File: interpolate.py

package info (click to toggle)
python-pyvista 0.44.1-11
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 159,804 kB
  • sloc: python: 72,164; sh: 118; makefile: 68
file content (115 lines) | stat: -rw-r--r-- 3,465 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
"""
.. _interpolate_example:

Interpolating
~~~~~~~~~~~~~

There are two main methods of interpolating or sampling data from a target mesh
in PyVista. :func:`pyvista.DataSetFilters.interpolate` uses a distance weighting
kernel to interpolate point data from nearby points of the target mesh onto
the desired points.
:func:`pyvista.DataSetFilters.sample` interpolates data using the
interpolation scheme of the enclosing cell from the target mesh.

If the target mesh is a point cloud, i.e. there is no connectivity in the cell
structure, then :func:`pyvista.DataSetFilters.interpolate` is typically
preferred.  If interpolation is desired within the cells of the target mesh, then
:func:`pyvista.DataSetFilters.sample` is typically desired.


This example uses :func:`pyvista.DataSetFilters.interpolate`.
For :func:`pyvista.DataSetFilters.sample`, see :ref:`resampling_example`.

Interpolate one mesh's point/cell arrays onto another mesh's nodes using a
Gaussian Kernel.
"""

# sphinx_gallery_thumbnail_number = 4
from __future__ import annotations

import pyvista as pv
from pyvista import examples

# %%
# Simple Surface Interpolation
# ++++++++++++++++++++++++++++
# Resample the points' arrays onto a surface

# Download sample data
surface = examples.download_saddle_surface()
points = examples.download_sparse_points()

p = pv.Plotter()
p.add_mesh(points, scalars="val", point_size=30.0, render_points_as_spheres=True)
p.add_mesh(surface)
p.show()

# %%
# Run the interpolation

interpolated = surface.interpolate(points, radius=12.0)


p = pv.Plotter()
p.add_mesh(points, scalars="val", point_size=30.0, render_points_as_spheres=True)
p.add_mesh(interpolated, scalars="val")
p.show()


# %%
# Complex Interpolation
# +++++++++++++++++++++
# In this example, we will in interpolate sparse points in 3D space into a
# volume. These data are from temperature probes in the subsurface and the goal
# is to create an approximate 3D model of the temperature field in the
# subsurface.
#
# This approach is a great for back-of-the-hand estimations but pales in
# comparison to kriging

# Download the sparse data
probes = examples.download_thermal_probes()

# %%
# Create the interpolation grid around the sparse data
grid = pv.ImageData()
grid.origin = (329700, 4252600, -2700)
grid.spacing = (250, 250, 50)
grid.dimensions = (60, 75, 100)

# %%
dargs = dict(cmap="coolwarm", clim=[0, 300], scalars="temperature (C)")
cpos = [
    (364280.5723737897, 4285326.164400684, 14093.431895014139),
    (337748.7217949739, 4261154.45054595, -637.1092549935128),
    (-0.29629216102673206, -0.23840196609932093, 0.9248651025279784),
]

p = pv.Plotter()
p.add_mesh(grid.outline(), color='k')
p.add_mesh(probes, render_points_as_spheres=True, **dargs)
p.show(cpos=cpos)


# %%
# Run an interpolation
interp = grid.interpolate(probes, radius=15000, sharpness=10, strategy='mask_points')

# %%
# Visualize the results

# sphinx_gallery_start_ignore
# volume rendering does not work in interactive plots currently
PYVISTA_GALLERY_FORCE_STATIC = True
# sphinx_gallery_end_ignore

vol_opac = [0, 0, 0.2, 0.2, 0.5, 0.5]

p = pv.Plotter(shape=(1, 2), window_size=[1024 * 3, 768 * 2])
p.add_volume(interp, opacity=vol_opac, **dargs)
p.add_mesh(probes, render_points_as_spheres=True, point_size=10, **dargs)
p.subplot(0, 1)
p.add_mesh(interp.contour(5), opacity=0.5, **dargs)
p.add_mesh(probes, render_points_as_spheres=True, point_size=10, **dargs)
p.link_views()
p.show(cpos=cpos)