File: pysam_util.c

package info (click to toggle)
python-pysam 0.7.7-1~bpo70%2B1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy-backports
  • size: 11,096 kB
  • sloc: ansic: 25,638; python: 3,882; makefile: 157; sh: 12
file content (521 lines) | stat: -rw-r--r-- 13,648 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
#include <ctype.h>
#include <assert.h>
#include "bam.h"
#include "khash.h"
#include "ksort.h"
#include "bam_endian.h"
#include "knetfile.h"
#include "pysam_util.h"
#include "errmod.h" // for pysam_dump 

// for sequence parsing
#include "kseq.h"

#ifndef inline
#define inline __inline
#endif

// Definition of pysamerr
#include "stdio.h"
FILE * pysamerr = NULL;

FILE * pysam_set_stderr(int fd)
{
  if (pysamerr != NULL)
    fclose(pysamerr);
  pysamerr = fdopen(fd, "w");
  return pysamerr;
}

void pysam_unset_stderr()
{
  if (pysamerr != NULL)
    fclose(pysamerr);
  pysamerr = fopen("/dev/null", "w");
}

// #######################################################
// utility routines to avoid using callbacks in bam_fetch
// taken from bam_index.c
// The order of the following declarations is important.
// #######################################################
#define BAM_MAX_BIN 37450 // =(8^6-1)/7+1

// initialize hashes
typedef struct
{
  uint64_t u, v;
} pair64_t;

#define pair64_lt(a,b) ((a).u < (b).u)

KSORT_INIT(myoff, pair64_t, pair64_lt);

typedef struct {
	uint32_t m, n;
	pair64_t *list;
} bam_binlist_t;

typedef struct {
	int32_t n, m;
	uint64_t *offset;
} bam_lidx_t;


// initialize hashes ('i' and 's' are idenditifiers)
KHASH_MAP_INIT_INT(i, bam_binlist_t);
KHASH_MAP_INIT_STR(s, int)

struct __bam_index_t
{
  int32_t n;
  uint64_t n_no_coor; // unmapped reads without coordinate
  khash_t(i) **index;
  bam_lidx_t *index2;
};

typedef struct __linkbuf_t {
	bam1_t b;
	uint32_t beg, end;
	struct __linkbuf_t *next;
} lbnode_t;

typedef struct {
	int cnt, n, max;
	lbnode_t **buf;
} mempool_t;

struct __bam_plbuf_t {
	mempool_t *mp;
	lbnode_t *head, *tail, *dummy;
	bam_pileup_f func;
	void *func_data;
	int32_t tid, pos, max_tid, max_pos;
	int max_pu, is_eof;
	bam_pileup1_t *pu;
	int flag_mask;
};
  
static mempool_t *mp_init()
{
	mempool_t *mp;
	mp = (mempool_t*)calloc(1, sizeof(mempool_t));
	return mp;
}
static void mp_destroy(mempool_t *mp)
{
	int k;
	for (k = 0; k < mp->n; ++k) {
		free(mp->buf[k]->b.data);
		free(mp->buf[k]);
	}
	free(mp->buf);
	free(mp);
}
static inline lbnode_t *mp_alloc(mempool_t *mp)
{
	++mp->cnt;
	if (mp->n == 0) return (lbnode_t*)calloc(1, sizeof(lbnode_t));
	else return mp->buf[--mp->n];
}
static inline void mp_free(mempool_t *mp, lbnode_t *p)
{
	--mp->cnt; p->next = 0; // clear lbnode_t::next here
	if (mp->n == mp->max) {
		mp->max = mp->max? mp->max<<1 : 256;
		mp->buf = (lbnode_t**)realloc(mp->buf, sizeof(lbnode_t*) * mp->max);
	}
	mp->buf[mp->n++] = p;
}

static inline int resolve_cigar(bam_pileup1_t *p, uint32_t pos)
{
	unsigned k;
	bam1_t *b = p->b;
	bam1_core_t *c = &b->core;
	uint32_t x = c->pos, y = 0;
	int ret = 1, is_restart = 1;

	if (c->flag&BAM_FUNMAP) return 0; // unmapped read
	assert(x <= pos); // otherwise a bug
	p->qpos = -1; p->indel = 0; p->is_del = p->is_head = p->is_tail = 0;
	for (k = 0; k < c->n_cigar; ++k) {
		int op = bam1_cigar(b)[k] & BAM_CIGAR_MASK; // operation
		int l = bam1_cigar(b)[k] >> BAM_CIGAR_SHIFT; // length
		if (op == BAM_CMATCH) { // NOTE: this assumes the first and the last operation MUST BE a match or a clip
			if (x + l > pos) { // overlap with pos
				p->indel = p->is_del = 0;
				p->qpos = y + (pos - x);
				if (x == pos && is_restart) p->is_head = 1;
				if (x + l - 1 == pos) { // come to the end of a match
					if (k < c->n_cigar - 1) { // there are additional operation(s)
						uint32_t cigar = bam1_cigar(b)[k+1]; // next CIGAR
						int op_next = cigar&BAM_CIGAR_MASK; // next CIGAR operation
						if (op_next == BAM_CDEL) p->indel = -(int32_t)(cigar>>BAM_CIGAR_SHIFT); // del
						else if (op_next == BAM_CINS) p->indel = cigar>>BAM_CIGAR_SHIFT; // ins
						if (op_next == BAM_CSOFT_CLIP || op_next == BAM_CREF_SKIP || op_next == BAM_CHARD_CLIP)
							p->is_tail = 1; // tail
					} else p->is_tail = 1; // this is the last operation; set tail
				}
			}
			x += l; y += l;
		} else if (op == BAM_CDEL) { // then set ->is_del
			if (x + l > pos) {
				p->indel = 0; p->is_del = 1;
				p->qpos = y + (pos - x);
			}
			x += l;
		} else if (op == BAM_CREF_SKIP) x += l;
		else if (op == BAM_CINS || op == BAM_CSOFT_CLIP) y += l;
		is_restart = (op == BAM_CREF_SKIP || op == BAM_CSOFT_CLIP || op == BAM_CHARD_CLIP);
		if (x > pos) {
			if (op == BAM_CREF_SKIP) ret = 0; // then do not put it into pileup at all
			break;
		}
	}
	assert(x > pos); // otherwise a bug
	return ret;

}
// the following code has been taken from bam_plbuf_push
// and modified such that instead of a function call
// the function returns and will continue (if cont is true).
// from where it left off.

// returns
// 1: if buf is full and can be emitted
// 0: if b has been added
// -1: if there was an error
int pysam_pileup_next(const bam1_t *b,
		      bam_plbuf_t *buf,
		      bam_pileup1_t ** plp,
		      int * tid,
		      int * pos,
		      int * n_plp )
{
  *plp = bam_plp_next(buf->iter, tid, pos, n_plp);
  if (plp == NULL) return 0;
  return 1;
}

typedef struct __bmc_aux_t {
	int max;
	uint32_t *info;
	uint16_t *info16;
	errmod_t *em;
} bmc_aux_t;

// Return number of mapped reads on tid.
// If tid < 0, return mapped reads without a coordinate (0)
uint32_t pysam_get_mapped( const bam_index_t *idx, const int tid )
{
  // return no values if index data not present
  if (idx==NULL) return 0;
  
  if (tid >= 0)
    {
      khint_t k;
      khash_t(i) *h = idx->index[tid];
      k = kh_get(i, h, BAM_MAX_BIN);

      if (k != kh_end(h))
	return kh_val(h, k).list[1].u;
      else
	return 0;
    }

  return 0;
}

uint32_t pysam_get_unmapped( const bam_index_t *idx, const int tid )
{

  if (tid >= 0)
    {
      khint_t k;
      khash_t(i) *h = idx->index[tid];
      k = kh_get(i, h, BAM_MAX_BIN);

      if (k != kh_end(h))
	return kh_val(h, k).list[1].v;
      else
	return 0;
    }

  return idx->n_no_coor;
}

/* uint32_t pysam_glf_depth( glf1_t * g ) */
/* { */
/*   return g->depth; */
/* } */


/* void pysam_dump_glf( glf1_t * g, bam_maqcns_t * c ) */
/* { */
/*   int x = 0; */
/*   fprintf(stderr, */
/* 	  "glf: ref_base=%i, max_mapQ=%i, min_lk=%i, depth=%i", */
/* 	  g->ref_base, */
/* 	  g->max_mapQ, */
/* 	  g->min_lk, */
/* 	  g->depth ); */

/*   for (x = 0; x < 10; ++x)  */
/*     fprintf(stderr, ", lk%x=%i, ", x, g->lk[x]); */

/*   fprintf(stderr, */
/* 	  "maqcns: het_rate=%f, theta=%f, n_hap=%i, cap_mapQ=%i, errmod=%i, min_baseQ=%i, eta=%f, q_r=%f, aux_max=%i", */
/* 	  c->het_rate, */
/* 	  c->theta, */
/* 	  c->n_hap, */
/* 	  c->cap_mapQ, */
/* 	  c->errmod, */
/* 	  c->min_baseQ, */
/* 	  c->eta, */
/* 	  c->q_r, */
/* 	  c->aux->max); */
  
/*   for (x = 0; x < c->aux->max; ++x) */
/*     { */
/*       fprintf(stderr, ", info-%i=%i ", x, c->aux->info[x]); */
/*       if (c->aux->info[x] == 0) break; */
/*     } */
  
/*   for (x = 0; x < c->aux->max; ++x) */
/*     { */
/*       fprintf(stderr, ", info16-%i=%i ", x, c->aux->info16[x]); */
/*       if (c->aux->info16[x] == 0) break; */
/*     } */
/* } */


  

// pysam dispatch function to emulate the samtools
// command line within python.
// taken from the main function in bamtk.c
// added code to reset getopt
int bam_taf2baf(int argc, char *argv[]);
int bam_mpileup(int argc, char *argv[]);
int bam_merge(int argc, char *argv[]);
int bam_index(int argc, char *argv[]);
int bam_sort(int argc, char *argv[]);
int bam_tview_main(int argc, char *argv[]);
int bam_mating(int argc, char *argv[]);
int bam_rmdup(int argc, char *argv[]);
int bam_flagstat(int argc, char *argv[]);
int bam_fillmd(int argc, char *argv[]);
int bam_idxstats(int argc, char *argv[]);
int main_samview(int argc, char *argv[]);
int main_import(int argc, char *argv[]);
int main_reheader(int argc, char *argv[]);
int main_cut_target(int argc, char *argv[]);
int main_phase(int argc, char *argv[]);
int main_cat(int argc, char *argv[]);
int main_depth(int argc, char *argv[]);
int main_bam2fq(int argc, char *argv[]);
int main_pad2unpad(int argc, char *argv[]);
int main_bedcov(int argc, char *argv[]);
int main_bamshuf(int argc, char *argv[]);

int faidx_main(int argc, char *argv[]);


int pysam_dispatch(int argc, char *argv[] )
{
  extern int optind;
#ifdef _WIN32
  setmode(fileno(stdout), O_BINARY);
  setmode(fileno(stdin),  O_BINARY);
#ifdef _USE_KNETFILE
  knet_win32_init();
#endif
#endif

  // reset getopt
  optind = 1;

  if (argc < 2) return 1;
  int retval = 0;
  
  if (strcmp(argv[1], "view") == 0) retval = main_samview(argc-1, argv+1);
  else if (strcmp(argv[1], "import") == 0) retval = main_import(argc-1, argv+1);
  else if (strcmp(argv[1], "mpileup") == 0) retval = bam_mpileup(argc-1, argv+1);
  else if (strcmp(argv[1], "merge") == 0) retval = bam_merge(argc-1, argv+1);
  else if (strcmp(argv[1], "sort") == 0) retval = bam_sort(argc-1, argv+1);
  else if (strcmp(argv[1], "index") == 0) retval = bam_index(argc-1, argv+1);
  else if (strcmp(argv[1], "faidx") == 0) retval = faidx_main(argc-1, argv+1);
  else if (strcmp(argv[1], "idxstats") == 0) retval = bam_idxstats(argc-1, argv+1);
  else if (strcmp(argv[1], "fixmate") == 0) retval = bam_mating(argc-1, argv+1);
  else if (strcmp(argv[1], "rmdup") == 0) retval = bam_rmdup(argc-1, argv+1);
  else if (strcmp(argv[1], "flagstat") == 0) retval = bam_flagstat(argc-1, argv+1);
  else if (strcmp(argv[1], "calmd") == 0) retval = bam_fillmd(argc-1, argv+1);
  else if (strcmp(argv[1], "fillmd") == 0) retval = bam_fillmd(argc-1, argv+1);
  else if (strcmp(argv[1], "reheader") == 0) retval = main_reheader(argc-1, argv+1);
  else if (strcmp(argv[1], "cat") == 0) retval = main_cat(argc-1, argv+1);
  else if (strcmp(argv[1], "targetcut") == 0) retval = main_cut_target(argc-1, argv+1);
  else if (strcmp(argv[1], "phase") == 0) retval = main_phase(argc-1, argv+1);
  else if (strcmp(argv[1], "depth") == 0) retval = main_depth(argc-1, argv+1);
  else if (strcmp(argv[1], "bam2fq") == 0) retval = main_bam2fq(argc-1, argv+1);
  else if (strcmp(argv[1], "pad2unpad") == 0) retval = main_pad2unpad(argc-1, argv+1);
  else if (strcmp(argv[1], "depad") == 0) retval = main_pad2unpad(argc-1, argv+1);
  else if (strcmp(argv[1], "bedcov") == 0) retval = main_bedcov(argc-1, argv+1);
  else if (strcmp(argv[1], "bamshuf") == 0) retval = main_bamshuf(argc-1, argv+1);
  
#if _CURSES_LIB != 0
  else if (strcmp(argv[1], "tview") == 0) retval = bam_tview_main(argc-1, argv+1);
#endif
  else 
    {
      fprintf(stderr, "[main] unrecognized command '%s'\n", argv[1]);
      return 1;
    }
  fflush( stdout );
  
  return retval;
}

// taken from samtools/bam_import.c
static inline uint8_t *alloc_data(bam1_t *b, size_t size)
{
  if (b->m_data < size)
    {
      b->m_data = size;
      kroundup32(b->m_data);
      b->data = (uint8_t*)realloc(b->data, b->m_data);
    }
  return b->data;
}

// update the variable length data within a bam1_t entry.
// Adds *nbytes_new* - *nbytes_old* into the variable length data of *src* at *pos*.
// Data within the bam1_t entry is moved so that it is
// consistent with the data field lengths.
bam1_t * pysam_bam_update( bam1_t * b,
			   const size_t nbytes_old,
			   const size_t nbytes_new, 
			   uint8_t * pos )
{
  int d = nbytes_new-nbytes_old;
  int new_size;
  size_t offset;

  // no change
  if (d == 0) return b;

  new_size = d + b->data_len;
  offset = pos - b->data;

  //printf("d=%i, old=%i, new=%i, old_size=%i, new_size=%i\n",
  // d, nbytes_old, nbytes_new, b->data_len, new_size);
  
  // increase memory if required
  if (d > 0)
    {
      alloc_data( b, new_size );
      pos = b->data + offset;
    }
  
  if (b->data_len != 0)
    {
      if (offset < 0 || offset > b->data_len)
	fprintf(stderr, "[pysam_bam_insert] illegal offset: '%i'\n", (int)offset);
    }
  
  // printf("dest=%p, src=%p, n=%i\n", pos+nbytes_new, pos + nbytes_old, b->data_len - (offset+nbytes_old));
  memmove( pos + nbytes_new,
	   pos + nbytes_old,
	   b->data_len - (offset + nbytes_old));
    
  b->data_len = new_size;
      
  return b;
}

// translate a nucleotide character to binary code
unsigned char pysam_translate_sequence( const unsigned char s )
{
  return bam_nt16_table[s];
}


void bam_init_header_hash(bam_header_t *header);

// translate a reference string *s* to a tid
// code taken from bam_parse_region
int pysam_reference2tid( bam_header_t *header, const char * s )
{
  
  khiter_t iter;
  khash_t(s) *h;
  
  bam_init_header_hash(header);
  h = (khash_t(s)*)header->hash;

  iter = kh_get(s, h, s); /* get the ref_id */
  if (iter == kh_end(h)) { // name not found
    return -1;
  }

  return kh_value(h, iter);
}

// Auxiliary functions for B support
void bam_aux_appendB(bam1_t *b, const char tag[2], char type, char subtype, int len, uint8_t *data)
{

  int ori_len;

  int data_len;

  // check that type is 'B'
  if('B' != type) return;

  ori_len = b->data_len;

  data_len = len * bam_aux_type2size(subtype);
  // infer the data length from the sub-type
  b->data_len += 8 + data_len;

  b->l_aux += 8 + data_len;

  if (b->m_data < b->data_len) 
    {

      b->m_data = b->data_len;

      kroundup32(b->m_data);

      b->data = (uint8_t*)realloc(b->data, b->m_data);

    }

  b->data[ori_len] = tag[0];
  b->data[ori_len + 1] = tag[1];
  // tag
  b->data[ori_len + 2] = type;
  // type
  b->data[ori_len + 3] = subtype;
  // subtype
  (*(int32_t*)(b->data + ori_len + 4)) = len;
  // size
  memcpy(b->data + ori_len + 8, data, data_len);
  // data
}

/*
// return size of auxiliary type
int bam_aux_type2size(int x)
{
  if (x == 'C' || x == 'c' || x == 'A') return 1;
  else if (x == 'S' || x == 's') return 2;
  else if (x == 'I' || x == 'i' || x == 'f') return 4;
  else return 0;
}
*/