File: filters.py

package info (click to toggle)
python-pyvcf 0.6.8-1~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 1,520 kB
  • sloc: python: 2,742; sh: 23; makefile: 20
file content (209 lines) | stat: -rw-r--r-- 6,240 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
try:
    from rpy2 import robjects
except:
    robjects = None


class Base(object):
    """ Base class for vcf_filter.py filters.

        Use the class docstring to provide the filter description
        as it appears in vcf_filter.py
    """

    name = 'f'
    """ name used to activate filter and in VCF headers """

    @classmethod
    def customize_parser(self, parser):
        """ hook to extend argparse parser with custom arguments """
        pass

    def __init__(self, args):
        """ create the filter using argparse ``args`` """
        self.threshold = 0

    def __call__(self):
        """ filter a site, return not None if the site should be filtered """
        raise NotImplementedError('Filters must implement this method')

    def filter_name(self):
        """ return the name to put in the VCF header, default is ``name`` + ``threshold`` """
        return '%s%s' % (self.name, self.threshold)


class SiteQuality(Base):
    """ Filter low quailty sites """

    name = 'sq'

    @classmethod
    def customize_parser(self, parser):
        parser.add_argument('--site-quality', type=int, default=30,
                help='Filter sites below this quality')

    def __init__(self, args):
        self.threshold = args.site_quality

    def __call__(self, record):
        if record.QUAL < self.threshold:
            return record.QUAL


class VariantGenotypeQuality(Base):
    """ Filters sites with only low quality variants.

        It is possible to have a high site quality with many low quality calls.  This
        filter demands at least one call be above a threshold quality.
    """

    name = 'mgq'

    @classmethod
    def customize_parser(self, parser):
        parser.add_argument('--genotype-quality', type=int, default=50,
                help='Filter sites with no genotypes above this quality')

        def __init__(self, args):
            self.threshold = args.genotype_quality

    def __call__(self, record):
        if not record.is_monomorphic:
            vgq = max([x['GQ'] for x in record if x.is_variant])
            if vgq < self.threshold:
                return vgq


class ErrorBiasFilter(Base):
    """ Filter sites that look like correlated sequencing errors.

        Some sequencing technologies, notably pyrosequencing, produce mutation
        hotspots where there is a constant level of noise, producing some reference
        and some heterozygote calls.

        This filter computes a Bayes Factor for each site by comparing
        the binomial likelihood of the observed allelic depths under:

        * A model with constant error equal to the MAF.
        * A model where each sample is the ploidy reported by the caller.

        The test value is the log of the bayes factor.  Higher values
        are more likely to be errors.

        Note: this filter requires rpy2
    """

    name = 'eb'

    @classmethod
    def customize_parser(self, parser):
        parser.add_argument('--eblr', type=int, default=-10,
                help='Filter sites above this error log odds ratio')

    def __init__(self, args):
        self.threshold = args.eblr
        if robjects is None:
            raise Exception('Please install rpy2')
        self.ll_test = robjects.r('''
            function(ra, aa, gt, diag=F) {
                ra_sum = sum(ra)
                aa_sum = sum(aa)
                ab = aa_sum / (ra_sum + aa_sum)
                gtp = 0.5 + (0.48*(gt-1))

                error_likelihood = log(dbinom(aa, ra+aa, ab))
                gt_likelihood = log(dbinom(aa, ra+aa, gtp))

                if (diag) {
                    print(ra)
                    print(aa)
                    print(gtp)
                    print(ab)
                    print(error_likelihood)
                    print(gt_likelihood)
                }
                error_likelihood = sum(error_likelihood)
                gt_likelihood = sum(gt_likelihood)
                c(error_likelihood - gt_likelihood, ab)
            }
            ''')

    def __call__(self, record):
        if record.is_monomorphic:
            return None
        passed, tv, ab = self.bias_test(record.samples)
        if tv > self.threshold:
            return tv

    def bias_test(self, calls):
        calls = [x for x in calls if x.called]
        #TODO: single genotype assumption
  
        try:
            # freebayes
            ra = robjects.IntVector([x['RO'][0] for x in calls])
            aa = robjects.IntVector([x['AO'][0] for x in calls])
        except AttributeError:
            # GATK
            ra = robjects.IntVector([x['AD'][0] for x in calls])
            aa = robjects.IntVector([x['AD'][1] for x in calls])

        gt = robjects.IntVector([x.gt_type for x in calls])
        test_val, ab = self.ll_test(ra, aa, gt)

        return test_val < 0, test_val, ab


class DepthPerSample(Base):
    'Threshold read depth per sample'

    name = 'dps'

    @classmethod
    def customize_parser(self, parser):
        parser.add_argument('--depth-per-sample', type=int, default=5,
                help='Minimum required coverage in each sample')

    def __init__(self, args):
        self.threshold = args.depth_per_sample

    def __call__(self, record):
        # do not test depth for indels
        if record.is_indel:
            return

        mindepth = min([sam['DP'] for sam in record.samples])
        if mindepth < self.threshold:
            return mindepth


class AvgDepthPerSample(Base):
    'Threshold average read depth per sample (read_depth / sample_count)'

    name = 'avg-dps'

    @classmethod
    def customize_parser(self, parser):
        parser.add_argument('--avg-depth-per-sample', type=int, default=3,
              help='Minimum required average coverage per sample')

    def __init__(self, args):
        self.threshold = args.avg_depth_per_sample

    def __call__(self, record):
        avgcov = float(record.INFO['DP']) / len(record.samples)
        if avgcov < self.threshold:
            return avgcov


class SnpOnly(Base):
    'Choose only SNP variants'

    name = 'snp-only'

    def __call__(self, record):
        if not record.is_snp:
            return True

    def filter_name(self):
        return self.name