1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
|
#include "pysam.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <assert.h>
#include <limits.h>
#include <zlib.h>
#include "prob1.h"
#include "kstring.h"
#include "kseq.h"
KSTREAM_INIT(gzFile, gzread, 16384)
#define MC_MAX_EM_ITER 16
#define MC_EM_EPS 1e-5
#define MC_DEF_INDEL 0.15
gzFile bcf_p1_fp_lk;
unsigned char seq_nt4_table[256] = {
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 /*'-'*/, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 0, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 0, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
};
struct __bcf_p1aux_t {
int n, M, n1, is_indel;
uint8_t *ploidy; // haploid or diploid ONLY
double *q2p, *pdg; // pdg -> P(D|g)
double *phi, *phi_indel;
double *z, *zswap; // aux for afs
double *z1, *z2, *phi1, *phi2; // only calculated when n1 is set
double **hg; // hypergeometric distribution
double *lf; // log factorial
double t, t1, t2;
double *afs, *afs1; // afs: accumulative AFS; afs1: site posterior distribution
const uint8_t *PL; // point to PL
int PL_len;
};
void bcf_p1_indel_prior(bcf_p1aux_t *ma, double x)
{
int i;
for (i = 0; i < ma->M; ++i)
ma->phi_indel[i] = ma->phi[i] * x;
ma->phi_indel[ma->M] = 1. - ma->phi[ma->M] * x;
}
static void init_prior(int type, double theta, int M, double *phi)
{
int i;
if (type == MC_PTYPE_COND2) {
for (i = 0; i <= M; ++i)
phi[i] = 2. * (i + 1) / (M + 1) / (M + 2);
} else if (type == MC_PTYPE_FLAT) {
for (i = 0; i <= M; ++i)
phi[i] = 1. / (M + 1);
} else {
double sum;
for (i = 0, sum = 0.; i < M; ++i)
sum += (phi[i] = theta / (M - i));
phi[M] = 1. - sum;
}
}
void bcf_p1_init_prior(bcf_p1aux_t *ma, int type, double theta)
{
init_prior(type, theta, ma->M, ma->phi);
bcf_p1_indel_prior(ma, MC_DEF_INDEL);
}
void bcf_p1_init_subprior(bcf_p1aux_t *ma, int type, double theta)
{
if (ma->n1 <= 0 || ma->n1 >= ma->M) return;
init_prior(type, theta, 2*ma->n1, ma->phi1);
init_prior(type, theta, 2*(ma->n - ma->n1), ma->phi2);
}
int bcf_p1_read_prior(bcf_p1aux_t *ma, const char *fn)
{
gzFile fp;
kstring_t s;
kstream_t *ks;
long double sum;
int dret, k;
memset(&s, 0, sizeof(kstring_t));
fp = strcmp(fn, "-")? gzopen(fn, "r") : gzdopen(fileno(stdin), "r");
ks = ks_init(fp);
memset(ma->phi, 0, sizeof(double) * (ma->M + 1));
while (ks_getuntil(ks, '\n', &s, &dret) >= 0) {
if (strstr(s.s, "[afs] ") == s.s) {
char *p = s.s + 6;
for (k = 0; k <= ma->M; ++k) {
int x;
double y;
x = strtol(p, &p, 10);
if (x != k && (errno == EINVAL || errno == ERANGE)) return -1;
++p;
y = strtod(p, &p);
if (y == 0. && (errno == EINVAL || errno == ERANGE)) return -1;
ma->phi[ma->M - k] += y;
}
}
}
ks_destroy(ks);
gzclose(fp);
free(s.s);
for (sum = 0., k = 0; k <= ma->M; ++k) sum += ma->phi[k];
fprintf(pysamerr, "[prior]");
for (k = 0; k <= ma->M; ++k) ma->phi[k] /= sum;
for (k = 0; k <= ma->M; ++k) fprintf(pysamerr, " %d:%.3lg", k, ma->phi[ma->M - k]);
fputc('\n', pysamerr);
for (sum = 0., k = 1; k < ma->M; ++k) sum += ma->phi[ma->M - k] * (2.* k * (ma->M - k) / ma->M / (ma->M - 1));
fprintf(pysamerr, "[%s] heterozygosity=%lf, ", __func__, (double)sum);
for (sum = 0., k = 1; k <= ma->M; ++k) sum += k * ma->phi[ma->M - k] / ma->M;
fprintf(pysamerr, "theta=%lf\n", (double)sum);
bcf_p1_indel_prior(ma, MC_DEF_INDEL);
return 0;
}
bcf_p1aux_t *bcf_p1_init(int n, uint8_t *ploidy)
{
bcf_p1aux_t *ma;
int i;
ma = calloc(1, sizeof(bcf_p1aux_t));
ma->n1 = -1;
ma->n = n; ma->M = 2 * n;
if (ploidy) {
ma->ploidy = malloc(n);
memcpy(ma->ploidy, ploidy, n);
for (i = 0, ma->M = 0; i < n; ++i) ma->M += ploidy[i];
if (ma->M == 2 * n) {
free(ma->ploidy);
ma->ploidy = 0;
}
}
ma->q2p = calloc(256, sizeof(double));
ma->pdg = calloc(3 * ma->n, sizeof(double));
ma->phi = calloc(ma->M + 1, sizeof(double));
ma->phi_indel = calloc(ma->M + 1, sizeof(double));
ma->phi1 = calloc(ma->M + 1, sizeof(double));
ma->phi2 = calloc(ma->M + 1, sizeof(double));
ma->z = calloc(ma->M + 1, sizeof(double));
ma->zswap = calloc(ma->M + 1, sizeof(double));
ma->z1 = calloc(ma->M + 1, sizeof(double)); // actually we do not need this large
ma->z2 = calloc(ma->M + 1, sizeof(double));
ma->afs = calloc(ma->M + 1, sizeof(double));
ma->afs1 = calloc(ma->M + 1, sizeof(double));
ma->lf = calloc(ma->M + 1, sizeof(double));
for (i = 0; i < 256; ++i)
ma->q2p[i] = pow(10., -i / 10.);
for (i = 0; i <= ma->M; ++i) ma->lf[i] = lgamma(i + 1);
bcf_p1_init_prior(ma, MC_PTYPE_FULL, 1e-3); // the simplest prior
return ma;
}
int bcf_p1_get_M(bcf_p1aux_t *b) { return b->M; }
int bcf_p1_set_n1(bcf_p1aux_t *b, int n1)
{
if (n1 == 0 || n1 >= b->n) return -1;
if (b->M != b->n * 2) {
fprintf(pysamerr, "[%s] unable to set `n1' when there are haploid samples.\n", __func__);
return -1;
}
b->n1 = n1;
return 0;
}
void bcf_p1_set_ploidy(bcf1_t *b, bcf_p1aux_t *ma)
{
// bcf_p1aux_t fields are not visible outside of prob1.c, hence this wrapper.
// Ideally, this should set ploidy per site to allow pseudo-autosomal regions
b->ploidy = ma->ploidy;
}
void bcf_p1_destroy(bcf_p1aux_t *ma)
{
if (ma) {
int k;
free(ma->lf);
if (ma->hg && ma->n1 > 0) {
for (k = 0; k <= 2*ma->n1; ++k) free(ma->hg[k]);
free(ma->hg);
}
free(ma->ploidy); free(ma->q2p); free(ma->pdg);
free(ma->phi); free(ma->phi_indel); free(ma->phi1); free(ma->phi2);
free(ma->z); free(ma->zswap); free(ma->z1); free(ma->z2);
free(ma->afs); free(ma->afs1);
free(ma);
}
}
extern double kf_gammap(double s, double z);
int test16(bcf1_t *b, anno16_t *a);
// Wigginton 2005, PMID: 15789306
// written by Jan Wigginton
double calc_hwe(int obs_hom1, int obs_hom2, int obs_hets)
{
if (obs_hom1 + obs_hom2 + obs_hets == 0 ) return 1;
assert(obs_hom1 >= 0 && obs_hom2 >= 0 && obs_hets >= 0);
int obs_homc = obs_hom1 < obs_hom2 ? obs_hom2 : obs_hom1;
int obs_homr = obs_hom1 < obs_hom2 ? obs_hom1 : obs_hom2;
int rare_copies = 2 * obs_homr + obs_hets;
int genotypes = obs_hets + obs_homc + obs_homr;
double *het_probs = (double*) calloc(rare_copies+1, sizeof(double));
/* start at midpoint */
int mid = rare_copies * (2 * genotypes - rare_copies) / (2 * genotypes);
/* check to ensure that midpoint and rare alleles have same parity */
if ((rare_copies & 1) ^ (mid & 1)) mid++;
int curr_hets = mid;
int curr_homr = (rare_copies - mid) / 2;
int curr_homc = genotypes - curr_hets - curr_homr;
het_probs[mid] = 1.0;
double sum = het_probs[mid];
for (curr_hets = mid; curr_hets > 1; curr_hets -= 2)
{
het_probs[curr_hets - 2] = het_probs[curr_hets] * curr_hets * (curr_hets - 1.0) / (4.0 * (curr_homr + 1.0) * (curr_homc + 1.0));
sum += het_probs[curr_hets - 2];
/* 2 fewer heterozygotes for next iteration -> add one rare, one common homozygote */
curr_homr++;
curr_homc++;
}
curr_hets = mid;
curr_homr = (rare_copies - mid) / 2;
curr_homc = genotypes - curr_hets - curr_homr;
for (curr_hets = mid; curr_hets <= rare_copies - 2; curr_hets += 2)
{
het_probs[curr_hets + 2] = het_probs[curr_hets] * 4.0 * curr_homr * curr_homc /((curr_hets + 2.0) * (curr_hets + 1.0));
sum += het_probs[curr_hets + 2];
/* add 2 heterozygotes for next iteration -> subtract one rare, one common homozygote */
curr_homr--;
curr_homc--;
}
int i;
for (i = 0; i <= rare_copies; i++) het_probs[i] /= sum;
/* p-value calculation for p_hwe */
double p_hwe = 0.0;
for (i = 0; i <= rare_copies; i++)
{
if (het_probs[i] > het_probs[obs_hets])
continue;
p_hwe += het_probs[i];
}
p_hwe = p_hwe > 1.0 ? 1.0 : p_hwe;
free(het_probs);
return p_hwe;
}
static void _bcf1_set_ref(bcf1_t *b, int idp)
{
kstring_t s;
int old_n_gi = b->n_gi;
s.m = b->m_str; s.l = b->l_str - 1; s.s = b->str;
kputs(":GT", &s); kputc('\0', &s);
b->m_str = s.m; b->l_str = s.l; b->str = s.s;
bcf_sync(b);
// Call GTs
int isample, an = 0;
for (isample = 0; isample < b->n_smpl; isample++)
{
if ( idp>=0 && ((uint16_t*)b->gi[idp].data)[isample]==0 )
((uint8_t*)b->gi[old_n_gi].data)[isample] = 1<<7;
else
{
((uint8_t*)b->gi[old_n_gi].data)[isample] = 0;
an += b->ploidy ? b->ploidy[isample] : 2;
}
}
bcf_fit_alt(b,1);
b->qual = 999;
// Prepare BCF for output: ref, alt, filter, info, format
memset(&s, 0, sizeof(kstring_t)); kputc('\0', &s);
kputs(b->ref, &s); kputc('\0', &s);
kputs(b->alt, &s); kputc('\0', &s); kputc('\0', &s);
{
ksprintf(&s, "AN=%d;", an);
kputs(b->info, &s);
anno16_t a;
int has_I16 = test16(b, &a) >= 0? 1 : 0;
if (has_I16 )
{
if ( a.is_tested) ksprintf(&s, ";PV4=%.2g,%.2g,%.2g,%.2g", a.p[0], a.p[1], a.p[2], a.p[3]);
ksprintf(&s, ";DP4=%d,%d,%d,%d;MQ=%d", a.d[0], a.d[1], a.d[2], a.d[3], a.mq);
}
kputc('\0', &s);
rm_info(&s, "I16=");
rm_info(&s, "QS=");
}
kputs(b->fmt, &s); kputc('\0', &s);
free(b->str);
b->m_str = s.m; b->l_str = s.l; b->str = s.s;
bcf_sync(b);
}
int call_multiallelic_gt(bcf1_t *b, bcf_p1aux_t *ma, double threshold, int var_only)
{
int nals = 1;
char *p;
for (p=b->alt; *p; p++)
{
if ( *p=='X' || p[0]=='.' ) break;
if ( p[0]==',' ) nals++;
}
if ( b->alt[0] && !*p ) nals++;
if ( nals>4 )
{
if ( *b->ref=='N' ) return 0;
fprintf(pysamerr,"Not ready for this, more than 4 alleles at %d: %s, %s\n", b->pos+1, b->ref,b->alt);
exit(1);
}
// find PL, DV and DP FORMAT indexes
uint8_t *pl = NULL;
int i, npl = 0, idp = -1, idv = -1;
for (i = 0; i < b->n_gi; ++i)
{
if (b->gi[i].fmt == bcf_str2int("PL", 2))
{
pl = (uint8_t*)b->gi[i].data;
npl = b->gi[i].len;
}
else if (b->gi[i].fmt == bcf_str2int("DP", 2)) idp=i;
else if (b->gi[i].fmt == bcf_str2int("DV", 2)) idv=i;
}
if ( nals==1 )
{
if ( !var_only ) _bcf1_set_ref(b, idp);
return 1;
}
if ( !pl ) return -1;
assert(ma->q2p[0] == 1);
// Init P(D|G)
int npdg = nals*(nals+1)/2;
double *pdg,*_pdg;
_pdg = pdg = malloc(sizeof(double)*ma->n*npdg);
for (i=0; i<ma->n; i++)
{
int j;
double sum = 0;
for (j=0; j<npdg; j++)
{
//_pdg[j] = pow(10,-0.1*pl[j]);
_pdg[j] = ma->q2p[pl[j]];
sum += _pdg[j];
}
if ( sum )
for (j=0; j<npdg; j++) _pdg[j] /= sum;
_pdg += npdg;
pl += npl;
}
if ((p = strstr(b->info, "QS=")) == 0) { fprintf(pysamerr,"INFO/QS is required with -m, exiting\n"); exit(1); }
double qsum[4];
if ( sscanf(p+3,"%lf,%lf,%lf,%lf",&qsum[0],&qsum[1],&qsum[2],&qsum[3])!=4 ) { fprintf(pysamerr,"Could not parse %s\n",p); exit(1); }
// Calculate the most likely combination of alleles, remembering the most and second most likely set
int ia,ib,ic, max_als=0, max_als2=0;
double ref_lk = 0, max_lk = INT_MIN, max_lk2 = INT_MIN, lk_sum = INT_MIN, lk_sums[3];
for (ia=0; ia<nals; ia++)
{
double lk_tot = 0;
int iaa = (ia+1)*(ia+2)/2-1;
int isample;
for (isample=0; isample<ma->n; isample++)
{
double *p = pdg + isample*npdg;
// assert( log(p[iaa]) <= 0 );
lk_tot += log(p[iaa]);
}
if ( ia==0 ) ref_lk = lk_tot;
if ( max_lk<lk_tot ) { max_lk2 = max_lk; max_als2 = max_als; max_lk = lk_tot; max_als = 1<<ia; }
else if ( max_lk2<lk_tot ) { max_lk2 = lk_tot; max_als2 = 1<<ia; }
lk_sum = lk_tot>lk_sum ? lk_tot + log(1+exp(lk_sum-lk_tot)) : lk_sum + log(1+exp(lk_tot-lk_sum));
}
lk_sums[0] = lk_sum;
if ( nals>1 )
{
for (ia=0; ia<nals; ia++)
{
if ( qsum[ia]==0 ) continue;
int iaa = (ia+1)*(ia+2)/2-1;
for (ib=0; ib<ia; ib++)
{
if ( qsum[ib]==0 ) continue;
double lk_tot = 0;
double fa = qsum[ia]/(qsum[ia]+qsum[ib]);
double fb = qsum[ib]/(qsum[ia]+qsum[ib]);
double fab = 2*fa*fb; fa *= fa; fb *= fb;
int isample, ibb = (ib+1)*(ib+2)/2-1, iab = iaa - ia + ib;
for (isample=0; isample<ma->n; isample++)
{
double *p = pdg + isample*npdg;
//assert( log(fa*p[iaa] + fb*p[ibb] + fab*p[iab]) <= 0 );
if ( b->ploidy && b->ploidy[isample]==1 )
lk_tot += log(fa*p[iaa] + fb*p[ibb]);
else
lk_tot += log(fa*p[iaa] + fb*p[ibb] + fab*p[iab]);
}
if ( max_lk<lk_tot ) { max_lk2 = max_lk; max_als2 = max_als; max_lk = lk_tot; max_als = 1<<ia|1<<ib; }
else if ( max_lk2<lk_tot ) { max_lk2 = lk_tot; max_als2 = 1<<ia|1<<ib; }
lk_sum = lk_tot>lk_sum ? lk_tot + log(1+exp(lk_sum-lk_tot)) : lk_sum + log(1+exp(lk_tot-lk_sum));
}
}
lk_sums[1] = lk_sum;
}
if ( nals>2 )
{
for (ia=0; ia<nals; ia++)
{
if ( qsum[ia]==0 ) continue;
int iaa = (ia+1)*(ia+2)/2-1;
for (ib=0; ib<ia; ib++)
{
if ( qsum[ib]==0 ) continue;
int ibb = (ib+1)*(ib+2)/2-1;
int iab = iaa - ia + ib;
for (ic=0; ic<ib; ic++)
{
if ( qsum[ic]==0 ) continue;
double lk_tot = 0;
double fa = qsum[ia]/(qsum[ia]+qsum[ib]+qsum[ic]);
double fb = qsum[ib]/(qsum[ia]+qsum[ib]+qsum[ic]);
double fc = qsum[ic]/(qsum[ia]+qsum[ib]+qsum[ic]);
double fab = 2*fa*fb, fac = 2*fa*fc, fbc = 2*fb*fc; fa *= fa; fb *= fb; fc *= fc;
int isample, icc = (ic+1)*(ic+2)/2-1;
int iac = iaa - ia + ic, ibc = ibb - ib + ic;
for (isample=0; isample<ma->n; isample++)
{
double *p = pdg + isample*npdg;
//assert( log(fa*p[iaa] + fb*p[ibb] + fc*p[icc] + fab*p[iab] + fac*p[iac] + fbc*p[ibc]) <= 0 );
if ( b->ploidy && b->ploidy[isample]==1 )
lk_tot += log(fa*p[iaa] + fb*p[ibb] + fc*p[icc]);
else
lk_tot += log(fa*p[iaa] + fb*p[ibb] + fc*p[icc] + fab*p[iab] + fac*p[iac] + fbc*p[ibc]);
}
if ( max_lk<lk_tot ) { max_lk2 = max_lk; max_als2 = max_als; max_lk = lk_tot; max_als = 1<<ia|1<<ib|1<<ic; }
else if ( max_lk2<lk_tot ) { max_lk2 = lk_tot; max_als2 = 1<<ia|1<<ib|1<<ic; }
lk_sum = lk_tot>lk_sum ? lk_tot + log(1+exp(lk_sum-lk_tot)) : lk_sum + log(1+exp(lk_tot-lk_sum));
}
}
}
lk_sums[2] = lk_sum;
}
// Should we add another allele, does it increase the likelihood significantly?
int n1=0, n2=0;
for (i=0; i<nals; i++) if ( max_als&1<<i) n1++;
for (i=0; i<nals; i++) if ( max_als2&1<<i) n2++;
if ( n2<n1 && kf_gammap(1,2.0*(max_lk-max_lk2))<threshold )
{
// the threshold not exceeded, use the second most likely set with fewer alleles
max_lk = max_lk2;
max_als = max_als2;
n1 = n2;
}
lk_sum = lk_sums[n1-1];
// Get the BCF record ready for GT and GQ
kstring_t s;
int old_n_gi = b->n_gi;
s.m = b->m_str; s.l = b->l_str - 1; s.s = b->str;
kputs(":GT:GQ", &s); kputc('\0', &s);
b->m_str = s.m; b->l_str = s.l; b->str = s.s;
bcf_sync(b);
// Call GTs
int isample, gts=0, ac[4] = {0,0,0,0};
int nRR = 0, nAA = 0, nRA = 0, max_dv = 0;
for (isample = 0; isample < b->n_smpl; isample++)
{
int ploidy = b->ploidy ? b->ploidy[isample] : 2;
double *p = pdg + isample*npdg;
int ia, als = 0;
double lk = 0, lk_s = 0;
for (ia=0; ia<nals; ia++)
{
if ( !(max_als&1<<ia) ) continue;
int iaa = (ia+1)*(ia+2)/2-1;
double _lk = p[iaa]*qsum[ia]*qsum[ia];
if ( _lk > lk ) { lk = _lk; als = ia<<3 | ia; }
lk_s += _lk;
}
if ( ploidy==2 )
{
for (ia=0; ia<nals; ia++)
{
if ( !(max_als&1<<ia) ) continue;
int iaa = (ia+1)*(ia+2)/2-1;
for (ib=0; ib<ia; ib++)
{
if ( !(max_als&1<<ib) ) continue;
int iab = iaa - ia + ib;
double _lk = 2*qsum[ia]*qsum[ib]*p[iab];
if ( _lk > lk ) { lk = _lk; als = ib<<3 | ia; }
lk_s += _lk;
}
}
}
lk = -log(1-lk/lk_s)/0.2302585;
int dp = 0;
if ( idp>=0 && (dp=((uint16_t*)b->gi[idp].data)[isample])==0 )
{
// no coverage
((uint8_t*)b->gi[old_n_gi].data)[isample] = 1<<7;
((uint8_t*)b->gi[old_n_gi+1].data)[isample] = 0;
continue;
}
if ( lk>99 ) lk = 99;
((uint8_t*)b->gi[old_n_gi].data)[isample] = als;
((uint8_t*)b->gi[old_n_gi+1].data)[isample] = (int)lk;
// For MDV annotation
int dv;
if ( als && idv>=0 && (dv=((uint16_t*)b->gi[idv].data)[isample]) )
{
if ( max_dv < dv ) max_dv = dv;
}
// For HWE annotation; multiple ALT alleles treated as one
if ( !als ) nRR++;
else if ( !(als>>3&7) || !(als&7) ) nRA++;
else nAA++;
gts |= 1<<(als>>3&7) | 1<<(als&7);
ac[ als>>3&7 ]++;
ac[ als&7 ]++;
}
free(pdg);
bcf_fit_alt(b,max_als);
// The VCF spec is ambiguous about QUAL: is it the probability of anything else
// (that is QUAL(non-ref) = P(ref)+P(any non-ref other than ALT)) or is it
// QUAL(non-ref)=P(ref) and QUAL(ref)=1-P(ref)? Assuming the latter.
b->qual = gts>1 ? -4.343*(ref_lk - lk_sum) : -4.343*log(1-exp(ref_lk - lk_sum));
if ( b->qual>999 ) b->qual = 999;
// Prepare BCF for output: ref, alt, filter, info, format
memset(&s, 0, sizeof(kstring_t)); kputc('\0', &s);
kputs(b->ref, &s); kputc('\0', &s);
kputs(b->alt, &s); kputc('\0', &s); kputc('\0', &s);
{
int an=0, nalts=0;
for (i=0; i<nals; i++)
{
an += ac[i];
if ( i>0 && ac[i] ) nalts++;
}
ksprintf(&s, "AN=%d;", an);
if ( nalts )
{
kputs("AC=", &s);
for (i=1; i<nals; i++)
{
if ( !(gts&1<<i) ) continue;
nalts--;
ksprintf(&s,"%d", ac[i]);
if ( nalts>0 ) kputc(',', &s);
}
kputc(';', &s);
}
kputs(b->info, &s);
anno16_t a;
int has_I16 = test16(b, &a) >= 0? 1 : 0;
if (has_I16 )
{
if ( a.is_tested) ksprintf(&s, ";PV4=%.2g,%.2g,%.2g,%.2g", a.p[0], a.p[1], a.p[2], a.p[3]);
ksprintf(&s, ";DP4=%d,%d,%d,%d;MQ=%d", a.d[0], a.d[1], a.d[2], a.d[3], a.mq);
ksprintf(&s, ";QBD=%e", b->qual/(a.d[0] + a.d[1] + a.d[2] + a.d[3]));
if ( max_dv ) ksprintf(&s, ";MDV=%d", max_dv);
}
if ( nAA+nRA )
{
double hwe = calc_hwe(nAA, nRR, nRA);
ksprintf(&s, ";HWE=%e", hwe);
}
kputc('\0', &s);
rm_info(&s, "I16=");
rm_info(&s, "QS=");
}
kputs(b->fmt, &s); kputc('\0', &s);
free(b->str);
b->m_str = s.m; b->l_str = s.l; b->str = s.s;
bcf_sync(b);
return gts;
}
static int cal_pdg(const bcf1_t *b, bcf_p1aux_t *ma)
{
int i, j;
long *p, tmp;
p = alloca(b->n_alleles * sizeof(long));
memset(p, 0, sizeof(long) * b->n_alleles);
for (j = 0; j < ma->n; ++j) {
const uint8_t *pi = ma->PL + j * ma->PL_len;
double *pdg = ma->pdg + j * 3;
pdg[0] = ma->q2p[pi[2]]; pdg[1] = ma->q2p[pi[1]]; pdg[2] = ma->q2p[pi[0]];
for (i = 0; i < b->n_alleles; ++i)
p[i] += (int)pi[(i+1)*(i+2)/2-1];
}
for (i = 0; i < b->n_alleles; ++i) p[i] = p[i]<<4 | i;
for (i = 1; i < b->n_alleles; ++i) // insertion sort
for (j = i; j > 0 && p[j] < p[j-1]; --j)
tmp = p[j], p[j] = p[j-1], p[j-1] = tmp;
for (i = b->n_alleles - 1; i >= 0; --i)
if ((p[i]&0xf) == 0) break;
return i;
}
int bcf_p1_call_gt(const bcf_p1aux_t *ma, double f0, int k)
{
double sum, g[3];
double max, f3[3], *pdg = ma->pdg + k * 3;
int q, i, max_i, ploidy;
ploidy = ma->ploidy? ma->ploidy[k] : 2;
if (ploidy == 2) {
f3[0] = (1.-f0)*(1.-f0); f3[1] = 2.*f0*(1.-f0); f3[2] = f0*f0;
} else {
f3[0] = 1. - f0; f3[1] = 0; f3[2] = f0;
}
for (i = 0, sum = 0.; i < 3; ++i)
sum += (g[i] = pdg[i] * f3[i]);
for (i = 0, max = -1., max_i = 0; i < 3; ++i) {
g[i] /= sum;
if (g[i] > max) max = g[i], max_i = i;
}
max = 1. - max;
if (max < 1e-308) max = 1e-308;
q = (int)(-4.343 * log(max) + .499);
if (q > 99) q = 99;
return q<<2|max_i;
}
#define TINY 1e-20
static void mc_cal_y_core(bcf_p1aux_t *ma, int beg)
{
double *z[2], *tmp, *pdg;
int _j, last_min, last_max;
assert(beg == 0 || ma->M == ma->n*2);
z[0] = ma->z;
z[1] = ma->zswap;
pdg = ma->pdg;
memset(z[0], 0, sizeof(double) * (ma->M + 1));
memset(z[1], 0, sizeof(double) * (ma->M + 1));
z[0][0] = 1.;
last_min = last_max = 0;
ma->t = 0.;
if (ma->M == ma->n * 2) {
int M = 0;
for (_j = beg; _j < ma->n; ++_j) {
int k, j = _j - beg, _min = last_min, _max = last_max, M0;
double p[3], sum;
M0 = M; M += 2;
pdg = ma->pdg + _j * 3;
p[0] = pdg[0]; p[1] = 2. * pdg[1]; p[2] = pdg[2];
for (; _min < _max && z[0][_min] < TINY; ++_min) z[0][_min] = z[1][_min] = 0.;
for (; _max > _min && z[0][_max] < TINY; --_max) z[0][_max] = z[1][_max] = 0.;
_max += 2;
if (_min == 0) k = 0, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k];
if (_min <= 1) k = 1, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1];
for (k = _min < 2? 2 : _min; k <= _max; ++k)
z[1][k] = (M0-k+1)*(M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1] + k*(k-1)* p[2] * z[0][k-2];
for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k];
ma->t += log(sum / (M * (M - 1.)));
for (k = _min; k <= _max; ++k) z[1][k] /= sum;
if (_min >= 1) z[1][_min-1] = 0.;
if (_min >= 2) z[1][_min-2] = 0.;
if (j < ma->n - 1) z[1][_max+1] = z[1][_max+2] = 0.;
if (_j == ma->n1 - 1) { // set pop1; ma->n1==-1 when unset
ma->t1 = ma->t;
memcpy(ma->z1, z[1], sizeof(double) * (ma->n1 * 2 + 1));
}
tmp = z[0]; z[0] = z[1]; z[1] = tmp;
last_min = _min; last_max = _max;
}
//for (_j = 0; _j < last_min; ++_j) z[0][_j] = 0.; // TODO: are these necessary?
//for (_j = last_max + 1; _j < ma->M; ++_j) z[0][_j] = 0.;
} else { // this block is very similar to the block above; these two might be merged in future
int j, M = 0;
for (j = 0; j < ma->n; ++j) {
int k, M0, _min = last_min, _max = last_max;
double p[3], sum;
pdg = ma->pdg + j * 3;
for (; _min < _max && z[0][_min] < TINY; ++_min) z[0][_min] = z[1][_min] = 0.;
for (; _max > _min && z[0][_max] < TINY; --_max) z[0][_max] = z[1][_max] = 0.;
M0 = M;
M += ma->ploidy[j];
if (ma->ploidy[j] == 1) {
p[0] = pdg[0]; p[1] = pdg[2];
_max++;
if (_min == 0) k = 0, z[1][k] = (M0+1-k) * p[0] * z[0][k];
for (k = _min < 1? 1 : _min; k <= _max; ++k)
z[1][k] = (M0+1-k) * p[0] * z[0][k] + k * p[1] * z[0][k-1];
for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k];
ma->t += log(sum / M);
for (k = _min; k <= _max; ++k) z[1][k] /= sum;
if (_min >= 1) z[1][_min-1] = 0.;
if (j < ma->n - 1) z[1][_max+1] = 0.;
} else if (ma->ploidy[j] == 2) {
p[0] = pdg[0]; p[1] = 2 * pdg[1]; p[2] = pdg[2];
_max += 2;
if (_min == 0) k = 0, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k];
if (_min <= 1) k = 1, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1];
for (k = _min < 2? 2 : _min; k <= _max; ++k)
z[1][k] = (M0-k+1)*(M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1] + k*(k-1)* p[2] * z[0][k-2];
for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k];
ma->t += log(sum / (M * (M - 1.)));
for (k = _min; k <= _max; ++k) z[1][k] /= sum;
if (_min >= 1) z[1][_min-1] = 0.;
if (_min >= 2) z[1][_min-2] = 0.;
if (j < ma->n - 1) z[1][_max+1] = z[1][_max+2] = 0.;
}
tmp = z[0]; z[0] = z[1]; z[1] = tmp;
last_min = _min; last_max = _max;
}
}
if (z[0] != ma->z) memcpy(ma->z, z[0], sizeof(double) * (ma->M + 1));
if (bcf_p1_fp_lk)
gzwrite(bcf_p1_fp_lk, ma->z, sizeof(double) * (ma->M + 1));
}
static void mc_cal_y(bcf_p1aux_t *ma)
{
if (ma->n1 > 0 && ma->n1 < ma->n && ma->M == ma->n * 2) { // NB: ma->n1 is ineffective when there are haploid samples
int k;
long double x;
memset(ma->z1, 0, sizeof(double) * (2 * ma->n1 + 1));
memset(ma->z2, 0, sizeof(double) * (2 * (ma->n - ma->n1) + 1));
ma->t1 = ma->t2 = 0.;
mc_cal_y_core(ma, ma->n1);
ma->t2 = ma->t;
memcpy(ma->z2, ma->z, sizeof(double) * (2 * (ma->n - ma->n1) + 1));
mc_cal_y_core(ma, 0);
// rescale z
x = expl(ma->t - (ma->t1 + ma->t2));
for (k = 0; k <= ma->M; ++k) ma->z[k] *= x;
} else mc_cal_y_core(ma, 0);
}
#define CONTRAST_TINY 1e-30
extern double kf_gammaq(double s, double z); // incomplete gamma function for chi^2 test
static inline double chi2_test(int a, int b, int c, int d)
{
double x, z;
x = (double)(a+b) * (c+d) * (b+d) * (a+c);
if (x == 0.) return 1;
z = a * d - b * c;
return kf_gammaq(.5, .5 * z * z * (a+b+c+d) / x);
}
// chi2=(a+b+c+d)(ad-bc)^2/[(a+b)(c+d)(a+c)(b+d)]
static inline double contrast2_aux(const bcf_p1aux_t *p1, double sum, int k1, int k2, double x[3])
{
double p = p1->phi[k1+k2] * p1->z1[k1] * p1->z2[k2] / sum * p1->hg[k1][k2];
int n1 = p1->n1, n2 = p1->n - p1->n1;
if (p < CONTRAST_TINY) return -1;
if (.5*k1/n1 < .5*k2/n2) x[1] += p;
else if (.5*k1/n1 > .5*k2/n2) x[2] += p;
else x[0] += p;
return p * chi2_test(k1, k2, (n1<<1) - k1, (n2<<1) - k2);
}
static double contrast2(bcf_p1aux_t *p1, double ret[3])
{
int k, k1, k2, k10, k20, n1, n2;
double sum;
// get n1 and n2
n1 = p1->n1; n2 = p1->n - p1->n1;
if (n1 <= 0 || n2 <= 0) return 0.;
if (p1->hg == 0) { // initialize the hypergeometric distribution
/* NB: the hg matrix may take a lot of memory when there are many samples. There is a way
to avoid precomputing this matrix, but it is slower and quite intricate. The following
computation in this block can be accelerated with a similar strategy, but perhaps this
is not a serious concern for now. */
double tmp = lgamma(2*(n1+n2)+1) - (lgamma(2*n1+1) + lgamma(2*n2+1));
p1->hg = calloc(2*n1+1, sizeof(void*));
for (k1 = 0; k1 <= 2*n1; ++k1) {
p1->hg[k1] = calloc(2*n2+1, sizeof(double));
for (k2 = 0; k2 <= 2*n2; ++k2)
p1->hg[k1][k2] = exp(lgamma(k1+k2+1) + lgamma(p1->M-k1-k2+1) - (lgamma(k1+1) + lgamma(k2+1) + lgamma(2*n1-k1+1) + lgamma(2*n2-k2+1) + tmp));
}
}
{ // compute
long double suml = 0;
for (k = 0; k <= p1->M; ++k) suml += p1->phi[k] * p1->z[k];
sum = suml;
}
{ // get the max k1 and k2
double max;
int max_k;
for (k = 0, max = 0, max_k = -1; k <= 2*n1; ++k) {
double x = p1->phi1[k] * p1->z1[k];
if (x > max) max = x, max_k = k;
}
k10 = max_k;
for (k = 0, max = 0, max_k = -1; k <= 2*n2; ++k) {
double x = p1->phi2[k] * p1->z2[k];
if (x > max) max = x, max_k = k;
}
k20 = max_k;
}
{ // We can do the following with one nested loop, but that is an O(N^2) thing. The following code block is much faster for large N.
double x[3], y;
long double z = 0., L[2];
x[0] = x[1] = x[2] = 0; L[0] = L[1] = 0;
for (k1 = k10; k1 >= 0; --k1) {
for (k2 = k20; k2 >= 0; --k2) {
if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break;
else z += y;
}
for (k2 = k20 + 1; k2 <= 2*n2; ++k2) {
if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break;
else z += y;
}
}
ret[0] = x[0]; ret[1] = x[1]; ret[2] = x[2];
x[0] = x[1] = x[2] = 0;
for (k1 = k10 + 1; k1 <= 2*n1; ++k1) {
for (k2 = k20; k2 >= 0; --k2) {
if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break;
else z += y;
}
for (k2 = k20 + 1; k2 <= 2*n2; ++k2) {
if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break;
else z += y;
}
}
ret[0] += x[0]; ret[1] += x[1]; ret[2] += x[2];
if (ret[0] + ret[1] + ret[2] < 0.95) { // in case of bad things happened
ret[0] = ret[1] = ret[2] = 0; L[0] = L[1] = 0;
for (k1 = 0, z = 0.; k1 <= 2*n1; ++k1)
for (k2 = 0; k2 <= 2*n2; ++k2)
if ((y = contrast2_aux(p1, sum, k1, k2, ret)) >= 0) z += y;
if (ret[0] + ret[1] + ret[2] < 0.95) // It seems that this may be caused by floating point errors. I do not really understand why...
z = 1.0, ret[0] = ret[1] = ret[2] = 1./3;
}
return (double)z;
}
}
static double mc_cal_afs(bcf_p1aux_t *ma, double *p_ref_folded, double *p_var_folded)
{
int k;
long double sum = 0., sum2;
double *phi = ma->is_indel? ma->phi_indel : ma->phi;
memset(ma->afs1, 0, sizeof(double) * (ma->M + 1));
mc_cal_y(ma);
// compute AFS
for (k = 0, sum = 0.; k <= ma->M; ++k)
sum += (long double)phi[k] * ma->z[k];
for (k = 0; k <= ma->M; ++k) {
ma->afs1[k] = phi[k] * ma->z[k] / sum;
if (isnan(ma->afs1[k]) || isinf(ma->afs1[k])) return -1.;
}
// compute folded variant probability
for (k = 0, sum = 0.; k <= ma->M; ++k)
sum += (long double)(phi[k] + phi[ma->M - k]) / 2. * ma->z[k];
for (k = 1, sum2 = 0.; k < ma->M; ++k)
sum2 += (long double)(phi[k] + phi[ma->M - k]) / 2. * ma->z[k];
*p_var_folded = sum2 / sum;
*p_ref_folded = (phi[k] + phi[ma->M - k]) / 2. * (ma->z[ma->M] + ma->z[0]) / sum;
// the expected frequency
for (k = 0, sum = 0.; k <= ma->M; ++k) {
ma->afs[k] += ma->afs1[k];
sum += k * ma->afs1[k];
}
return sum / ma->M;
}
int bcf_p1_cal(const bcf1_t *b, int do_contrast, bcf_p1aux_t *ma, bcf_p1rst_t *rst)
{
int i, k;
long double sum = 0.;
ma->is_indel = bcf_is_indel(b);
rst->perm_rank = -1;
// set PL and PL_len
for (i = 0; i < b->n_gi; ++i) {
if (b->gi[i].fmt == bcf_str2int("PL", 2)) {
ma->PL = (uint8_t*)b->gi[i].data;
ma->PL_len = b->gi[i].len;
break;
}
}
if (i == b->n_gi) return -1; // no PL
if (b->n_alleles < 2) return -1; // FIXME: find a better solution
//
rst->rank0 = cal_pdg(b, ma);
rst->f_exp = mc_cal_afs(ma, &rst->p_ref_folded, &rst->p_var_folded);
rst->p_ref = ma->afs1[ma->M];
for (k = 0, sum = 0.; k < ma->M; ++k)
sum += ma->afs1[k];
rst->p_var = (double)sum;
{ // compute the allele count
double max = -1;
rst->ac = -1;
for (k = 0; k <= ma->M; ++k)
if (max < ma->z[k]) max = ma->z[k], rst->ac = k;
rst->ac = ma->M - rst->ac;
}
// calculate f_flat and f_em
for (k = 0, sum = 0.; k <= ma->M; ++k)
sum += (long double)ma->z[k];
rst->f_flat = 0.;
for (k = 0; k <= ma->M; ++k) {
double p = ma->z[k] / sum;
rst->f_flat += k * p;
}
rst->f_flat /= ma->M;
{ // estimate equal-tail credible interval (95% level)
int l, h;
double p;
for (i = 0, p = 0.; i <= ma->M; ++i)
if (p + ma->afs1[i] > 0.025) break;
else p += ma->afs1[i];
l = i;
for (i = ma->M, p = 0.; i >= 0; --i)
if (p + ma->afs1[i] > 0.025) break;
else p += ma->afs1[i];
h = i;
rst->cil = (double)(ma->M - h) / ma->M; rst->cih = (double)(ma->M - l) / ma->M;
}
if (ma->n1 > 0) { // compute LRT
double max0, max1, max2;
for (k = 0, max0 = -1; k <= ma->M; ++k)
if (max0 < ma->z[k]) max0 = ma->z[k];
for (k = 0, max1 = -1; k <= ma->n1 * 2; ++k)
if (max1 < ma->z1[k]) max1 = ma->z1[k];
for (k = 0, max2 = -1; k <= ma->M - ma->n1 * 2; ++k)
if (max2 < ma->z2[k]) max2 = ma->z2[k];
rst->lrt = log(max1 * max2 / max0);
rst->lrt = rst->lrt < 0? 1 : kf_gammaq(.5, rst->lrt);
} else rst->lrt = -1.0;
rst->cmp[0] = rst->cmp[1] = rst->cmp[2] = rst->p_chi2 = -1.0;
if (do_contrast && rst->p_var > 0.5) // skip contrast2() if the locus is a strong non-variant
rst->p_chi2 = contrast2(ma, rst->cmp);
return 0;
}
void bcf_p1_dump_afs(bcf_p1aux_t *ma)
{
int k;
fprintf(pysamerr, "[afs]");
for (k = 0; k <= ma->M; ++k)
fprintf(pysamerr, " %d:%.3lf", k, ma->afs[ma->M - k]);
fprintf(pysamerr, "\n");
memset(ma->afs, 0, sizeof(double) * (ma->M + 1));
}
|