2 = 0.; k < ma->M; ++k)
		sum2 += (long double)(phi[k] + phi[ma->M - k]) / 2. * ma->z[k];
	*p_var_folded = sum2 / sum;
	*p_ref_folded = (phi[k] + phi[ma->M - k]) / 2. * (ma->z[ma->M] + ma->z[0]) / sum;
	// the expected frequency
	for (k = 0, sum = 0.; k <= ma->M; ++k) {
		ma->afs[k] += ma->afs1[k];
		sum += k * ma->afs1[k];
	}
	return sum / ma->M;
}

int bcf_p1_cal(const bcf1_t *b, int do_contrast, bcf_p1aux_t *ma, bcf_p1rst_t *rst)
{
	int i, k;
	long double sum = 0.;
	ma->is_indel = bcf_is_indel(b);
	rst->perm_rank = -1;
	// set PL and PL_len
	for (i = 0; i < b->n_gi; ++i) {
		if (b->gi[i].fmt == bcf_str2int("PL", 2)) {
			ma->PL = (uint8_t*)b->gi[i].data;
			ma->PL_len = b->gi[i].len;
			break;
		}
	}
	if (i == b->n_gi) return -1; // no PL
	if (b->n_alleles < 2) return -1; // FIXME: find a better solution
	// 
	rst->rank0 = cal_pdg(b, ma);
	rst->f_exp = mc_cal_afs(ma, &rst->p_ref_folded, &rst->p_var_folded);
	rst->p_ref = ma->afs1[ma->M];
	for (k = 0, sum = 0.; k < ma->M; ++k)
		sum += ma->afs1[k];
	rst->p_var = (double)sum;
	{ // compute the allele count
		double max = -1;
		rst->ac = -1;
		for (k = 0; k <= ma->M; ++k)
			if (max < ma->z[k]) max = ma->z[k], rst->ac = k;
		rst->ac = ma->M - rst->ac;
	}
	// calculate f_flat and f_em
	for (k = 0, sum = 0.; k <= ma->M; ++k)
		sum += (long double)ma->z[k];
	rst->f_flat = 0.;
	for (k = 0; k <= ma->M; ++k) {
		double p = ma->z[k] / sum;
		rst->f_flat += k * p;
	}
	rst->f_flat /= ma->M;
	{ // estimate equal-tail credible interval (95% level)
		int l, h;
		double p;
		for (i = 0, p = 0.; i <= ma->M; ++i)
			if (p + ma->afs1[i] > 0.025) break;
			else p += ma->afs1[i];
		l = i;
		for (i = ma->M, p = 0.; i >= 0; --i)
			if (p + ma->afs1[i] > 0.025) break;
			else p += ma->afs1[i];
		h = i;
		rst->cil = (double)(ma->M - h) / ma->M; rst->cih = (double)(ma->M - l) / ma->M;
	}
	if (ma->n1 > 0) { // compute LRT
		double max0, max1, max2;
		for (k = 0, max0 = -1; k <= ma->M; ++k)
			if (max0 < ma->z[k]) max0 = ma->z[k];
		for (k = 0, max1 = -1; k <= ma->n1 * 2; ++k)
			if (max1 < ma->z1[k]) max1 = ma->z1[k];
		for (k = 0, max2 = -1; k <= ma->M - ma->n1 * 2; ++k)
			if (max2 < ma->z2[k]) max2 = ma->z2[k];
		rst->lrt = log(max1 * max2 / max0);
		rst->lrt = rst->lrt < 0? 1 : kf_gammaq(.5, rst->lrt);
	} else rst->lrt = -1.0;
	rst->cmp[0] = rst->cmp[1] = rst->cmp[2] = rst->p_chi2 = -1.0;
	if (do_contrast && rst->p_var > 0.5) // skip contrast2() if the locus is a strong non-variant
		rst->p_chi2 = contrast2(ma, rst->cmp);
	return 0;
}

void bcf_p1_dump_afs(bcf_p1aux_t *ma)
{
	int k;
	fprintf(pysamerr, "[afs]");
	for (k = 0; k <= ma->M; ++k)
		fprintf(pysamerr, " %d:%.3lf", k, ma->afs[ma->M - k]);
	fprintf(pysamerr, "\n");
	memset(ma->afs, 0, sizeof(double) * (ma->M + 1));
}