1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
|
#include <ctype.h>
#include <assert.h>
#include "bam.h"
#include "khash.h"
#include "ksort.h"
#include "bam_endian.h"
#include "knetfile.h"
#include "pysam_util.h"
#include "errmod.h" // for pysam_dump
// for sequence parsing
#include "kseq.h"
#ifndef inline
#define inline __inline
#endif
// Definition of pysamerr
#include "stdio.h"
FILE * pysamerr = NULL;
FILE * pysam_set_stderr(int fd)
{
if (pysamerr != NULL)
fclose(pysamerr);
pysamerr = fdopen(fd, "w");
return pysamerr;
}
void pysam_unset_stderr()
{
if (pysamerr != NULL)
fclose(pysamerr);
pysamerr = fopen("/dev/null", "w");
}
// #######################################################
// utility routines to avoid using callbacks in bam_fetch
// taken from bam_index.c
// The order of the following declarations is important.
// #######################################################
#define BAM_MAX_BIN 37450 // =(8^6-1)/7+1
// initialize hashes
typedef struct
{
uint64_t u, v;
} pair64_t;
#define pair64_lt(a,b) ((a).u < (b).u)
KSORT_INIT(myoff, pair64_t, pair64_lt);
typedef struct {
uint32_t m, n;
pair64_t *list;
} bam_binlist_t;
typedef struct {
int32_t n, m;
uint64_t *offset;
} bam_lidx_t;
// initialize hashes ('i' and 's' are idenditifiers)
KHASH_MAP_INIT_INT(i, bam_binlist_t);
KHASH_MAP_INIT_STR(s, int)
struct __bam_index_t
{
int32_t n;
uint64_t n_no_coor; // unmapped reads without coordinate
khash_t(i) **index;
bam_lidx_t *index2;
};
typedef struct __linkbuf_t {
bam1_t b;
uint32_t beg, end;
struct __linkbuf_t *next;
} lbnode_t;
typedef struct {
int cnt, n, max;
lbnode_t **buf;
} mempool_t;
struct __bam_plbuf_t {
mempool_t *mp;
lbnode_t *head, *tail, *dummy;
bam_pileup_f func;
void *func_data;
int32_t tid, pos, max_tid, max_pos;
int max_pu, is_eof;
bam_pileup1_t *pu;
int flag_mask;
};
static mempool_t *mp_init()
{
mempool_t *mp;
mp = (mempool_t*)calloc(1, sizeof(mempool_t));
return mp;
}
static void mp_destroy(mempool_t *mp)
{
int k;
for (k = 0; k < mp->n; ++k) {
free(mp->buf[k]->b.data);
free(mp->buf[k]);
}
free(mp->buf);
free(mp);
}
static inline lbnode_t *mp_alloc(mempool_t *mp)
{
++mp->cnt;
if (mp->n == 0) return (lbnode_t*)calloc(1, sizeof(lbnode_t));
else return mp->buf[--mp->n];
}
static inline void mp_free(mempool_t *mp, lbnode_t *p)
{
--mp->cnt; p->next = 0; // clear lbnode_t::next here
if (mp->n == mp->max) {
mp->max = mp->max? mp->max<<1 : 256;
mp->buf = (lbnode_t**)realloc(mp->buf, sizeof(lbnode_t*) * mp->max);
}
mp->buf[mp->n++] = p;
}
static inline int resolve_cigar(bam_pileup1_t *p, uint32_t pos)
{
unsigned k;
bam1_t *b = p->b;
bam1_core_t *c = &b->core;
uint32_t x = c->pos, y = 0;
int ret = 1, is_restart = 1;
if (c->flag&BAM_FUNMAP) return 0; // unmapped read
assert(x <= pos); // otherwise a bug
p->qpos = -1; p->indel = 0; p->is_del = p->is_head = p->is_tail = 0;
for (k = 0; k < c->n_cigar; ++k) {
int op = bam1_cigar(b)[k] & BAM_CIGAR_MASK; // operation
int l = bam1_cigar(b)[k] >> BAM_CIGAR_SHIFT; // length
if (op == BAM_CMATCH) { // NOTE: this assumes the first and the last operation MUST BE a match or a clip
if (x + l > pos) { // overlap with pos
p->indel = p->is_del = 0;
p->qpos = y + (pos - x);
if (x == pos && is_restart) p->is_head = 1;
if (x + l - 1 == pos) { // come to the end of a match
if (k < c->n_cigar - 1) { // there are additional operation(s)
uint32_t cigar = bam1_cigar(b)[k+1]; // next CIGAR
int op_next = cigar&BAM_CIGAR_MASK; // next CIGAR operation
if (op_next == BAM_CDEL) p->indel = -(int32_t)(cigar>>BAM_CIGAR_SHIFT); // del
else if (op_next == BAM_CINS) p->indel = cigar>>BAM_CIGAR_SHIFT; // ins
if (op_next == BAM_CSOFT_CLIP || op_next == BAM_CREF_SKIP || op_next == BAM_CHARD_CLIP)
p->is_tail = 1; // tail
} else p->is_tail = 1; // this is the last operation; set tail
}
}
x += l; y += l;
} else if (op == BAM_CDEL) { // then set ->is_del
if (x + l > pos) {
p->indel = 0; p->is_del = 1;
p->qpos = y + (pos - x);
}
x += l;
} else if (op == BAM_CREF_SKIP) x += l;
else if (op == BAM_CINS || op == BAM_CSOFT_CLIP) y += l;
is_restart = (op == BAM_CREF_SKIP || op == BAM_CSOFT_CLIP || op == BAM_CHARD_CLIP);
if (x > pos) {
if (op == BAM_CREF_SKIP) ret = 0; // then do not put it into pileup at all
break;
}
}
assert(x > pos); // otherwise a bug
return ret;
}
// the following code has been taken from bam_plbuf_push
// and modified such that instead of a function call
// the function returns and will continue (if cont is true).
// from where it left off.
// returns
// 1: if buf is full and can be emitted
// 0: if b has been added
// -1: if there was an error
int pysam_pileup_next(const bam1_t *b,
bam_plbuf_t *buf,
bam_pileup1_t ** plp,
int * tid,
int * pos,
int * n_plp )
{
*plp = bam_plp_next(buf->iter, tid, pos, n_plp);
if (plp == NULL) return 0;
return 1;
}
typedef struct __bmc_aux_t {
int max;
uint32_t *info;
uint16_t *info16;
errmod_t *em;
} bmc_aux_t;
// Return number of mapped reads on tid.
// If tid < 0, return mapped reads without a coordinate (0)
uint32_t pysam_get_mapped( const bam_index_t *idx, const int tid )
{
// return no values if index data not present
if (idx==NULL) return 0;
if (tid >= 0)
{
khint_t k;
khash_t(i) *h = idx->index[tid];
k = kh_get(i, h, BAM_MAX_BIN);
if (k != kh_end(h))
return kh_val(h, k).list[1].u;
else
return 0;
}
return 0;
}
uint32_t pysam_get_unmapped( const bam_index_t *idx, const int tid )
{
if (tid >= 0)
{
khint_t k;
khash_t(i) *h = idx->index[tid];
k = kh_get(i, h, BAM_MAX_BIN);
if (k != kh_end(h))
return kh_val(h, k).list[1].v;
else
return 0;
}
return idx->n_no_coor;
}
/* uint32_t pysam_glf_depth( glf1_t * g ) */
/* { */
/* return g->depth; */
/* } */
/* void pysam_dump_glf( glf1_t * g, bam_maqcns_t * c ) */
/* { */
/* int x = 0; */
/* fprintf(stderr, */
/* "glf: ref_base=%i, max_mapQ=%i, min_lk=%i, depth=%i", */
/* g->ref_base, */
/* g->max_mapQ, */
/* g->min_lk, */
/* g->depth ); */
/* for (x = 0; x < 10; ++x) */
/* fprintf(stderr, ", lk%x=%i, ", x, g->lk[x]); */
/* fprintf(stderr, */
/* "maqcns: het_rate=%f, theta=%f, n_hap=%i, cap_mapQ=%i, errmod=%i, min_baseQ=%i, eta=%f, q_r=%f, aux_max=%i", */
/* c->het_rate, */
/* c->theta, */
/* c->n_hap, */
/* c->cap_mapQ, */
/* c->errmod, */
/* c->min_baseQ, */
/* c->eta, */
/* c->q_r, */
/* c->aux->max); */
/* for (x = 0; x < c->aux->max; ++x) */
/* { */
/* fprintf(stderr, ", info-%i=%i ", x, c->aux->info[x]); */
/* if (c->aux->info[x] == 0) break; */
/* } */
/* for (x = 0; x < c->aux->max; ++x) */
/* { */
/* fprintf(stderr, ", info16-%i=%i ", x, c->aux->info16[x]); */
/* if (c->aux->info16[x] == 0) break; */
/* } */
/* } */
// pysam dispatch function to emulate the samtools
// command line within python.
// taken from the main function in bamtk.c
// added code to reset getopt
int bam_taf2baf(int argc, char *argv[]);
int bam_mpileup(int argc, char *argv[]);
int bam_merge(int argc, char *argv[]);
int bam_index(int argc, char *argv[]);
int bam_sort(int argc, char *argv[]);
int bam_tview_main(int argc, char *argv[]);
int bam_mating(int argc, char *argv[]);
int bam_rmdup(int argc, char *argv[]);
int bam_flagstat(int argc, char *argv[]);
int bam_fillmd(int argc, char *argv[]);
int bam_idxstats(int argc, char *argv[]);
int main_samview(int argc, char *argv[]);
int main_import(int argc, char *argv[]);
int main_reheader(int argc, char *argv[]);
int main_cut_target(int argc, char *argv[]);
int main_phase(int argc, char *argv[]);
int main_cat(int argc, char *argv[]);
int main_depth(int argc, char *argv[]);
int main_bam2fq(int argc, char *argv[]);
int main_pad2unpad(int argc, char *argv[]);
int main_bedcov(int argc, char *argv[]);
int main_bamshuf(int argc, char *argv[]);
int faidx_main(int argc, char *argv[]);
int pysam_dispatch(int argc, char *argv[] )
{
extern int optind;
#ifdef _WIN32
setmode(fileno(stdout), O_BINARY);
setmode(fileno(stdin), O_BINARY);
#ifdef _USE_KNETFILE
knet_win32_init();
#endif
#endif
// reset getopt
optind = 1;
if (argc < 2) return 1;
int retval = 0;
if (strcmp(argv[1], "view") == 0) retval = main_samview(argc-1, argv+1);
else if (strcmp(argv[1], "import") == 0) retval = main_import(argc-1, argv+1);
else if (strcmp(argv[1], "mpileup") == 0) retval = bam_mpileup(argc-1, argv+1);
else if (strcmp(argv[1], "merge") == 0) retval = bam_merge(argc-1, argv+1);
else if (strcmp(argv[1], "sort") == 0) retval = bam_sort(argc-1, argv+1);
else if (strcmp(argv[1], "index") == 0) retval = bam_index(argc-1, argv+1);
else if (strcmp(argv[1], "faidx") == 0) retval = faidx_main(argc-1, argv+1);
else if (strcmp(argv[1], "idxstats") == 0) retval = bam_idxstats(argc-1, argv+1);
else if (strcmp(argv[1], "fixmate") == 0) retval = bam_mating(argc-1, argv+1);
else if (strcmp(argv[1], "rmdup") == 0) retval = bam_rmdup(argc-1, argv+1);
else if (strcmp(argv[1], "flagstat") == 0) retval = bam_flagstat(argc-1, argv+1);
else if (strcmp(argv[1], "calmd") == 0) retval = bam_fillmd(argc-1, argv+1);
else if (strcmp(argv[1], "fillmd") == 0) retval = bam_fillmd(argc-1, argv+1);
else if (strcmp(argv[1], "reheader") == 0) retval = main_reheader(argc-1, argv+1);
else if (strcmp(argv[1], "cat") == 0) retval = main_cat(argc-1, argv+1);
else if (strcmp(argv[1], "targetcut") == 0) retval = main_cut_target(argc-1, argv+1);
else if (strcmp(argv[1], "phase") == 0) retval = main_phase(argc-1, argv+1);
else if (strcmp(argv[1], "depth") == 0) retval = main_depth(argc-1, argv+1);
else if (strcmp(argv[1], "bam2fq") == 0) retval = main_bam2fq(argc-1, argv+1);
else if (strcmp(argv[1], "pad2unpad") == 0) retval = main_pad2unpad(argc-1, argv+1);
else if (strcmp(argv[1], "depad") == 0) retval = main_pad2unpad(argc-1, argv+1);
else if (strcmp(argv[1], "bedcov") == 0) retval = main_bedcov(argc-1, argv+1);
else if (strcmp(argv[1], "bamshuf") == 0) retval = main_bamshuf(argc-1, argv+1);
#if _CURSES_LIB != 0
else if (strcmp(argv[1], "tview") == 0) retval = bam_tview_main(argc-1, argv+1);
#endif
else
{
fprintf(stderr, "[main] unrecognized command '%s'\n", argv[1]);
return 1;
}
fflush( stdout );
return retval;
}
// taken from samtools/bam_import.c
static inline uint8_t *alloc_data(bam1_t *b, size_t size)
{
if (b->m_data < size)
{
b->m_data = size;
kroundup32(b->m_data);
b->data = (uint8_t*)realloc(b->data, b->m_data);
}
return b->data;
}
// update the variable length data within a bam1_t entry.
// Adds *nbytes_new* - *nbytes_old* into the variable length data of *src* at *pos*.
// Data within the bam1_t entry is moved so that it is
// consistent with the data field lengths.
bam1_t * pysam_bam_update( bam1_t * b,
const size_t nbytes_old,
const size_t nbytes_new,
uint8_t * pos )
{
int d = nbytes_new-nbytes_old;
int new_size;
size_t offset;
// no change
if (d == 0) return b;
new_size = d + b->data_len;
offset = pos - b->data;
//printf("d=%i, old=%i, new=%i, old_size=%i, new_size=%i\n",
// d, nbytes_old, nbytes_new, b->data_len, new_size);
// increase memory if required
if (d > 0)
{
alloc_data( b, new_size );
pos = b->data + offset;
}
if (b->data_len != 0)
{
if (offset < 0 || offset > b->data_len)
fprintf(stderr, "[pysam_bam_insert] illegal offset: '%i'\n", (int)offset);
}
// printf("dest=%p, src=%p, n=%i\n", pos+nbytes_new, pos + nbytes_old, b->data_len - (offset+nbytes_old));
memmove( pos + nbytes_new,
pos + nbytes_old,
b->data_len - (offset + nbytes_old));
b->data_len = new_size;
return b;
}
// translate a nucleotide character to binary code
unsigned char pysam_translate_sequence( const unsigned char s )
{
return bam_nt16_table[s];
}
void bam_init_header_hash(bam_header_t *header);
// translate a reference string *s* to a tid
// code taken from bam_parse_region
int pysam_reference2tid( bam_header_t *header, const char * s )
{
khiter_t iter;
khash_t(s) *h;
bam_init_header_hash(header);
h = (khash_t(s)*)header->hash;
iter = kh_get(s, h, s); /* get the ref_id */
if (iter == kh_end(h)) { // name not found
return -1;
}
return kh_value(h, iter);
}
// Auxiliary functions for B support
void bam_aux_appendB(bam1_t *b, const char tag[2], char type, char subtype, int len, uint8_t *data)
{
int ori_len;
int data_len;
// check that type is 'B'
if('B' != type) return;
ori_len = b->data_len;
data_len = len * bam_aux_type2size(subtype);
// infer the data length from the sub-type
b->data_len += 8 + data_len;
b->l_aux += 8 + data_len;
if (b->m_data < b->data_len)
{
b->m_data = b->data_len;
kroundup32(b->m_data);
b->data = (uint8_t*)realloc(b->data, b->m_data);
}
b->data[ori_len] = tag[0];
b->data[ori_len + 1] = tag[1];
// tag
b->data[ori_len + 2] = type;
// type
b->data[ori_len + 3] = subtype;
// subtype
(*(int32_t*)(b->data + ori_len + 4)) = len;
// size
memcpy(b->data + ori_len + 8, data, data_len);
// data
}
/*
// return size of auxiliary type
int bam_aux_type2size(int x)
{
if (x == 'C' || x == 'c' || x == 'A') return 1;
else if (x == 'S' || x == 's') return 2;
else if (x == 'I' || x == 'i' || x == 'f') return 4;
else return 0;
}
*/
|