1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
|
# Module containing functions to compute the SPIKE directionality and the
# spike train order profile
# Copyright 2015, Mario Mulansky <mario.mulansky@gmx.net>
# Distributed under the BSD License
from __future__ import absolute_import
import numpy as np
import pyspike
from pyspike import DiscreteFunc
from functools import partial
from pyspike.generic import _generic_profile_multi, resolve_keywords
from pyspike.isi_lengths import default_thresh
from pyspike.spikes import reconcile_spike_trains, reconcile_spike_trains_bi
############################################################
# spike_directionality_values
############################################################
def spike_directionality_values(*args, **kwargs):
""" Computes the spike directionality value for each spike in
each spike train. Returns a list containing an array of spike directionality
values for every given spike train.
Valid call structures::
spike_directionality_values(st1, st2) # returns the bi-variate profile
spike_directionality_values(st1, st2, st3) # multi-variate profile of 3
# spike trains
spike_trains = [st1, st2, st3, st4] # list of spike trains
spike_directionality_values(spike_trains) # profile of the list of spike trains
spike_directionality_values(spike_trains, indices=[0, 1]) # use only the spike trains
# given by the indices
Additonal arguments:
:param max_tau: Upper bound for coincidence window (default=None).
:param indices: list of indices defining which spike trains to use,
if None all given spike trains are used (default=None)
:returns: The spike directionality values :math:`D^n_i` as a list of arrays.
"""
if len(args) == 1:
return _spike_directionality_values_impl(args[0], **kwargs)
else:
return _spike_directionality_values_impl(args, **kwargs)
def _spike_directionality_values_impl(spike_trains, indices=None,
interval=None, max_tau=None, **kwargs):
""" Computes the multi-variate spike directionality profile
of the given spike trains.
:param spike_trains: List of spike trains.
:type spike_trains: List of :class:`pyspike.SpikeTrain`
:param indices: list of indices defining which spike trains to use,
if None all given spike trains are used (default=None)
:type indices: list or None
:param max_tau: Maximum coincidence window size. If 0 or `None`, the
coincidence window has no upper bound.
:returns: The spike-directionality values.
"""
if kwargs.get('Reconcile', True):
spike_trains = reconcile_spike_trains(spike_trains)
## get the keywords:
MRTS, RI = resolve_keywords(**kwargs)
if isinstance(MRTS, str):
MRTS = default_thresh(spike_trains)
if interval is not None:
raise NotImplementedError("Parameter `interval` not supported.")
if indices is None:
indices = np.arange(len(spike_trains))
indices = np.array(indices)
# check validity of indices
assert (indices < len(spike_trains)).all() and (indices >= 0).all(), \
"Invalid index list."
# list of arrays for resulting asymmetry values
asymmetry_list = [np.zeros_like(spike_trains[n].spikes) for n in indices]
# generate a list of possible index pairs
pairs = [(indices[i], j) for i in range(len(indices))
for j in indices[i+1:]]
# cython implementation
try:
from .cython.cython_directionality import \
spike_directionality_profiles_cython as profile_impl
except ImportError:
pyspike.NoCythonWarn()
# use python backend
from .cython.directionality_python_backend import \
spike_directionality_profile_python as profile_impl
if max_tau is None:
max_tau = 0.0
for i, j in pairs:
d1, d2 = profile_impl(spike_trains[i].spikes, spike_trains[j].spikes,
spike_trains[i].t_start, spike_trains[i].t_end,
max_tau, MRTS)
asymmetry_list[i] += d1
asymmetry_list[j] += d2
for a in asymmetry_list:
a /= len(spike_trains)-1
return asymmetry_list
############################################################
# spike_directionality
############################################################
def spike_directionality(spike_train1, spike_train2, normalize=True,
interval=None, max_tau=None, **kwargs):
""" Computes the overall spike directionality of the first spike train with
respect to the second spike train.
:param spike_train1: First spike train.
:type spike_train1: :class:`pyspike.SpikeTrain`
:param spike_train2: Second spike train.
:type spike_train2: :class:`pyspike.SpikeTrain`
:param normalize: Normalize by the number of spikes (multiplicity).
:param max_tau: Maximum coincidence window size. If 0 or `None`, the
coincidence window has no upper bound.
:returns: The spike train order profile :math:`E(t)`.
"""
if kwargs.get('Reconcile', True):
spike_train1, spike_train2 = reconcile_spike_trains_bi(spike_train1, spike_train2)
MRTS, RI = resolve_keywords(**kwargs)
if isinstance(MRTS, str):
MRTS = default_thresh([spike_train1, spike_train2])
if interval is None:
# distance over the whole interval is requested: use specific function
# for optimal performance
try:
from .cython.cython_directionality import \
spike_directionality_cython as spike_directionality_impl
if max_tau is None:
max_tau = 0.0
d = spike_directionality_impl(spike_train1.spikes,
spike_train2.spikes,
spike_train1.t_start,
spike_train1.t_end,
max_tau, MRTS)
c = len(spike_train1.spikes)
except ImportError:
pyspike.NoCythonWarn()
# use profile.
d1, x = spike_directionality_values([spike_train1, spike_train2],
interval=interval,
max_tau=max_tau,
MRTS=MRTS)
d = np.sum(d1)
c = len(spike_train1.spikes)
if normalize:
return 1.0*d/c
else:
return d
else:
# some specific interval is provided: not yet implemented
raise NotImplementedError("Parameter `interval` not supported.")
############################################################
# spike_directionality_matrix
############################################################
def spike_directionality_matrix(spike_trains, normalize=True, indices=None,
interval=None, max_tau=None, **kwargs):
""" Computes the spike directionality matrix for the given spike trains.
:param spike_trains: List of spike trains.
:type spike_trains: List of :class:`pyspike.SpikeTrain`
:param normalize: Normalize by the number of spikes (multiplicity).
:param indices: list of indices defining which spike trains to use,
if None all given spike trains are used (default=None)
:type indices: list or None
:param max_tau: Maximum coincidence window size. If 0 or `None`, the
coincidence window has no upper bound.
:returns: The spike-directionality values.
"""
if kwargs.get('Reconcile', True):
spike_trains = reconcile_spike_trains(spike_trains)
MRTS, RI = resolve_keywords(**kwargs)
if isinstance(MRTS, str):
MRTS = default_thresh(spike_trains)
if indices is None:
indices = np.arange(len(spike_trains))
indices = np.array(indices)
# check validity of indices
assert (indices < len(spike_trains)).all() and (indices >= 0).all(), \
"Invalid index list."
# generate a list of possible index pairs
pairs = [(indices[i], j) for i in range(len(indices))
for j in indices[i+1:]]
distance_matrix = np.zeros((len(indices), len(indices)))
for i, j in pairs:
d = spike_directionality(spike_trains[i], spike_trains[j], normalize,
interval, max_tau=max_tau,
MRTS=MRTS, RI=RI, Reconcile=False)
distance_matrix[i, j] = d
distance_matrix[j, i] = -d
return distance_matrix
############################################################
# spike_train_order_profile
############################################################
def spike_train_order_profile(*args, **kwargs):
""" Computes the spike train order profile :math:`E(t)` of the given
spike trains. Returns the profile as a DiscreteFunction object.
Valid call structures::
spike_train_order_profile(st1, st2) # returns the bi-variate profile
spike_train_order_profile(st1, st2, st3) # multi-variate profile of 3
# spike trains
spike_trains = [st1, st2, st3, st4] # list of spike trains
spike_train_order_profile(spike_trains) # profile of the list of spike trains
spike_train_order_profile(spike_trains, indices=[0, 1]) # use only the spike trains
# given by the indices
Additonal arguments:
:param max_tau: Upper bound for coincidence window, `default=None`.
:param indices: list of indices defining which spike trains to use,
if None all given spike trains are used (default=None)
:returns: The spike train order profile :math:`E(t)`
:rtype: :class:`.DiscreteFunction`
"""
if len(args) == 1:
return spike_train_order_profile_multi(args[0], **kwargs)
elif len(args) == 2:
return spike_train_order_profile_bi(args[0], args[1], **kwargs)
else:
return spike_train_order_profile_multi(args, **kwargs)
############################################################
# spike_train_order_profile_bi
############################################################
def spike_train_order_profile_bi(spike_train1, spike_train2,
max_tau=None, **kwargs):
""" Computes the spike train order profile P(t) of the two given
spike trains. Returns the profile as a DiscreteFunction object.
:param spike_train1: First spike train.
:type spike_train1: :class:`pyspike.SpikeTrain`
:param spike_train2: Second spike train.
:type spike_train2: :class:`pyspike.SpikeTrain`
:param max_tau: Maximum coincidence window size. If 0 or `None`, the
coincidence window has no upper bound.
:returns: The spike train order profile :math:`E(t)`.
:rtype: :class:`pyspike.function.DiscreteFunction`
"""
if kwargs.get('Reconcile', True):
spike_train1, spike_train2 = reconcile_spike_trains_bi(spike_train1, spike_train2)
MRTS, RI = resolve_keywords(**kwargs)
if isinstance(MRTS, str):
MRTS = default_thresh([spike_train1, spike_train2])
# check whether the spike trains are defined for the same interval
assert spike_train1.t_start == spike_train2.t_start, \
"Given spike trains are not defined on the same interval!"
assert spike_train1.t_end == spike_train2.t_end, \
"Given spike trains are not defined on the same interval!"
# cython implementation
try:
from .cython.cython_directionality import \
spike_train_order_profile_cython as \
spike_train_order_profile_impl
except ImportError:
# raise NotImplementedError()
pyspike.NoCythonWarn()
# use python backend
from .cython.directionality_python_backend import \
spike_train_order_profile_python as spike_train_order_profile_impl
if max_tau is None:
max_tau = 0.0
times, coincidences, multiplicity \
= spike_train_order_profile_impl(spike_train1.spikes,
spike_train2.spikes,
spike_train1.t_start,
spike_train1.t_end,
max_tau, MRTS)
return DiscreteFunc(times, coincidences, multiplicity)
############################################################
# spike_train_order_profile_multi
############################################################
def spike_train_order_profile_multi(spike_trains, indices=None,
max_tau=None, **kwargs):
""" Computes the multi-variate spike train order profile for a set of
spike trains. For each spike in the set of spike trains, the multi-variate
profile is defined as the sum of asymmetry values divided by the number of
spike trains pairs involving the spike train of containing this spike,
which is the number of spike trains minus one (N-1).
:param spike_trains: list of :class:`pyspike.SpikeTrain`
:param indices: list of indices defining which spike trains to use,
if None all given spike trains are used (default=None)
:type indices: list or None
:param max_tau: Maximum coincidence window size. If 0 or `None`, the
coincidence window has no upper bound.
:returns: The multi-variate spike sync profile :math:`<S_{sync}>(t)`
:rtype: :class:`pyspike.function.DiscreteFunction`
"""
prof_func = partial(spike_train_order_profile_bi, max_tau=max_tau)
average_prof, M = _generic_profile_multi(spike_trains, prof_func,
indices, **kwargs)
return average_prof
############################################################
# _spike_train_order_impl
############################################################
def _spike_train_order_impl(spike_train1, spike_train2,
interval=None, max_tau=None, **kwargs):
""" Implementation of bi-variatae spike train order value (Synfire Indicator).
:param spike_train1: First spike train.
:type spike_train1: :class:`pyspike.SpikeTrain`
:param spike_train2: Second spike train.
:type spike_train2: :class:`pyspike.SpikeTrain`
:param max_tau: Maximum coincidence window size. If 0 or `None`, the
coincidence window has no upper bound.
:returns: The spike train order value (Synfire Indicator)
"""
MRTS, RI = resolve_keywords(**kwargs)
if isinstance(MRTS, str):
MRTS = default_thresh([spike_train1, spike_train2])
if interval is None:
# distance over the whole interval is requested: use specific function
# for optimal performance
try:
from .cython.cython_directionality import \
spike_train_order_cython as spike_train_order_func
if max_tau is None:
max_tau = 0.0
c, mp = spike_train_order_func(spike_train1.spikes,
spike_train2.spikes,
spike_train1.t_start,
spike_train1.t_end,
max_tau, MRTS)
except ImportError:
# Cython backend not available: fall back to profile averaging
c, mp = spike_train_order_profile(spike_train1, spike_train2,
max_tau=max_tau,
MRTS=MRTS).integral(interval)
return c, mp
else:
# some specific interval is provided: not yet implemented
raise NotImplementedError("Parameter `interval` not supported.")
############################################################
# spike_train_order
############################################################
def spike_train_order(*args, **kwargs):
""" Computes the spike train order (Synfire Indicator) of the given
spike trains.
Valid call structures::
spike_train_order(st1, st2, normalize=True) # normalized bi-variate
# spike train order
spike_train_order(st1, st2, st3) # multi-variate result of 3 spike trains
spike_trains = [st1, st2, st3, st4] # list of spike trains
spike_train_order(spike_trains) # result for the list of spike trains
spike_train_order(spike_trains, indices=[0, 1]) # use only the spike trains
# given by the indices
Additonal arguments:
- `max_tau` Upper bound for coincidence window, `default=None`.
- `normalize` Flag indicating if the reslut should be normalized by the
number of spikes , default=`False`
:returns: The spike train order value (Synfire Indicator)
"""
if len(args) == 1:
return spike_train_order_multi(args[0], **kwargs)
elif len(args) == 2:
return spike_train_order_bi(args[0], args[1], **kwargs)
else:
return spike_train_order_multi(args, **kwargs)
############################################################
# spike_train_order_bi
############################################################
def spike_train_order_bi(spike_train1, spike_train2, normalize=True,
interval=None, max_tau=None, **kwargs):
""" Computes the overall spike train order value (Synfire Indicator)
for two spike trains.
:param spike_train1: First spike train.
:type spike_train1: :class:`pyspike.SpikeTrain`
:param spike_train2: Second spike train.
:type spike_train2: :class:`pyspike.SpikeTrain`
:param normalize: Normalize by the number of spikes (multiplicity).
:param max_tau: Maximum coincidence window size. If 0 or `None`, the
coincidence window has no upper bound.
:returns: The spike train order value (Synfire Indicator)
"""
c, mp = _spike_train_order_impl(spike_train1, spike_train2, interval, max_tau, **kwargs)
if normalize:
return 1.0*c/mp
else:
return c
############################################################
# spike_train_order_multi
############################################################
def spike_train_order_multi(spike_trains, indices=None, normalize=True,
interval=None, max_tau=None, **kwargs):
""" Computes the overall spike train order value (Synfire Indicator)
for many spike trains.
:param spike_trains: list of :class:`.SpikeTrain`
:param indices: list of indices defining which spike trains to use,
if None all given spike trains are used (default=None)
:param normalize: Normalize by the number of spike (multiplicity).
:param interval: averaging interval given as a pair of floats, if None
the average over the whole function is computed.
:type interval: Pair of floats or None.
:param max_tau: Maximum coincidence window size. If 0 or `None`, the
coincidence window has no upper bound.
:returns: Spike train order values (Synfire Indicator) F for the given spike trains.
:rtype: double
"""
MRTS, RI = resolve_keywords(**kwargs)
if isinstance(MRTS, str):
MRTS = default_thresh(spike_trains)
if indices is None:
indices = np.arange(len(spike_trains))
indices = np.array(indices)
# check validity of indices
assert (indices < len(spike_trains)).all() and (indices >= 0).all(), \
"Invalid index list."
# generate a list of possible index pairs
pairs = [(indices[i], j) for i in range(len(indices))
for j in indices[i+1:]]
e_total = 0.0
m_total = 0.0
for (i, j) in pairs:
e, m = _spike_train_order_impl(spike_trains[i], spike_trains[j],
interval, max_tau, MRTS=MRTS, RI=RI)
e_total += e
m_total += m
if m == 0.0:
return 1.0
else:
return e_total/m_total
############################################################
# optimal_spike_train_sorting_from_matrix
############################################################
def _optimal_spike_train_sorting_from_matrix(D, full_output=False):
""" Finds the best sorting via simulated annealing.
Returns the optimal permutation p and A value.
Not for direct use, call :func:`.optimal_spike_train_sorting` instead.
:param D: The directionality (Spike-ORDER) matrix.
:param full_output: If true, then function will additionally return the
number of performed iterations (default=False)
:return: (p, F) - tuple with the optimal permutation and synfire indicator.
if `full_output=True` , (p, F, iter) is returned.
"""
N = len(D)
A = np.sum(np.triu(D, 0))
p = np.arange(N)
T_start = 2*np.max(D) # starting temperature
T_end = 1E-5 * T_start # final temperature
alpha = 0.9 # cooling factor
try:
from .cython.cython_simulated_annealing import sim_ann_cython as sim_ann
except ImportError:
raise NotImplementedError("PySpike with Cython required for computing spike train"
" sorting!")
p, A, total_iter = sim_ann(D, T_start, T_end, alpha)
if full_output:
return p, A, total_iter
else:
return p, A
############################################################
# optimal_spike_train_sorting
############################################################
def optimal_spike_train_sorting(spike_trains, indices=None, interval=None,
max_tau=None, full_output=False, **kwargs):
""" Finds the best sorting of the given spike trains by computing the spike
directionality matrix and optimize the order using simulated annealing.
For a detailed description of the algorithm see:
`http://iopscience.iop.org/article/10.1088/1367-2630/aa68c3/meta`
:param spike_trains: list of :class:`.SpikeTrain`
:param indices: list of indices defining which spike trains to use,
if None all given spike trains are used (default=None)
:type indices: list or None
:param interval: time interval filter given as a pair of floats, if None
the full spike trains are used (default=None).
:type interval: Pair of floats or None.
:param max_tau: Maximum coincidence window size. If 0 or `None`, the
coincidence window has no upper bound (default=None).
:param full_output: If true, then function will additionally return the
number of performed iterations (default=False)
:return: (p, F) - tuple with the optimal permutation and synfire indicator.
if `full_output=True` , (p, F, iter) is returned.
"""
D = spike_directionality_matrix(spike_trains, normalize=False,
indices=indices, interval=interval,
max_tau=max_tau, **kwargs)
return _optimal_spike_train_sorting_from_matrix(D, full_output)
############################################################
# permutate_matrix
############################################################
def permutate_matrix(D, p):
""" Helper function that applies the permutation p to the columns and rows
of matrix D. Return the permutated matrix :math:`D'[n,m] = D[p[n], p[m]]`.
:param D: The matrix.
:param d: The permutation.
:return: The permuated matrix D', ie :math:`D'[n,m] = D[p[n], p[m]]`
"""
N = len(D)
D_p = np.empty_like(D)
for n in range(N):
for m in range(N):
D_p[n, m] = D[p[n], p[m]]
return D_p
|