1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
"""
.. _linear_cells_example:
Linear Cells
~~~~~~~~~~~~
This example extends the :ref:`create_unstructured_example` example by
including an explanation of linear VTK cell types and how you can create them in
PyVista.
Linear cells are cells where points only occur at the edges of each
cell. Non-linear cells contain additional points along the edges of the cell.
For more details regarding what a :class:`pyvista.UnstructuredGrid` is, please
see :ref:`point_sets_api`.
"""
# sphinx_gallery_start_ignore
from __future__ import annotations
PYVISTA_GALLERY_FORCE_STATIC_IN_DOCUMENT = True
# sphinx_gallery_end_ignore
import numpy as np
import pyvista as pv
from pyvista.examples import cells as example_cells
from pyvista.examples import plot_cell
# random generator for examples
rng = np.random.default_rng(2)
# %%
# Plot an example cell
# ~~~~~~~~~~~~~~~~~~~~
# PyVista contains a simple utility to plot a single cell, which is the
# fundamental unit of each :class:`pyvista.UnstructuredGrid`. For example,
# let's plot a simple :func:`Wedge <pyvista.examples.cells.Wedge>`.
#
grid = example_cells.Wedge()
example_cells.plot_cell(grid)
# %%
# This linear cell is composed of 6 points.
grid.points
# %%
# The UnstructuredGrid is also composed of a single cell and the point indices
# of that cell are defined in :attr:`cells <pyvista.UnstructuredGrid.cells>`.
#
# .. note::
# The leading ``6`` is the number of points in the cell.
grid.cells
# %%
# Combine two UnstructuredGrids
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# We can combine two unstructured grids to create a single unstructured grid
# using the ``+`` operator.
#
# .. note::
# This is an inefficient way of creating :class:`pyvista.UnstructuredGrid`
# objects. To see a more efficient implementation see
# :ref:`create_unstructured_example`.
grid_a = example_cells.Hexahedron()
grid_a.points += [0, 2.5, 0]
grid_b = example_cells.HexagonalPrism()
combined = grid_b + grid_a
plot_cell(combined, cpos='iso')
# %%
# This example helps to illustrate meaning behind the :attr:`cells
# <pyvista.UnstructuredGrid.cells>` attribute. The first cell, a hexahedron
# contains 8 points and the hexagonal prism contains 12 points. The ``cells``
# attribute shows this along with indices composing each cell.
combined.cells
# %%
# Cell Types
# ~~~~~~~~~~
# PyVista contains the :class:`pyvista.CellType` enumerator, which contains all the
# available VTK cell types mapped to a Python enumerator. These cell types are
# used when creating cells and also can be used when checking the
# :attr:`celltypes <pyvista.UnstructuredGrid.celltypes>` attribute. For example
# ``combined.celltypes`` contains both the ``pv.CellType.HEXAHEDRON`` and
# ``pv.CellType.HEXAGONAL_PRISM`` cell types.
print(pv.CellType.HEXAHEDRON, pv.CellType.HEXAGONAL_PRISM)
combined.celltypes == (pv.CellType.HEXAHEDRON, pv.CellType.HEXAGONAL_PRISM)
# %%
# Create an UnstructuredGrid with a single linear cell
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Now that you know the three main inputs of an
# :class:`pyvista.UnstructuredGrid`, it's quite straightforward to create an
# unstructured grid with a one or more cells. If you need to reference point
# ordering or additional, you can either read the source of `cells.py
# <https://github.com/pyvista/pyvista/blob/main/pyvista/examples/cells.py>`_ or
# simply create a cell from the ``pyvista.core.cells`` module and inspect its attributes.
points = [
[1.0, 1.0, 0.0],
[-1.0, 1.0, 0.0],
[-1.0, -1.0, 0.0],
[1.0, -1.0, 0.0],
[0.0, 0.0, 1.60803807],
]
cells = [len(points), *list(range(len(points)))]
pyrmaid = pv.UnstructuredGrid(cells, [pv.CellType.PYRAMID], points)
example_cells.plot_cell(pyrmaid)
# %%
# Plot all linear cell Types
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
# Let's create a ``(4, 4)`` :class:`pyvista.Plotter` and plot all 16 linear
# cells in a single plot.
def add_cell_helper(pl, text, grid, subplot, cpos=None):
"""Add a single cell to a plotter with fancy plotting."""
pl.subplot(*subplot)
pl.add_text(text, 'lower_edge', color='k', font_size=8)
pl.add_mesh(grid, opacity=0.5, color='lightblue', line_width=5)
edges = grid.extract_all_edges()
if edges.n_cells:
pl.add_mesh(grid.extract_all_edges(), line_width=5, color='k')
pl.add_points(grid, render_points_as_spheres=True, point_size=20, color='r')
pl.add_point_labels(
grid.points,
range(grid.n_points),
always_visible=True,
fill_shape=False,
margin=0,
shape_opacity=0.0,
font_size=20,
text_color='k',
)
if cpos is None:
pl.camera.azimuth = 20
pl.camera.elevation = -20
else:
pl.camera_position = cpos
pl.camera.zoom(0.8)
pl = pv.Plotter(shape=(4, 4))
add_cell_helper(pl, f'VERTEX ({pv.CellType.VERTEX})', example_cells.Vertex(), (0, 0))
add_cell_helper(pl, f'POLY_VERTEX ({pv.CellType.POLY_VERTEX})', example_cells.PolyVertex(), (0, 1))
add_cell_helper(pl, f'LINE ({pv.CellType.LINE})', example_cells.Line(), (0, 2))
add_cell_helper(pl, f'POLY_LINE ({pv.CellType.POLY_LINE})', example_cells.PolyLine(), (0, 3))
add_cell_helper(
pl,
f'TRIANGLE ({pv.CellType.TRIANGLE})',
example_cells.Triangle(),
(1, 0),
cpos='xy',
)
add_cell_helper(
pl,
f'TRIANGLE_STRIP ({pv.CellType.TRIANGLE_STRIP})',
example_cells.TriangleStrip().rotate_z(90, inplace=False),
(1, 1),
cpos='xy',
)
add_cell_helper(pl, f'POLYGON ({pv.CellType.POLYGON})', example_cells.Polygon(), (1, 2), cpos='xy')
add_cell_helper(pl, f'PIXEL ({pv.CellType.PIXEL})', example_cells.Pixel(), (1, 3), cpos='xy')
# make irregular
quad_grid = example_cells.Quadrilateral()
quad_grid.points += rng.random((4, 3)) * 0.5
add_cell_helper(pl, f'QUAD ({pv.CellType.QUAD})', quad_grid, (2, 0))
add_cell_helper(pl, f'TETRA ({pv.CellType.TETRA})', example_cells.Tetrahedron(), (2, 1))
add_cell_helper(pl, f'VOXEL ({pv.CellType.VOXEL})', example_cells.Voxel(), (2, 2))
# make irregular
hex_grid = example_cells.Hexahedron()
hex_grid.points += rng.random((8, 3)) * 0.4
add_cell_helper(pl, f'HEXAHEDRON ({pv.CellType.HEXAHEDRON})', hex_grid, (2, 3))
add_cell_helper(pl, f'WEDGE ({pv.CellType.WEDGE})', example_cells.Wedge(), (3, 0))
add_cell_helper(pl, f'PYRAMID ({pv.CellType.PYRAMID})', example_cells.Pyramid(), (3, 1))
add_cell_helper(
pl,
f'PENTAGONAL_PRISM ({pv.CellType.PENTAGONAL_PRISM})',
example_cells.PentagonalPrism(),
(3, 2),
)
add_cell_helper(
pl,
f'HEXAGONAL_PRISM ({pv.CellType.HEXAGONAL_PRISM})',
example_cells.HexagonalPrism(),
(3, 3),
)
pl.background_color = 'w'
pl.show()
|