1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
"""
.. _slice_example:
Slicing
~~~~~~~
Extract thin planar slices from a volume.
"""
from __future__ import annotations
import matplotlib.pyplot as plt
import numpy as np
# sphinx_gallery_thumbnail_number = 2
import pyvista as pv
from pyvista import examples
# %%
# PyVista meshes have several slicing filters bound directly to all datasets.
# These filters allow you to slice through a volumetric dataset to extract and
# view sections through the volume of data.
#
# One of the most common slicing filters used in PyVista is the
# :func:`pyvista.DataSetFilters.slice_orthogonal` filter which creates three
# orthogonal slices through the dataset parallel to the three Cartesian planes.
# For example, let's slice through the sample geostatistical training image
# volume. First, load up the volume and preview it:
mesh = examples.load_channels()
# define a categorical colormap
cmap = plt.get_cmap("viridis", 4)
mesh.plot(cmap=cmap)
# %%
# Note that this dataset is a 3D volume and there might be regions within this
# volume that we would like to inspect. We can create slices through the mesh
# to gain further insight about the internals of the volume.
slices = mesh.slice_orthogonal()
slices.plot(cmap=cmap)
# %%
# The orthogonal slices can be easily translated throughout the volume:
slices = mesh.slice_orthogonal(x=20, y=20, z=30)
slices.plot(cmap=cmap)
# %%
# We can also add just a single slice of the volume by specifying the origin
# and normal of the slicing plane with the :func:`pyvista.DataSetFilters.slice`
# filter:
# Single slice - origin defaults to the center of the mesh
single_slice = mesh.slice(normal=[1, 1, 0])
p = pv.Plotter()
p.add_mesh(mesh.outline(), color="k")
p.add_mesh(single_slice, cmap=cmap)
p.show()
# %%
# Adding slicing planes uniformly across an axial direction can also be
# automated with the :func:`pyvista.DataSetFilters.slice_along_axis` filter:
slices = mesh.slice_along_axis(n=7, axis="y")
slices.plot(cmap=cmap)
# %%
# Slice Along Line
# ++++++++++++++++
#
# We can also slice a dataset along a :func:`pyvista.Spline` or
# :func:`pyvista.Line` using the :func:`pyvista.DataSetFilters.slice_along_line` filter.
#
# First, define a line source through the dataset of interest. Please note
# that this type of slicing is computationally expensive and might take a while
# if there are a lot of points in the line - try to keep the resolution of
# the line low.
model = examples.load_channels()
def path(y):
"""Equation: x = a(y-h)^2 + k"""
a = 110.0 / 160.0**2
x = a * y**2 + 0.0
return x, y
x, y = path(np.arange(model.bounds[2], model.bounds[3], 15.0))
zo = np.linspace(9.0, 11.0, num=len(y))
points = np.c_[x, y, zo]
spline = pv.Spline(points, 15)
spline
# %%
# Then run the filter
slc = model.slice_along_line(spline)
slc
# %%
p = pv.Plotter()
p.add_mesh(slc, cmap=cmap)
p.add_mesh(model.outline())
p.show(cpos=[1, -1, 1])
# %%
# Multiple Slices in Vector Direction
# +++++++++++++++++++++++++++++++++++
#
# Slice a mesh along a vector direction perpendicularly.
mesh = examples.download_brain()
# Create vector
vec = np.array([1.0, 2.0, 1.0])
# Normalize the vector
normal = vec / np.linalg.norm(vec)
# Make points along that vector for the extent of your slices
a = mesh.center + normal * mesh.length / 3.0
b = mesh.center - normal * mesh.length / 3.0
# Define the line/points for the slices
n_slices = 5
line = pv.Line(a, b, n_slices)
# Generate all of the slices
slices = pv.MultiBlock()
for point in line.points:
slices.append(mesh.slice(normal=normal, origin=point))
# %%
p = pv.Plotter()
p.add_mesh(mesh.outline(), color="k")
p.add_mesh(slices, opacity=0.75)
p.add_mesh(line, color="red", line_width=5)
p.show()
# %%
# Slice At Different Bearings
# +++++++++++++++++++++++++++
#
# From `pyvista-support#23 <https://github.com/pyvista/pyvista-support/issues/23>`_
#
# An example of how to get many slices at different bearings all centered
# around a user-chosen location.
#
# Create a point to orient slices around
ranges = np.ptp(np.array(model.bounds).reshape(-1, 2), axis=1)
point = np.array(model.center) - ranges * 0.25
# %%
# Now generate a few normal vectors to rotate a slice around the z-axis.
# Use equation for circle since its about the Z-axis.
increment = np.pi / 6.0
# use a container to hold all the slices
slices = pv.MultiBlock() # treat like a dictionary/list
for theta in np.arange(0, np.pi, increment):
normal = np.array([np.cos(theta), np.sin(theta), 0.0]).dot(np.pi / 2.0)
name = f'Bearing: {np.rad2deg(theta):.2f}'
slices[name] = model.slice(origin=point, normal=normal)
slices
# %%
# And now display it.
p = pv.Plotter()
p.add_mesh(slices, cmap=cmap)
p.add_mesh(model.outline())
p.show()
|