1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
|
""" averages.py
Simple example showing how to compute averages of distance profiles
Copyright 2014, Mario Mulansky <mario.mulansky@gmx.net>
Distributed under the BSD License
"""
from __future__ import print_function
import pyspike as spk
spike_trains = spk.load_spike_trains_from_txt("PySpike_testdata.txt",
edges=(0, 4000))
f = spk.isi_profile(spike_trains[0], spike_trains[1])
print("ISI-distance: %.8f" % f.avrg())
isi1 = f.avrg(interval=(0, 1000))
isi2 = f.avrg(interval=(1000, 2000))
isi3 = f.avrg(interval=[(0, 1000), (2000, 3000)])
isi4 = f.avrg(interval=[(1000, 2000), (3000, 4000)])
print("ISI-distance (0-1000): %.8f" % isi1)
print("ISI-distance (1000-2000): %.8f" % isi2)
print("ISI-distance (0-1000) and (2000-3000): %.8f" % isi3)
print("ISI-distance (1000-2000) and (3000-4000): %.8f" % isi4)
print()
f = spk.spike_profile(spike_trains[0], spike_trains[1])
print("SPIKE-distance: %.8f" % f.avrg())
spike1 = f.avrg(interval=(0, 1000))
spike2 = f.avrg(interval=(1000, 2000))
spike3 = f.avrg(interval=[(0, 1000), (2000, 3000)])
spike4 = f.avrg(interval=[(1000, 2000), (3000, 4000)])
print("SPIKE-distance (0-1000): %.8f" % spike1)
print("SPIKE-distance (1000-2000): %.8f" % spike2)
print("SPIKE-distance (0-1000) and (2000-3000): %.8f" % spike3)
print("SPIKE-distance (1000-2000) and (3000-4000): %.8f" % spike4)
print()
f = spk.spike_sync_profile(spike_trains[0], spike_trains[1])
print("SPIKE-Synchronization: %.8f" % f.avrg())
spike_sync1 = f.avrg(interval=(0, 1000))
spike_sync2 = f.avrg(interval=(1000, 2000))
spike_sync3 = f.avrg(interval=[(0, 1000), (2000, 3000)])
spike_sync4 = f.avrg(interval=[(1000, 2000), (3000, 4000)])
print("SPIKE-Sync (0-1000): %.8f" % spike_sync1)
print("SPIKE-Sync (1000-2000): %.8f" % spike_sync2)
print("SPIKE-Sync (0-1000) and (2000-3000): %.8f" % spike_sync3)
print("SPIKE-Sync (1000-2000) and (3000-4000): %.8f" % spike_sync4)
|