1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
#cython: language_level=3
#cython: boundscheck=False
#cython: wraparound=False
#cython: cdivision=True
"""
cython_profiles.pyx
cython implementation of the isi-, spike- and spike-sync profiles
Note: using cython memoryviews (e.g. double[:]) instead of ndarray objects
improves the performance of spike_distance by a factor of 10!
Copyright 2014-2015, Mario Mulansky <mario.mulansky@gmx.net>
Distributed under the BSD License
"""
"""
To test whether things can be optimized: remove all yellow stuff
in the html output::
cython -a cython_profiles.pyx
which gives::
cython_profiles.html
"""
import numpy as np
cimport numpy as np
from libc.math cimport fabs
from libc.math cimport fmax
from libc.math cimport fmin
from pyspike.cython.cython_get_tau cimport get_tau
#DTYPE = float
#ctypedef np.float_t DTYPE_t
############################################################
# isi_profile_cython
############################################################
def isi_profile_cython(double[:] s1, double[:] s2,
double t_start, double t_end,
double MRTS=0.):
cdef double[:] spike_events
cdef double[:] isi_values
cdef int index1, index2, index
cdef int N1, N2
cdef double nu1, nu2
N1 = len(s1)
N2 = len(s2)
spike_events = np.empty(N1+N2+2)
# the values have one entry less as they are defined at the intervals
isi_values = np.empty(N1+N2+1)
# first x-value of the profile
spike_events[0] = t_start
# first interspike interval - check if a spike exists at the start time
if s1[0] > t_start:
# edge correction
nu1 = fmax(s1[0]-t_start, s1[1]-s1[0]) if N1 > 1 else s1[0]-t_start
index1 = -1
else:
nu1 = s1[1]-s1[0] if N1 > 1 else t_end-s1[0]
index1 = 0
if s2[0] > t_start:
# edge correction
nu2 = fmax(s2[0]-t_start, s2[1]-s2[0]) if N2 > 1 else s2[0]-t_start
index2 = -1
else:
nu2 = s2[1]-s2[0] if N2 > 1 else t_end-s2[0]
index2 = 0
isi_values[0] = fabs(nu1-nu2)/fmax(MRTS, fmax(nu1, nu2))
index = 1
with nogil: # release the interpreter to allow multithreading
while index1+index2 < N1+N2-2:
# check which spike is next, only if there are spikes left in 1
# next spike in 1 is earlier, or there are no spikes left in 2
if (index1 < N1-1) and ((index2 == N2-1) or
(s1[index1+1] < s2[index2+1])):
index1 += 1
spike_events[index] = s1[index1]
if index1 < N1-1:
nu1 = s1[index1+1]-s1[index1]
else:
# edge correction
nu1 = fmax(t_end-s1[index1], nu1) if N1 > 1 \
else t_end-s1[index1]
elif (index2 < N2-1) and ((index1 == N1-1) or
(s1[index1+1] > s2[index2+1])):
index2 += 1
spike_events[index] = s2[index2]
if index2 < N2-1:
nu2 = s2[index2+1]-s2[index2]
else:
# edge correction
nu2 = fmax(t_end-s2[index2], nu2) if N2 > 1 \
else t_end-s2[index2]
else: # s1[index1+1] == s2[index2+1]
index1 += 1
index2 += 1
spike_events[index] = s1[index1]
if index1 < N1-1:
nu1 = s1[index1+1]-s1[index1]
else:
# edge correction
nu1 = fmax(t_end-s1[index1], nu1) if N1 > 1 \
else t_end-s1[index1]
if index2 < N2-1:
nu2 = s2[index2+1]-s2[index2]
else:
# edge correction
nu2 = fmax(t_end-s2[index2], nu2) if N2 > 1 \
else t_end-s2[index2]
# compute the corresponding isi-distance
isi_values[index] = fabs(nu1 - nu2) / fmax(MRTS, fmax(nu1, nu2))
index += 1
# the last event is the interval end
if spike_events[index-1] == t_end:
index -= 1
else:
spike_events[index] = t_end
# end nogil
return spike_events[:index+1], isi_values[:index]
############################################################
# get_min_dist_cython
############################################################
cdef inline double get_min_dist_cython(double spike_time,
double[:] spike_train,
# use memory view to ensure inlining
# np.ndarray[DTYPE_t,ndim=1] spike_train,
int N,
int start_index,
double t_start, double t_end) nogil:
""" Returns the minimal distance |spike_time - spike_train[i]|
with i>=start_index.
"""
cdef double d, d_temp
# start with the distance to the start time
d = fabs(spike_time - t_start)
if start_index < 0:
start_index = 0
while start_index < N:
d_temp = fabs(spike_time - spike_train[start_index])
if d_temp > d:
return d
else:
d = d_temp
start_index += 1
# finally, check the distance to end time
d_temp = fabs(t_end - spike_time)
if d_temp > d:
return d
else:
return d_temp
############################################################
# dist_at_t
############################################################
cdef inline double dist_at_t(double isi1, double isi2,
double s1, double s2,
double MRTS, int RI) nogil:
""" Compute instantaneous Spike Distance
In: isi1, isi2 - spike time differences around current times in each trains
s1, s2 - weighted spike time differences between trains
MRTS -minimum relevant time scal (0 for legacy logic)
RI - Rate Independent Adaptive spike distance
(False for legacy SPIKE distance)
Out: Spike Distance at current time
"""
cdef double meanISI = .5*(isi1+isi2)
cdef double limitedISI = max(MRTS, meanISI)
if RI:
return .5*(s1+s2)/limitedISI
else:
return .5*(s1*isi2 + s2*isi1)/(meanISI*limitedISI)
############################################################
# spike_profile_cython
############################################################
def spike_profile_cython(double[:] t1, double[:] t2,
double t_start, double t_end,
double MRTS=0., int RI=0):
cdef double[:] spike_events
cdef double[:] y_starts
cdef double[:] y_ends
cdef double[:] t_aux1 = np.empty(2)
cdef double[:] t_aux2 = np.empty(2)
cdef int N1, N2, index1, index2, index
cdef double t_p1, t_f1, t_p2, t_f2, dt_p1, dt_p2, dt_f1, dt_f2
cdef double isi1, isi2, s1, s2
N1 = len(t1)
N2 = len(t2)
# we can assume at least one spikes per spike train
assert N1 > 0
assert N2 > 0
spike_events = np.empty(N1+N2+2)
y_starts = np.empty(len(spike_events)-1)
y_ends = np.empty(len(spike_events)-1)
with nogil: # release the interpreter to allow multithreading
spike_events[0] = t_start
# t_p1 = t_start
# t_p2 = t_start
# auxiliary spikes for edge correction - consistent with first/last ISI
t_aux1[0] = fmin(t_start, 2*t1[0]-t1[1]) if N1 > 1 else t_start
t_aux1[1] = fmax(t_end, 2*t1[N1-1]-t1[N1-2]) if N1 > 1 else t_end
t_aux2[0] = fmin(t_start, 2*t2[0]-t2[1]) if N2 > 1 else t_start
t_aux2[1] = fmax(t_end, 2*t2[N2-1]-t2[N2-2]) if N2 > 1 else t_end
t_p1 = t_start if (t1[0] == t_start) else t_aux1[0]
t_p2 = t_start if (t2[0] == t_start) else t_aux2[0]
if t1[0] > t_start:
# dt_p1 = t2[0]-t_start
t_f1 = t1[0]
dt_f1 = get_min_dist_cython(t_f1, t2, N2, 0, t_aux2[0], t_aux2[1])
isi1 = fmax(t_f1-t_start, t1[1]-t1[0]) if N1 > 1 else t_f1-t_start
dt_p1 = dt_f1
# s1 = dt_p1*(t_f1-t_start)/isi1
s1 = dt_p1
index1 = -1
else:
t_f1 = t1[1] if N1 > 1 else t_end
dt_f1 = get_min_dist_cython(t_f1, t2, N2, 0, t_aux2[0], t_aux2[1])
dt_p1 = get_min_dist_cython(t_p1, t2, N2, 0, t_aux2[0], t_aux2[1])
isi1 = t_f1-t1[0]
s1 = dt_p1
index1 = 0
if t2[0] > t_start:
# dt_p1 = t2[0]-t_start
t_f2 = t2[0]
dt_f2 = get_min_dist_cython(t_f2, t1, N1, 0, t_aux1[0], t_aux1[1])
dt_p2 = dt_f2
isi2 = fmax(t_f2-t_start, t2[1]-t2[0]) if N2 > 1 else t_f2-t_start
# s2 = dt_p2*(t_f2-t_start)/isi2
s2 = dt_p2
index2 = -1
else:
t_f2 = t2[1] if N2 > 1 else t_end
dt_f2 = get_min_dist_cython(t_f2, t1, N1, 0, t_aux1[0], t_aux1[1])
dt_p2 = get_min_dist_cython(t_p2, t1, N1, 0, t_aux1[0], t_aux1[1])
isi2 = t_f2-t2[0]
s2 = dt_p2
index2 = 0
y_starts[0] = dist_at_t(isi1, isi2, s1, s2, MRTS, RI)
index = 1
while index1+index2 < N1+N2-2:
# print(index, index1, index2)
if (index1 < N1-1) and (t_f1 < t_f2 or index2 == N2-1):
index1 += 1
# first calculate the previous interval end value
s1 = dt_f1*(t_f1-t_p1) / isi1
# the previous time now was the following time before:
dt_p1 = dt_f1
t_p1 = t_f1 # t_p1 contains the current time point
# get the next time
if index1 < N1-1:
t_f1 = t1[index1+1]
else:
t_f1 = t_aux1[1]
spike_events[index] = t_p1
s2 = (dt_p2*(t_f2-t_p1) + dt_f2*(t_p1-t_p2)) / isi2
y_ends[index-1] = dist_at_t(isi1, isi2, s1, s2, MRTS, RI)
# now the next interval start value
if index1 < N1-1:
dt_f1 = get_min_dist_cython(t_f1, t2, N2, index2,
t_aux2[0], t_aux2[1])
isi1 = t_f1-t_p1
s1 = dt_p1
else:
dt_f1 = dt_p1
isi1 = fmax(t_end-t1[N1-1], t1[N1-1]-t1[N1-2]) if N1 > 1 \
else t_end-t1[N1-1]
# s1 needs adjustment due to change of isi1
# s1 = dt_p1*(t_end-t1[N1-1])/isi1
# Eero's correction: no adjustment
s1 = dt_p1
# s2 is the same as above, thus we can compute y2 immediately
y_starts[index] = dist_at_t(isi1, isi2, s1, s2, MRTS, RI)
elif (index2 < N2-1) and (t_f1 > t_f2 or index1 == N1-1):
index2 += 1
# first calculate the previous interval end value
s2 = dt_f2*(t_f2-t_p2) / isi2
# the previous time now was the following time before:
dt_p2 = dt_f2
t_p2 = t_f2 # t_p2 contains the current time point
# get the next time
if index2 < N2-1:
t_f2 = t2[index2+1]
else:
t_f2 = t_aux2[1]
spike_events[index] = t_p2
s1 = (dt_p1*(t_f1-t_p2) + dt_f1*(t_p2-t_p1)) / isi1
y_ends[index-1] = dist_at_t(isi1, isi2, s1, s2, MRTS, RI)
# now the next interval start value
if index2 < N2-1:
dt_f2 = get_min_dist_cython(t_f2, t1, N1, index1,
t_aux1[0], t_aux1[1])
isi2 = t_f2-t_p2
s2 = dt_p2
else:
dt_f2 = dt_p2
isi2 = fmax(t_end-t2[N2-1], t2[N2-1]-t2[N2-2]) if N2 > 1 \
else t_end-t2[N2-1]
# s2 needs adjustment due to change of isi2
# s2 = dt_p2*(t_end-t2[N2-1])/isi2
# Eero's correction: no adjustment
s2 = dt_p2
# s2 is the same as above, thus we can compute y2 immediately
y_starts[index] = dist_at_t(isi1, isi2, s1, s2, MRTS, RI)
else: # t_f1 == t_f2 - generate only one event
index1 += 1
index2 += 1
t_p1 = t_f1
t_p2 = t_f2
dt_p1 = 0.0
dt_p2 = 0.0
spike_events[index] = t_f1
y_ends[index-1] = 0.0
y_starts[index] = 0.0
if index1 < N1-1:
t_f1 = t1[index1+1]
dt_f1 = get_min_dist_cython(t_f1, t2, N2, index2,
t_aux2[0], t_aux2[1])
isi1 = t_f1 - t_p1
else:
t_f1 = t_aux1[1]
dt_f1 = dt_p1
isi1 = fmax(t_end-t1[N1-1], t1[N1-1]-t1[N1-2]) if N1 > 1 \
else t_end-t1[N1-1]
if index2 < N2-1:
t_f2 = t2[index2+1]
dt_f2 = get_min_dist_cython(t_f2, t1, N1, index1,
t_aux1[0], t_aux1[1])
isi2 = t_f2 - t_p2
else:
t_f2 = t_aux2[1]
dt_f2 = dt_p2
isi2 = fmax(t_end-t2[N2-1], t2[N2-1]-t2[N2-2]) if N2 > 1 \
else t_end-t2[N2-1]
index += 1
# the last event is the interval end
if spike_events[index-1] == t_end:
index -= 1
else:
spike_events[index] = t_end
s1 = dt_f1
s2 = dt_f2
y_ends[index-1] = dist_at_t(isi1, isi2, s1, s2, MRTS, RI)
# end nogil
# use only the data added above
# could be less than original length due to equal spike times
return spike_events[:index+1], y_starts[:index], y_ends[:index]
############################################################
# coincidence_profile_cython
############################################################
def coincidence_profile_cython(double[:] spikes1, double[:] spikes2,
double t_start, double t_end, double max_tau, double MRTS=0):
cdef int N1 = len(spikes1)
cdef int N2 = len(spikes2)
cdef int i = -1
cdef int j = -1
cdef int n = 0
cdef double[:] st = np.zeros(N1 + N2 + 2) # spike times
cdef double[:] c = np.zeros(N1 + N2 + 2) # coincidences
cdef double[:] mp = np.ones(N1 + N2 + 2) # multiplicity
cdef double interval = t_end - t_start
cdef double tau
cdef double true_max = t_end - t_start
if max_tau > 0:
true_max = fmin(true_max, 2*max_tau)
while i + j < N1 + N2 - 2:
if (i < N1-1) and (j == N2-1 or spikes1[i+1] < spikes2[j+1]):
i += 1
n += 1
tau = get_tau(spikes1, spikes2, i, j, true_max, MRTS)
st[n] = spikes1[i]
if j > -1 and spikes1[i]-spikes2[j] < tau:
# coincidence between the current spike and the previous spike
# both get marked with 1
c[n] = 1
c[n-1] = 1
elif (j < N2-1) and (i == N1-1 or spikes1[i+1] > spikes2[j+1]):
j += 1
n += 1
tau = get_tau(spikes1, spikes2, i, j, true_max, MRTS)
st[n] = spikes2[j]
if i > -1 and spikes2[j]-spikes1[i] < tau:
# coincidence between the current spike and the previous spike
# both get marked with 1
c[n] = 1
c[n-1] = 1
else: # spikes1[i+1] = spikes2[j+1]
# advance in both spike trains
j += 1
i += 1
n += 1
# add only one event, but with coincidence 2 and multiplicity 2
st[n] = spikes1[i]
c[n] = 2
mp[n] = 2
st = st[:n+2]
c = c[:n+2]
mp = mp[:n+2]
st[0] = t_start
st[len(st)-1] = t_end
if N1 + N2 > 0:
c[0] = c[1]
c[len(c)-1] = c[len(c)-2]
mp[0] = mp[1]
mp[len(mp)-1] = mp[len(mp)-2]
else:
c[0] = 1
c[1] = 1
return st, c, mp
############################################################
# coincidence_single_profile_cython
############################################################
def coincidence_single_profile_cython(double[:] spikes1, double[:] spikes2,
double t_start, double t_end, double max_tau, double MRTS=0.):
cdef int N1 = len(spikes1)
cdef int N2 = len(spikes2)
cdef int j = -1
cdef double[:] c = np.zeros(N1) # coincidences
cdef double interval = t_end - t_start
cdef double tau
cdef double true_max = t_end - t_start
if max_tau > 0:
true_max = fmin(true_max, 2*max_tau)
for i in xrange(N1):
while j < N2-1 and spikes2[j+1] < spikes1[i]:
# move forward until spikes2[j] is the last spike before spikes1[i]
# note that if spikes2[j] is after spikes1[i] we dont do anything
j += 1
tau = get_tau(spikes1, spikes2, i, j, true_max, MRTS)
if j > -1 and fabs(spikes1[i]-spikes2[j]) < tau:
# current spike in st1 is coincident
c[i] = 1
if j < N2-1 and (j < 0 or spikes2[j] < spikes1[i]):
# in case spikes2[j] is before spikes1[i] it has to be the one
# right before (see above), hence we move one forward and also
# check the next spike
j += 1
tau = get_tau(spikes1, spikes2, i, j, true_max, MRTS)
if fabs(spikes2[j]-spikes1[i]) < tau:
# current spike in st1 is coincident
c[i] = 1
return c
|