File: gradients.py

package info (click to toggle)
python-pyvista 0.44.1-11
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 159,804 kB
  • sloc: python: 72,164; sh: 118; makefile: 68
file content (99 lines) | stat: -rw-r--r-- 2,731 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
"""
.. _gradients_example:

Compute Gradients of a Field
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Estimate the gradient of a scalar or vector field in a data set.

The ordering for the output gradient tuple will be
{du/dx, du/dy, du/dz, dv/dx, dv/dy, dv/dz, dw/dx, dw/dy, dw/dz} for
an input array {u, v, w}.

Showing the :func:`pyvista.DataSetFilters.compute_derivative` filter.
"""

from __future__ import annotations

import numpy as np

# sphinx_gallery_thumbnail_number = 1
import pyvista as pv
from pyvista import examples

# A vtkStructuredGrid - but could be any mesh type
mesh = examples.download_carotid()
mesh
# %%
# Now compute the gradients of the ``vectors`` vector field in the point data
# of that mesh. This is as simple as calling
# :func:`pyvista.DataSetFilters.compute_derivative`.
mesh_g = mesh.compute_derivative(scalars="vectors")
mesh_g["gradient"]

# %%
# .. note:: You can also use :func:`pyvista.DataSetFilters.compute_derivative` for
#   computing other derivative based quantities, such as divergence, vorticity,
#   and Q-criterion. See function documentation for options.

# %%
# ``mesh_g["gradient"]`` is an ``N`` by 9 NumPy array of the gradients, so we
# could make a dictionary of NumPy arrays of the gradients like:


def gradients_to_dict(arr):
    """A helper method to label the gradients into a dictionary."""
    keys = np.array(
        ["du/dx", "du/dy", "du/dz", "dv/dx", "dv/dy", "dv/dz", "dw/dx", "dw/dy", "dw/dz"],
    )
    keys = keys.reshape((3, 3))[:, : arr.shape[1]].ravel()
    return dict(zip(keys, mesh_g["gradient"].T))


gradients = gradients_to_dict(mesh_g["gradient"])
gradients

# %%
# And we can add all of those components as individual arrays back to the mesh
# by:
mesh_g.point_data.update(gradients)
mesh_g

# %%

keys = np.array(list(gradients.keys())).reshape(3, 3)

p = pv.Plotter(shape=keys.shape)
for (i, j), name in np.ndenumerate(keys):
    p.subplot(i, j)
    p.add_mesh(mesh_g.contour(scalars=name), scalars=name, opacity=0.75)
    p.add_mesh(mesh_g.outline(), color="k")
p.link_views()
p.view_isometric()
p.show()


# %%
# And there you have it, the gradients for a vector field. We could also do
# this for a scalar  field like for the ``scalars`` field in the given dataset.
mesh_g = mesh.compute_derivative(scalars="scalars")

gradients = gradients_to_dict(mesh_g["gradient"])
gradients

# %%

mesh_g.point_data.update(gradients)

keys = np.array(list(gradients.keys())).reshape(1, 3)

p = pv.Plotter(shape=keys.shape)

for (i, j), name in np.ndenumerate(keys):
    name = keys[i, j]
    p.subplot(i, j)
    p.add_mesh(mesh_g.contour(scalars=name), scalars=name, opacity=0.75)
    p.add_mesh(mesh_g.outline(), color="k")
p.link_views()
p.view_isometric()
p.show()